×
10.02.2015
216.013.23de

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГИДРОКАРБОАЛЮМИНАТОВ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ ИЗ ПРИРОДНОГО МАГНИЙСОДЕРЖАЩЕГО СЫРЬЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к цветной металлургии и может быть использовано для синтеза активных добавок и для глубокой очистки алюминатных растворов глиноземного производства от органических примесей и кремнезема. Способ получения гидрокарбоалюминатов щелочноземельных металлов включает температурную обработку природного магнийсодержащего сырья, выбранного из брусита, магнезита и доломита, при 500-700°С 120-240 мин для активирования его магнезиальной части. Затем осуществляют его взаимодействие при активном перемешивании со щелочным алюминатным раствором в течение 5-60 минут при температуре 80±5°С. Технический результат - повышение степени и скорости формирования гидрокарбоалюминатов щелочноземельных металлов за счёт образования активного метастабильного комплекса Mg-O, повышение энергоэффективности процесса. 3 ил., 3 пр., 4 табл.
Основные результаты: Способ получения гидрокарбоалюминатов щелочноземельных металлов, включающий температурную обработку природного магнийсодержащего сырья, выбранного из брусита, магнезита и доломита, для активирования его магнезиальной части и последующее взаимодействие при активном перемешивании со щелочным алюминатным раствором, отличающийся тем, что обработку проводят при от 500 до 700°С от 120 до 240 мин, а взаимодействие со щелочным алюминатным раствором ведут в течение от 5 до 60 минут при температуре 80±5°С.

Изобретение относится к производству глинозема, в частности к получению активных добавок, гидрокарбоалюминатов щелочноземельных металлов, применяемых для очистки алюминатных растворов от кремнезема и органических соединений.

Способ получения гидрокарбоалюминатов щелочноземельных металлов включает дробление и измельчение природного магнийсодержащего сырья до крупности >1 мм, температурную обработку материала в интервале 550-700°С, взаимодействие активированного сырья, выбранного из брусита, магнезита и доломита, с щелочным алюминатным раствором при температуре около 80°С в течение 5-30 минут, отделением непрореагировавшей части декантационными методами, с получением смеси гидрокарбоалюминатов магния (80-100%) и кальция (20-0%), отличающийся тем, что активация природного магнийсодержащего сырья производится температурной обработкой материала в интервале 550-700°С.

Известен способ получения синтетического гидроталькита и антацида (патент США №3650704, опубл. 21.03.1972 г.). Гидрокарбоалюминат магния получали добавлением водного раствора сульфата алюминия и карбоната натрия к суспензии гидроксида магния. Пульпа затем промывалась водой до полного выведения сульфат-ионов. Суспензия нагревалась до 85°С в течение 3 часов, осадок высушивался. В качестве магнийсодержащих соединений заявлены оксид, гидроксид, карбонат магния, а также водорастворимые соли магния, такие как хлорид, нитрат и сульфат магния.

Недостатками способа являются длительность процесса и невысокая степень превращения, расходование дорогостоящих солей магния.

Известен способ получения кристаллического гидрокарбоалюмината магния (патент США №4539195, опубл. 2.09.1985 г.). Процесс включает конверсию гидроксида алюминия и основного карбоната магния в присутствии, по меньшей мере, одного компонента - оксида или гидроксида магния. Смешивание происходит в стехиометрическом отношении в пересчете на алюминий или магний. Процесс ведут при температуре 50-100°С, полученный продукт подвергают распылительной сушке. В результате получается химически не связанная смесь карбоната магния с алюминатными соединениями.

Недостатками способа являются невысокая степень превращения и образование химической не связанной смеси карбоната магния с гидроксидом алюминия.

Известен способ получения алюмината магния (патент РФ №2359913, опубл. 10.08.2001). Он включает смешение гидроксокарбоната магния или гидроксида магния с гидроксидом алюминия и термообработку в присутствии оксида углерода СО с парциальным давлением 0,02-0,2 ат при скорости нагрева 20-100°С/ч.

Недостатками способа является низкая эффективность и длительность процесса.

Известен способ получения гидратированного гидроксоалюмината формулы Mg6Al2(OH)18·4H2O (патент РФ №2275331, опубл. 10.07.2005), который заключается во взаимодействии раствора алюмината натрия с каустическим модулем 3,64-3,7 с раствором хлорида магния с концентрацией хлорида магния 5-10 масс.%, полученную смесь перемешивают при температуре 80-100°С в течение 1-3 ч.

Недостатком способа является низкая эффективность способа, загрязнение алюминатного раствора хлорид-ионом.

Известен способ получения высокодисперсного алюмината магния (патент РФ №2457181, опубл. 27.07.2012), в котором гидроксид магния и гидроксид алюминия в весовом отношении 2,69:1 смешивают и подвергают механической активации в высоконапряженных планетарно-центробежных мельницах в течение 5-15 при отношении массы навески к массе шаровой нагрузки 1:10-1:30 и ускорении при активации 20-40 г. Продукты активации обрабатывают водой при температурах 20-95°С и времени 0,25-2 часа, фильтруют, высушивают и подвергают термической обработке при температуре не ниже 800°С в течение 2-4 часов. Изобретение позволяет получить порошкообразный алюминат магния с удельной поверхностью от 80 до 260 м2/г. Данный способ позволяет получить активную добавку с развитой удельной поверхностью и предполагает стадию активации, был выбран в качестве прототипа.

Техническим результатом изобретения является повышение степени и скорости формирования гидрокарбоалюминатов щелочноземельных металлов из природного сырья, а также повышение энергоэффективности процесса.

Технический результат достигается тем, что в способе получения гидрокарбоалюминатов щелочноземельных металлов, включающем дробление и измельчение природного магнийсодержащего сырья, выбранного из брусита, магнезита и доломита, для активирования его магнезиальной части и последующее взаимодействие при активном перемешивании со щелочным алюминатным раствором, обработку проводят при от 500 до 700°С от 120 до 240 мин, а взаимодействие со щелочным алюминатным раствором ведут в течение от 5 до 60 минут при температуре 80±50°С.

Для получения продукта высокой чистоты магнезиальная часть природного магнийсодержащего сырья должна быть активирована. В противном случае наблюдается низкая степень превращения, а полученный продукт будет содержать большое количество примесных фаз, что скажется на качестве продукта.

Активация магнезиальной части может быть осуществлена нагреванием магнийсодержащих соединений в температурном интервале 500-700°C. При температурах ниже 500°С в конечном продукте будет содержаться значительное количество малоактивных фаз (в основном гидроксид и карбонат магния). При температуре выше 700°C, получаются менее активные формы оксида магния. Влияния малоактивных форм можно избежать нагреванием магнийсодержащего сырья до температур ниже 700°C, с целью активации магнезиальной части до активного оксида магния (MgOакт).

По предлагаемому способу полное формирование фазы гидрокарбоалюмината магния заканчивается в течение 5-15 минут, степень превращения более 95%. Если природный материал, помимо магниевой соли, содержит другое соединение в значительных количествах, как, например, СаСО3 в доломите, то последнее не подвергается разложению в процессе температурной обработки. Степень превращения СаСО3 в гидрокарбоалюминат кальция 4СаО·Аl2O3·0,5СO2·11Н2O регулируется продолжительностью взаимодействия щелочно-алюминатных растворов с сырьем и варьируется в пределах 0-19% от содержания СаСО3 в доломите с тем, чтобы его доля в приготовляемом препарате не превышала 20%.

Температурный интервал был выбран таким образом, чтобы перевести магниевую составляющую в ее самую активную форму, а соединения кальция не претерпевали каких-либо структурных изменений. Это позволит существенно сократить энергозатраты на обработку сырья (для разложения кальцита необходим нагрев до 900-1000°C). Таким образом, схема формирования гидрокарбоалюминатных фаз для кальция и магния описывается уравнениями

Проведенные исследования кинетики процесса формирования гидрокарбоалюмината магния позволило выявить скоротечность реакции, при условии активации карбоната и/или гидроксида магния в интервале температур 500-700°C. Также было установлено, что регистрируемая уже на первой минуте взаимодействия фаза гидрокарбоалюмината магния устойчива при различных температурах и концентрациях в течение продолжительного времени (по прошествии 140 ч изменений не обнаружено). Известно, что карбонат кальция также является неустойчивой фазой в щелочно-алюминатных растворах и при повышенных температурах стремится перейти в устойчивую фазу кубического шестиводного трехкальциевого алюмината, что происходит через фазу ненасыщенного гидрокарбоалюмината кальция. Высокая скорость реакции формирования ГКАМ позволяет «поймать» кальций на стадии гидрокарбоалюмината. При этом степень трансформации кальцита можно регулировать продолжительностью взаимодействия в интервале 5-60 минут.

Как следует из реакции (2), превращение СаСО3→4СаО·Аl2O3·0,5СO2·11Н2O сопряжено также переходом дорогостоящей каустической щелочи в карбонатную, что является крайне нежелательным в контексте металлургического производства. Избежать дополнительного накапливания карбонат-иона в алюминатном растворе, учитывая каустифицирующий потенциал реакции (1), можно, ограничив степень превращения карбоната кальция значением 20%, что определяется простым расчетом.

Активированный материал добавляется к водному щелочно-алюминатному раствору, в том числе содержащему карбонат-ион. Предлагаемый способ осуществляется в среде сильных электролитов, рН более 13, что способствует реализации процесса в течение нескольких минут.

В качестве конверсионной среды может быть использован синтетический раствор, содержащий гидроксид натрия, карбонат натрия (в случае систем с доломитом необязательно) и алюминат-ион. Реальные алюминатные растворы глиноземного производства также могут быть использованы для синтеза веществ.

Растворы глиноземного производства имеют следующий состав, г/л: 120-250 Na2Oк, 20-100 Na2CO3 и 50-120 Аl2О3. Как показали исследования, подобная композиция благоприятно сказывается на качестве и выходе получаемого продукта. Достаточно чистые образцы удавалось получить как в искусственных системах, так и из производственных алюминатных растворов.

Синтез следует вести при температуре 80±5°C. Более низкие температуры уменьшают степень конверсии и скорость реакции, более высокие температуры увеличивают энергозатраты и способствуют излишнему парению воды.

Активированный магнийсодержащий материал в количестве 30-250 г/л добавляют к нагретому до температуры процесса щелочно-алюминатному раствору. Синтез ведут при интенсивном перемешивании.

Процесс ведут в течение 5-60 минут до полного завершения формирования гидрокарбоалюмината магния и необходимой степени превращения фазы гидрокарбоалюмината кальция. Время определяется экспериментально.

Непрореагировавший остаток отделяется декантацией, т.к. скорость его осаждения, как минимум, в три раза выше скорости осаждения гидрокарбоалюминатов кальция и магния.

Предлагаемый способ обеспечивает высокий выход и степень чистоты продукта, которая составляет более 95%.

Полученные по данному способу соединения были проанализированы количественным, рентгенофазовым и термогравиметрическим методами. Продукты, полученные по нижеприведенным примерам, были проанализированы на дифрактометре XRD-7000 фирмы «Shimadzu». Рентгенофазовый анализ образцов (фигуре 1) показал, что продукт-гидрокарбоалюминат магния высокой чистоты. Сравнение основных дифракционных пиков синтезированных продуктов и природного аналога - гидроталькита (гидрокарбоалюмината магния формулы Mg6Al2(OH)18CO3·4H2O) представлено в таблице 1.

Под высокой чистотой образца в контексте данного изобретения подразумевается отсутствие дифракционных линий, присущих другим соединениям магния. Несуществование нехарактерных линий на дифрактограмме обозначают отсутствие других соединений в сколь-либо значительных количествах.

Степень окристаллизованности вещества можно оценить по ширине пиков. Узкие интенсивные пики указывают на высокую степень кристаллизации образцов, а также на их однородность и изотропность физико-химических свойств.

Синтезированные гидрокарбоалюмината имеют пластинчатую морфологию. Гранулометрический состав частиц зависит, главным образом, от условий синтеза и варьируется в пределах нескольких сотен нм до микрометров в горизонтальной плоскости. Основные пластинки характеризуются отчетливой гексагональной формой и острыми гранями. Также заметна асимметричная природа основных частиц. Электронная микрофотография образца 1 представлена на фигуре 3.

Синтезированные вещества, обладая развитой удельной поверхностью 90-200 м2/г, могут быть использованы в качестве адсорбента примесей органических соединений, характерных для производственных алюминатных растворов технологии Байера, а также в очистке алюминатных растворов нефелиновой технологии от кремнезема.

Пример 1

Измельченный карбонат магния (магнезит) в количестве 50 г был нагрет до температуры 500°C в течение 15 минут, затем охлаждался в эксикаторе. Полученный оксид магния, в количестве 23 г, добавляли к синтетическому раствору.

Раствор готовили введением 9 г алюминиевой стружки марки А 999 к 200 мл водного раствора, содержащего 200 г/л Na2Oк, дополнительно вводили карбонат-ион в виде Na2СО3, в пересчете на Na2Oкб,=30,7 г/л. Раствор нагревали до 80°С, затем добавляли активированное сырье. Смесь перемешивали (180 об/мин) в течение 180 мин, затем пульпу фильтровали. Осадок промывали и высушили при 105°C в течение 12 часов.

Конечный продукт, гидрокарбоалюминат магния с удельной поверхностью 205 м2/г, характеризовался высокой степенью белизны и весил около 54,8 г, что означает выход продукта не менее 95%. Осадок был проанализирован рентгенофазовым методом, что подтвердило образование гидрокарбоалюмината высокой чистоты. Результаты анализа представлены в таблице 2.

Полученный гидрокарбоалюминат в количестве 2 г добавляли к 100 мл упаренного алюминатного раствора схемы Байера, вели перемешивание в течение 5 минут, затем отделяли твердое фильтрацией. Получили коричневый кек (гидрокарбоалюминат с сорбированными органическими соединениями) и осветленный алюминатный раствор, степень очистки от органических веществ 48%.

Пример 2

Измельченный гидроксид магния (брусита) в количестве 25 г подвергали температурной обработке 500°С в течение 60 минут. Период в 60 минут был выбран для полного завершения процесса активации, подбирается в каждом отдельном случае, в зависимости от количества и крупности материала и температуры обработки. Обычно, этот период варьируется в пределах 30-120 минут.

9 г активированного MgO добавляли к 75 мл упаренного алюминатного раствора Николаевского глиноземного завода, содержащего, г/л: 90 Аl2О3, 260 Na2Ооб; αк=4,2. Смесь нагревали до 80°C и перемешивали со скоростью 180 об/мин в течение 30 минут. Затем пульпу фильтровали, кек промывали и высушивали при температуре 105°C на протяжении 12 часов. Полученный образец рыжего цвета весил 21,8 г. Рентгенофазовый анализ показал образование гидроталькитной фазы в значительной степени. Результаты анализа представлены в таблице 3.

Пример 3

В качестве магнийсодержащего сырья был взят доломит состава, %: СаО 28,47, MgO 20,43, Аl2О3 0,69, SiO2 3,68, п.п.п. 45, 23.

Для активации магнезиальной части доломит в количестве 100 г подвергли температурной обработке 500°C в течение 60 минут.

75 г активированного сырья добавляли к 200 мл упаренного алюминатного раствора Николаевского глиноземного завода, содержащего, г/л: 90 Аl2О3, 260 Na2Ооб; αк=4,2. Смесь нагревали до 80°C и перемешивали со скоростью 180 об/мин в течение 15 минут. Скорость отстаивания непрореагировавшего остатка приблизительно в 3 раза выше, чем у гидрокарбоалюминатов. Остаток отделяли декантацией. Затем пульпу гидрокарбоалюминатов фильтровали, кек промывали и высушивали при температуре 105°C на протяжении 12 часов. Полученный образец весил 61 г, степень чистоты 94%. Масса непрореагировавшего остатка после сушки 42 г, остаток в основном представлен карбонатом кальция СаСО3. Результаты анализа представлены в таблице 4.

Фиг. 1 - Рентгенограмма синтезированного гидрокарбоалюмината.

Фиг. 2 - Термограмма синтезированного гидрокарбоалюмината.

Фиг. 3 - Микрофотография синтезированного гидрокарбоалюмината (×2500).

Табл.1
Природный гидроталькит (Урал) Синтезированный гидрокарбоалюминат магния Смесь гидрокарбоалюминатов кальция и магния (20% ГКАК, 80% ГКАМ)
I/I0 I/I0 I/I0
7,84 100 7,7 100 7,67 100
3,92 61 3,83 40 3,8 60
2,62 5 2,61 20 2,87 8
1,87 2 2,29 17 2,6 24
- - 1,96 8 2,48 8
- - - - 2,3 14
- - - - 2,02 2
- - - - 1,86 6

Табл.2
m в исходном растворе, г m в осадке (по данным гравиметрического анализа) Теоретический расчет ГКАМ
г % г %
MgO 23 23 42 23 39,7
Al2O3 17 9,3 17 9,8 16,9
CO2 4,36 4,0 7,3 4,2 7,3
Прочее - 18,5 33,7 20,7 36,1
Всего - 54,8 100 57,7 100

Табл.3
m в исходном растворе, г m в осадке (по данным гравиметрического анализа) Теоретический расчет ГКАМ
г % г %
MgO 9 9 41,3 8,7 39,7
Al2O3 6,75 3,2 14,7 3,7 16,9
CO2 1,6 1,4 6,4 1,6 7,3
Прочее - 8,2 37,6 7,9 36,1
Всего - 21,8 100 21,9 100

Табл.4
m исх, г m в осадке (по данным гравиметрического анализа) Теоретический расчет смеси
г % г %
MgO 19 18,7 30,7 19 32,7
CaO 26 6,4 10,5 4,4 7,6
Al2O3 18 9,9 16,2 10 17,2
CO2 (доломита) 20 5,41 8,9 3,88 6,7
Прочее - 20,59 33,7 20,72 35,8
Всего - 61 100 58 100

Способ получения гидрокарбоалюминатов щелочноземельных металлов, включающий температурную обработку природного магнийсодержащего сырья, выбранного из брусита, магнезита и доломита, для активирования его магнезиальной части и последующее взаимодействие при активном перемешивании со щелочным алюминатным раствором, отличающийся тем, что обработку проводят при от 500 до 700°С от 120 до 240 мин, а взаимодействие со щелочным алюминатным раствором ведут в течение от 5 до 60 минут при температуре 80±5°С.
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКАРБОАЛЮМИНАТОВ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ ИЗ ПРИРОДНОГО МАГНИЙСОДЕРЖАЩЕГО СЫРЬЯ
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКАРБОАЛЮМИНАТОВ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ ИЗ ПРИРОДНОГО МАГНИЙСОДЕРЖАЩЕГО СЫРЬЯ
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКАРБОАЛЮМИНАТОВ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ ИЗ ПРИРОДНОГО МАГНИЙСОДЕРЖАЩЕГО СЫРЬЯ
Источник поступления информации: Роспатент

Showing 101-110 of 167 items.
20.04.2015
№216.013.43b1

Устройство для определения величины коэффициента сопротивления движению шахтных вагонеток

Изобретение относится к испытаниям транспортных средств, в частности шахтных вагонеток. Устройство содержит наклонный, при испытании, рабочий участок рельсового пути с фиксированным углом его наклона и примыкающими к нему горизонтальными участками рельсового нуги. Рабочий участок рельсового...
Тип: Изобретение
Номер охранного документа: 0002548827
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43ba

Способ извлечения катионов самария (iii) из водных фаз

Изобретение относится к способу извлечения самария (III) из бедного или техногенного сырья, в частности флотоэкстракцией из водных фаз. В процессе флотоэкстракции самария (III) в качестве органической фазы используют изооктиловый спирт, а в качестве собирателя - ПАВ анионного типа...
Тип: Изобретение
Номер охранного документа: 0002548836
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43e1

Холоднонабивная подовая масса

Изобретение относится к холоднонабивной подовой массе для футеровки подины алюминиевого электролизера. Холоднонабивная подовая масса содержит электрокальцинированный антрацит, пластификатор и жидкое углеродное связующее, включающее каменноугольный пек, поглотительное масло и карбонат лития в...
Тип: Изобретение
Номер охранного документа: 0002548875
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.46da

Перфоратор

Изобретение относится к горной и строительной промышленности и может быть использовано для бурения шпуров в любых многоструктурных породах с твердыми включениями, например апатитонефелиновой руды. Перфоратор содержит сдвоенный ударник, состоящий из основного и вспомогательного бойков, при этом...
Тип: Изобретение
Номер охранного документа: 0002549642
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.472a

Шахтный скиповой грузовой подъемник

Шахтный скиповой грузовой подъемник содержит размещенные в шахтном стволе два скипа и противовес, кинематически связанные тяговым стальным проволочным канатом с многовитковым шкивом трения. Скипы закреплены на концах тягового каната. Один из скипов в исходном положении размещен в нижней части...
Тип: Изобретение
Номер охранного документа: 0002549722
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.472c

Способ стыковки рельсов железнодорожных путей

Изобретение относится к железнодорожному транспорту, а именно к исключению смещения по вертикали относительно друг друга смежных рельсов железнодорожных путей в зоне их стыковочных узлов. Для стыковки рельсов железнодорожного пути стыкуемые концы рельсов соединяют между собой с помощью...
Тип: Изобретение
Номер охранного документа: 0002549724
Дата охранного документа: 27.04.2015
10.06.2015
№216.013.50d9

Способ подготовки агломерационной шихты к спеканию

Изобретение относится к черной металлургии, а именно к агломерационному производству. Способ подготовки агломерационной шихты к спеканию, включающий подачу в смеситель-окомкователь шихты, содержащей смесь тонкоизмельченных железорудных концентратов, флюсы и топливо. В смесь железорудных...
Тип: Изобретение
Номер охранного документа: 0002552218
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5115

Коронка для вращательного способа бурения взрывных шпуров малого диаметра

Изобретение относится к коронкам, предназначенным для бурения взрывных шпуров при щадящих буровзрывных работах по отбойке горной массы в крепких горных породах. Технический результат заключается в повышении эффективности и ресурса коронки, увеличении скорости бурения шпуров малого диаметра,...
Тип: Изобретение
Номер охранного документа: 0002552278
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5527

Способ извлечения благородных металлов из отходов радиоэлектронной промышленности

Изобретение относится к металлургии благородных металлов и может быть использовано на предприятиях вторичной металлургии по переработке радиоэлектронного лома и при извлечении золота или серебра из отходов радиоэлектронной промышленности. Способ включает плавку радиоэлектронных отходов в...
Тип: Изобретение
Номер охранного документа: 0002553320
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.558a

Способ распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций

Изобретение относится к вооружению и может быть использовано в системах распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций. Проводят экспериментальные стрельбы, исследуют записи отражения от снарядов для каждого калибра...
Тип: Изобретение
Номер охранного документа: 0002553419
Дата охранного документа: 10.06.2015
Showing 101-110 of 210 items.
20.12.2014
№216.013.123b

Установка для испытания образцов на изгиб

Изобретение относится к испытательной технике, в частности к установкам для испытания образцов материалов на изгиб. Установка содержит основание, установленную на нем поворотную платформу, установленный на ней захват образца, центробежный груз для закрепления на конце образца, привод вращения...
Тип: Изобретение
Номер охранного документа: 0002536090
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.13af

Переход газопровода

Изобретение относится к трубопроводному транспорту. Переход газопровода состоит из изолированных труб, проложенных в виде балочного перехода с его железобетонным укрытием сверху без контакта с газопроводом. Верхняя часть укрытия эксцентрично расположена относительно газопровода, а нижние...
Тип: Изобретение
Номер охранного документа: 0002536463
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.13f0

Способ невзрывного разрушения горных пород

Изобретение относится к горной промышленности, в частности к разрушению горных пород, и может быть использовано в горной и строительной индустрии для отрыва фигурных блоков горной породы от массива. Способ невзрывного разрушения горных пород включает бурение шпуров, установку в них...
Тип: Изобретение
Номер охранного документа: 0002536528
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.13f1

Способ селективной изоляции обводненных интервалов нефтяного пласта

Изобретение относится к нефтедобывающей промышленности, а именно к способам ограничения водопритока в добывающих и выравниванию профиля приемистости в нагнетательных нефтяных скважинах. Способ селективной изоляции обводненных интервалов нефтяного пласта включает закачку в пласт гелеобразующего...
Тип: Изобретение
Номер охранного документа: 0002536529
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.141b

Устройство для оценки ходовых качеств рельсового подвижного состава шахт и рудников

Изобретение относится к устройствам для испытания и оценки ходовых качеств рельсового подвижного состава шахт и рудников. Устройство содержит наклонный, при испытании, рабочий участок рельсового пути с фиксированным углом его наклона и длиной с примыкающим к нему горизонтальным участком...
Тип: Изобретение
Номер охранного документа: 0002536571
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.141d

Бункер-пылеподавитель

Изобретение относится к погрузочно-разгрузочным работам, в частности к загрузке вагонов и конвейеров пылящими материалами, и может быть использовано в горной, химической и пищевой промышленности при хранении, транспортировке и погрузке/выгрузке пылящих материалов и направлено на уменьшение...
Тип: Изобретение
Номер охранного документа: 0002536573
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.14a0

Устройство заряда накопительного конденсатора

Использование: в области электротехники. Технический результат - повышение эффективности заряда. В состав устройства для заряда накопительного конденсатора, содержащего трехфазный источник питания, три токоограничивающе-дозирующих элемента в виде катушек индуктивности, трехфазный мостовой...
Тип: Изобретение
Номер охранного документа: 0002536704
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.14f2

Устройство для определения величины коэффициента трения сыпучего груза о грузонесущей орган транспортной машины

Изобретение относится к устройствам определения физико-механических свойств транспортируемых грузов. Устройство для определения величины коэффициента трения сыпучего груза о грузонесущий орган транспортной машины содержит размещенную на опорной раме съемную пластину из материала грузонесущего...
Тип: Изобретение
Номер охранного документа: 0002536786
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.14f5

Система экологического мониторинга атмосферного воздуха горнопромышленной промагломерации

Изобретение относится к экологическим системам сбора и обработки информации и может быть использовано для прогнозирования распространения загрязнения атмосферного воздуха на территории горнопромышленной агломерации. Сущность: система содержит первую (1) и вторую (5) группы...
Тип: Изобретение
Номер охранного документа: 0002536789
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.14f7

Стенд для исследования энергообмена при разрушении горных пород

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд для исследования энергообмена при разрушении горных пород...
Тип: Изобретение
Номер охранного документа: 0002536791
Дата охранного документа: 27.12.2014
+ добавить свой РИД