×
10.02.2015
216.013.231e

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи. Сущность: способ заключается в том, что измеряют массивы мгновенных значений напряжений и токов трех фаз в начале и в конце линии для одних и тех же моментов времени. Передают сигналы с конца линии в ее начало по каналу связи. Сохраняют пары цифровых отсчетов как текущие и формируют соответствующие им векторные значения, по которым формируют векторные значения симметричных составляющих напряжений и токов прямой последовательности фазы А в начале и конце линии , , , . Определяют расстояние до места обрыва фазы по выражению: где - коэффициент распространения электромагнитной волны;
Основные результаты: Способ определения места обрыва на воздушной линии электропередачи, основанный на мониторинге электрической сети, отличающийся тем, что измеряют массивы мгновенных значений напряжений и токов трех фаз в начале , , , , , и в конце , , , , , линии для одних и тех же моментов времени t=t,t,...,t с дискретностью массивов мгновенных значений ,где - период сигнала напряжения/тока, - число разбиений на периоде ,передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие и формируют соответствующие им векторные значения , , , , , , , , , , по которым формируют векторные значения симметричных составляющих напряжений и токов прямой последовательности фазы А в начале и конце линии , , , , затем определяют расстояние до места обрыва фазы по выражению: ,где - коэффициент распространения электромагнитной волны; - коэффициент затуханиялектромагнитной волны; - коэффициент изменения фазы электромагнитной волны; - волновое сопротивление линии; - длина линии.

Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи.

Известен способ определения местоположения и вида повреждения на воздушной линии электропередачи [RU 100632 U1, МПК G01R 31/08 (2006.01), опубл. 20.12.2010], где с помощью конденсатора емкостью С регистрируют суммарную напряженность электрического поля Е, пропорциональную сумме фазных напряжений, а посредством катушки с ферромагнитным сердечником индуктивностью L регистрируют суммарную индукцию магнитного поля В, пропорциональную сумме линейных токов. Полученную информацию обрабатывают с помощью устройства, состоящего из последовательно соединенных усилителей и пороговых устройств, причем пороговые устройства настраиваются в соответствии с фиксированными значениями токов и напряжений, представленными авторами там же. В блоке логического сравнения осуществляется сопоставление полученной информации с пороговыми значениями, на основании которого делается вывод о наличии, виде и месторасположении повреждения.

Недостатками этого способа являются необходимость монтажа и эксплуатации дополнительных приборов, а также невозможность определения точного месторасположения повреждения.

Известен способ определения поврежденного участка и типа повреждения в электроэнергетической сети с разветвленной топологией [RU 2455654, МПК G01R 31/08 (2006.01), опубл. 10.07.2012], выбранный в качестве прототипа, заключающийся в том, что производят мониторинг электрической сети расположенным на питающей сеть подстанции ведущим устройством, осуществляющим сканированием сети предварительный сбор информации о целостности сегментов сети путем опроса ведомых устройств. Ведомые устройства, расположенные на границах сети на каждом конце линии разветвленной сети, подают высокочастотные напряжения прямой последовательности на все три фазных провода линии электропередачи, сдвинутые по фазе друг относительно друга на 120º, а ведущее устройство принимает и записывает трехфазное высокочастотное напряжение, получаемое ведущим устройством от каждого ведомого устройства в отдельности, при этом при совместной обработке всех записанных трехфазных высокочастотных сигналов со всех ведомых устройств определяют место обрыва фазы воздушной линии электропередачи.

Недостатком способа является то, что определяют не точное место обрыва, а лишь сегмент сети, где произошел обрыв фазы. Кроме того, не учитывают распределенность параметров линии электропередачи.

Задачей изобретения является разработка способа, позволяющего более точно определять место обрыва за счет учета распределенности параметров воздушной линии электропередачи.

Поставленная задача решена за счет того, что способ определения места обрыва на воздушной линии электропередачи, также как и в прототипе, основан на мониторинге электрической сети.

Согласно изобретению измеряют массивы мгновенных значений напряжений и токов трех фаз в начале , , , , , и в конце , , , , , линии для одних и тех же моментов времени tj=t1,t2,...,tN с дискретностью массивов мгновенных значений

,

где - период сигнала напряжения/тока,

- число разбиений на периоде ,

передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие и формируют соответствующие им векторные значения , , , , , , , , , , по которым формируют векторные значения симметричных составляющих напряжений и токов прямой последовательности фазы А в начале и конце линии , , , , затем определяют расстояние до места обрыва фазы по выражению:

,

где - коэффициент распространения электромагнитной волны;

- коэффициент затухания электромагнитной волны;

- коэффициент изменения фазы электромагнитной волны;

- волновое сопротивление линии;

- длина линии.

Предложенный способ является универсальным, так как позволяет определить обрыв как одной, так и двух фаз на воздушной линии электропередачи, а также за счет учета распределенности параметров воздушной линии электропередачи и использования в качестве исходных данных массивов мгновенных значений токов и напряжений, измеренных на обоих концах линии, является более точным.

На фиг. 1 представлена структурная схема реализации способа определения места обрыва на воздушной линии электропередачи.

На фиг. 2 показана аппаратная схема устройства, реализующего рассматриваемый способ определения места обрыва на воздушной линии электропередачи.

В таблице 1 приведены цифровые отсчеты мгновенных значений сигналов напряжений и токов трех фаз в начале линии , , , , , .

В таблице 2 приведены цифровые отсчеты мгновенных значений сигналов напряжений и токов трех фаз в конце линии , , , , , .

В таблицах 3 −5 приведены промежуточные результаты расчета места обрыва на воздушной линии электропередачи.

В таблице 6 представлены реальное и определенное предложенным способом значение расстояния до места обрыва, а также погрешность определения места обрыва на линии.

Предлагаемый способ может быть осуществлен с помощью устройства для определения места обрыва на воздушной линии электропередачи, представленного на фиг. 1. В начале и в конце воздушной линии электропередачи 1 (ЛЭП) установлены регистраторы аварийных процессов (на фиг. 1 не показаны). Регистраторы аварийных процессов через каналы связи связаны с системой сбора и обработки информации, которая обычно расположена в начале воздушной линии электропередачи 1 (ЛЭП). Вход блока расчета параметров обрыва на линии 2 связан с началом воздушной линии электропередачи 1 (ЛЭП) и через канал связи 3 −с ее концом. Выход блока расчета параметров обрыва на линии 2 подключен к вычислительной машине 4 (ЭВМ).

Блок расчета параметров обрыва на линии 2 (фиг. 2) состоит из двенадцати устройств выборки и хранения 5 (УВХ1), 6 (УВХ2), 7 (УВХ3), 8 (УВХ4), 9 (УВХ5), 10 (УВХ6), 11 (УВХ7), 12 (УВХ8), 13 (УВХ9), 14 (УВХ10), 15 (УВХ11), 16 (УВХ12), выход каждого из которых подключен к соответствующему программатору 17 (П1), 18 (П2), 19 (П3), 20 (П4), 21 (П5), 22 (П6), 23 (П7), 24 (П8), 25 (П9), 26 (П10), 27 (П11), 28 (П12).

Входы устройств выборки и хранения 5 (УВХ1), 6 (УВХ2), 7 (УВХ3), 8 (УВХ4), 9 (УВХ5), 10 (УВХ6) подключены к регистраторам аварийных процессов в начале воздушной линии электропередачи 1 (ЛЭП). Входы устройств выборки и хранения 11 (УВХ7), 12 (УВХ8), 13 (УВХ9), 14 (УВХ10), 15 (УВХ11), 16 (УВХ12), подключены к регистраторам аварийных процессов в конце воздушной линии электропередачи 1 (ЛЭП)

К выходам первого 17 (П1), второго 18 (П2) и третьего 19 (П3) программаторов подключен тринадцатый 29 (П13) программатор.

К выходам четвертого 20 (П4), пятого 21 (П5) и шестого 22 (П6) программаторов подключен четырнадцатый 30 (П14) программатор.

К выходам седьмого 23 (П7), восьмого 24 (П8) и девятого 25 (П9) программаторов подключен пятнадцатый 31 (П15) программатор.

К выходам десятого 26 (П10), одиннадцатого 27 (П11) и двенадцатого 28 (П12) программаторов подключен шестнадцатый 32 (П16) программатор.

К выходам тринадцатого 29 (П13), четырнадцатого 30 (П14), пятнадцатого 31 (П15) и шестнадцатого 32 (П16) программаторов подключен семнадцатый программатор 33 (П17), выход которого подключен к вычислительной машине 4 (ЭВМ) (фиг. 1).

Все устройства выборки-хранения хранения 5 (УВХ1), 6 (УВХ2), 7 (УВХ3), 8 (УВХ4), 9 (УВХ5), 10 (УВХ6), 11 (УВХ7), 12 (УВХ8), 13 (УВХ9), 14 (УВХ10), 15 (УВХ11) и 16 (УВХ12) могут быть реализованы на микросхемах 1100СК2. Все программаторы 17 (П1), 18 (П2), 19 (П3), 20 (П4), 21 (П5), 22 (П6), 23 (П7), 24 (П8), 25 (П9), 26 (П10), 27 (П11), 28 (П12), 29 (П13), 30 (П14), 31 (П15), 32 (П16), 33 (П17) могут быть выполнены на микроконтроллере серии 51 производителя atmel AT89S53. Для работы пользователя может быть предусмотрена кнопочная клавиатура FT008, имеющая 8 кнопок, предназначенных для включения питания, запуска измерения, сохранения полученных значений и сегментный индикатор SCD55100 для вывода рассчитанного места обрыва на воздушной линии электропередачи.

В качестве примера способа определения места обрыва на воздушной линии электропередачи рассматривается обрыв двух фаз на расстоянии воздушной линии электропередачи, напряжением 500 кВ протяженностью 600 км, выполненной проводом АС-500/64.

Посредством регистраторов аварийных процессов измеряют в режиме обрыва мгновенные значения сигналов напряжений и токов трех фаз в начале , , , , , (таблица 1) и в конце , , , , , (таблица 2) линии электропередачи 1 (ЛЭП) для одних и тех же моментов времени tj=t1,t2,...,tN с дискретностью массивов мгновенных значений

,

где - период сигнала напряжения /тока,

- число разбиений на периоде .

Сигналы , , , , , с конца линии электропередачи 1 (ЛЭП) передают в ее начало по каналу связи 3. Далее сигналы , , , , , , , , , , , поступают соответственно на входы первого 5 (УВХ1), второго 6 (УВХ2), третьего 7 (УВХ3), четвертого 8 (УВХ4), пятого 9 (УВХ5), шестого 10 (УВХ6), седьмого 11 (УВХ7), восьмого 12 (УВХ8), девятого 13 (УВХ9), десятого 14 (УВХ10), одиннадцатого 15 (УВХ11) и двенадцатого 16 (УВХ12) устройств выборки и хранения блока расчета параметров обрыва 2 (фиг. 2), где их записывают и хранят как текущие.

Затем одновременно с выходов первого 5 (УВХ1), второго 6 (УВХ2), третьего 7 (УВХ3), четвертого 8 (УВХ4), пятого 9 (УВХ5), шестого 10 (УВХ6), седьмого 11 (УВХ7), восьмого 12 (УВХ8), девятого 13 (УВХ9), десятого 14 (УВХ10), одиннадцатого 15 (УВХ11) и двенадцатого 16 (УВХ12) устройств выборки-хранения сигналы , , , , , , , , , , и поступают соответственно на входы первого 17 (П1), второго 18 (П2), третьего 19 (П3), четвертого 20 (П4), пятого 21 (П5), шестого 22 (П6), седьмого 23 (П7), восьмого 24 (П8), девятого 25 (П9), десятого 26 (П10), одиннадцатого 27 (П11) и двенадцатого 28 (П12) программаторов, на выходе которых по формулам [Функциональный контроль и диагностика электротехнических и электромеханических систем и устройств по цифровым отсчетам мгновенных значений тока и напряжения / В.С. Аврамчук, Н.Л. Бацева, Е.И. Гольдштейн, И.Н. Исаченко, Д.В. Ли, А.О. Сулайманов, И.В. Цапко // Под ред. Е.И. Гольдштейна. Томск: Печатная мануфактора, 2003. - 240 с.] формируют соответствующие им векторные значения , , , , , (таблица 3), , , , , и (таблица 4):

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , .

где - массив, который преобразуется в вектор, совмещенный с осью абсцисс,

- действующее значение этого массива.

Далее одновременно с выходов первого 17 (П1), второго 18 (П2), третьего 19 (П3) программаторов сигналы , , поступают в тринадцатый программатор 29 (П13), на выходе которого формируется векторное значение напряжения фазы А прямой последовательности в начале линии (первый столбец таблицы 5):

.

Одновременно с выходов четвертого 20 (П4), пятого 21 (П5), шестого 22 (П6) программаторов сигналы , , поступают в четырнадцатый программатор 30 (П14), на выходе которого формируется векторное значение тока фазы А прямой последовательности в начале линии (второй столбец таблицы 5):

.

Одновременно с выходов седьмого 23 (П7), восьмого 24 (П8), девятого 25 (П9) программаторов сигналы , , поступают в пятнадцатый программатор 31 (П15), на выходе которого формируется векторное значение напряжения фазы А прямой последовательности в конце линии (третий столбец таблицы 5):

.

Одновременно с выходов десятого 26 (П10), одиннадцатого 27 (П11) и двенадцатого 28 (П12) программаторов сигналы , , поступают в шестнадцатый программатор 32 (П16), на выходе которого формируется векторное значение тока фазы А прямой последовательности в конце линии (четвертый столбец таблицы 5):

.

Затем с выходов тринадцатого 29 (П13), четырнадцатого 30 (П14), пятнадцатого 31 (П15) и шестнадцатого 32 (П16) программаторов сигналы , , , соответственно поступают на вход семнадцатого 33 (П17) программатора, с помощью которого определяют расстояние до места обрыва воздушной линии (таблица 6):

=200 км.

По результатам расчетов таблицы 7 видно, что расчетное расстояние до места обрыва совпадает с реальным значением. Относительную погрешность ε вычисляют по формуле [Бронштейн И.Н., Семендяев К.А. Справочник для инженеров и учащихся ВТУзов. - М.: Наука, 1980, - 976 с.]:

,

где а - расчетное значение расстояния до места обрыва (является приближенным значением числа),

z - реальное значение (табл.7).

Таким образом, получен универсальный, простой, точный и информативный способ определения места обрыва на воздушной линии электропередачи.

Способ определения места обрыва на воздушной линии электропередачи, основанный на мониторинге электрической сети, отличающийся тем, что измеряют массивы мгновенных значений напряжений и токов трех фаз в начале , , , , , и в конце , , , , , линии для одних и тех же моментов времени t=t,t,...,t с дискретностью массивов мгновенных значений ,где - период сигнала напряжения/тока, - число разбиений на периоде ,передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие и формируют соответствующие им векторные значения , , , , , , , , , , по которым формируют векторные значения симметричных составляющих напряжений и токов прямой последовательности фазы А в начале и конце линии , , , , затем определяют расстояние до места обрыва фазы по выражению: ,где - коэффициент распространения электромагнитной волны; - коэффициент затуханиялектромагнитной волны; - коэффициент изменения фазы электромагнитной волны; - волновое сопротивление линии; - длина линии.
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
Источник поступления информации: Роспатент

Showing 71-80 of 147 items.
10.02.2015
№216.013.2617

Устройство для дорнования глубоких отверстий

Изобретение относится к металлообработке. Устройство состоит из корпуса с отверстием для размещения дорна и толкателя его привода. На корпусе закреплено направляющее устройство для толкателя, в корпусе которого выполнены центральное сквозное ромбическое отверстие для направления толкателя и...
Тип: Изобретение
Номер охранного документа: 0002541204
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2675

Устройство для создания зарядов на поверхности тел и способ его применения

Изобретение относится к области измерительной и учебной техники и может быть использовано для изучения явлений электромагнетизма. По периметру диэлектрического диска впрессованы металлические шарики, диаметр которых равен толщине диска. Диск расположен на изолированном основании. Металлический...
Тип: Изобретение
Номер охранного документа: 0002541298
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26c7

Сверхпроводящий выключатель

Сверхпроводящий выключатель может быть использован для коммутации электрических цепей постоянного тока, в системах вывода энергии из индуктивных сверхпроводящих накопителей, для защиты крупных магнитных сверхпроводящих систем, работающих в режиме «замороженного» магнитного поля, сверхпроводящих...
Тип: Изобретение
Номер охранного документа: 0002541380
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26cf

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области машиностроения и касается прогнозирования и контроля износостойкости твердосплавных группы применяемости К режущих инструментов по содержанию водорода в поверхностной и приповерхностной структуре. Отличительная особенность способа прогнозирования износостойкости...
Тип: Изобретение
Номер охранного документа: 0002541388
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.284a

Способ создания модели перекисного окисления лимфоцитов

Изобретение относится к медицине и может быть использовано для оценки эффективности модели перекисного окисления липидов мембран лимфоцитов. Для этого предварительно обрабатывают лимфоциты перекисью водорода в конечной концентрации 0,5 мМ и определяют белково-связанный глутатион. При увеличении...
Тип: Изобретение
Номер охранного документа: 0002541771
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b9c

Парогазовая установка

Изобретение относится к области теплоэнергетики. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой...
Тип: Изобретение
Номер охранного документа: 0002542621
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2dc5

Способ очистки сточных вод от фенолов и нефтепродуктов

Способ очистки сточных вод от фенолов и нефтепродуктов может найти применение для очистки различных вод, в том числе сточных вод нефтехимических и нефтеперерабатывающих производств. Основными операциями способа являются введение в исходную очищаемую воду коагулянта, флотация, создание...
Тип: Изобретение
Номер охранного документа: 0002543185
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e01

Секция механизированной крепи

Изобретение относится к горной промышленности, в частности к секции горной крепи, предназначенной для механизации очистных работ при разработке пластов угля, калийной соли и рудных залежей. Техническим результатом является трансформация энергии обрушающихся пород в электроэнергию, что позволяет...
Тип: Изобретение
Номер охранного документа: 0002543245
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2f9a

Способ получения меченного технецием-99m наноколлоида

Изобретение относится к способу получения меченного технецием-99m наноколлоида для радионуклидной диагностики. Заявленный способ включает приготовление исходной суспензии наноколлоида в 0,1% растворе додецилбензол сульфата натрия и пропускание ее через фильтр с диаметром пор 100 нм, введение в...
Тип: Изобретение
Номер охранного документа: 0002543654
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2fba

Микромеханический акселерометр

Изобретение относится к устройствам для измерения линейных ускорений и может быть использовано для одновременного измерения ускорений вдоль трех взаимно перпендикулярных осей. Сущность: акселерометр содержит инерционную массу (1), которая закреплена во внутренней раме (2) с помощью...
Тип: Изобретение
Номер охранного документа: 0002543686
Дата охранного документа: 10.03.2015
Showing 71-80 of 237 items.
10.12.2013
№216.012.89fc

Способ идентификации водородного охрупчивания легких сплавов на основе титана

Использование: для идентификации водородного охрупчивания легких сплавов на основе титана. Сущность заключается в том, что измеряют зависимость скорости распространения ультразвуковой волны в легких сплавах от содержания в них водорода. Способ отличается тем, что на поверхности металла...
Тип: Изобретение
Номер охранного документа: 0002501006
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a77

Резонансный свч-компрессор

Изобретение относится к области радиотехники и может быть использовано для формирования мощных СВЧ-импульсов наносекундной длительности. Технический результат - увеличение мощности выходных сигналов компрессора за счет увеличения объема накопительного резонатора и количества каналов вывода...
Тип: Изобретение
Номер охранного документа: 0002501129
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e2c

Способ определения параметров асинхронного электродвигателя

Изобретение относится к электротехнике. В течение пуска и торможения выбегом электродвигателя одновременно проводят измерение мгновенных величин токов и напряжений на двух фазах статора и частоты вращения вала электродвигателя, определяют модуль вектора тока статора, преобразуют напряжения из...
Тип: Изобретение
Номер охранного документа: 0002502079
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.8fff

Способ приготовления модельного коллоидного раствора

Изобретение может быть использовано в установках водоподготовки при оценке эффективности их работы и выборе оптимальной последовательности технологического процесса водоочистки. Способ приготовления модельного коллоидного раствора включает внесение в дисперсионную среду при перемешивании...
Тип: Изобретение
Номер охранного документа: 0002502556
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9556

Интегральный микромеханический гироскоп

Изобретение относится к области измерительной техники и интегральной электроники, а именно к интегральным измерительным элементам величины угловой скорости. Гироскоп содержит две инерционные массы, выполненные в виде пластин с гребенчатыми структурами, на которых расположены пластины...
Тип: Изобретение
Номер охранного документа: 0002503924
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.97ed

Способ получения вольфрамата натрия

Изобретение относится к переработке вольфрамсодержащего сырья. В автоклав загружают вольфрамсодержащее сырье и раствор карбоната натрия концентрацией 220 г/л. Процесс выщелачивания ведут не менее 6 часов при температуре 200-225°С с постоянным перемешиванием. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002504592
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9896

Способ количественного определения никеля методом инверсионной вольтамперометрии на органо-модифицированном электроде

Использование: для разработки методик анализа никеля в различных типах вод, эко- и биологических объектах, пищевых продуктах, продовольственном сырье, кормах и кормовых добавках. Сущность: заключается в сочетании кислотной минерализации образца на этапе подготовки проб с последующим...
Тип: Изобретение
Номер охранного документа: 0002504761
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.98b5

Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений

Изобретение относится к области электротехники и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи. Сущность: измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз в начале и в конце линии для одних и тех же моментов...
Тип: Изобретение
Номер охранного документа: 0002504792
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9beb

Способ нанесения медного покрытия

Изобретение относится к получению медных покрытий и может быть использовано для коррозионной защиты, декоративной обработки различных материалов, а также в электронной технике. Способ включает очистку и обезжиривание поверхности изделия, нанесение на нее механическим способом медьсодержащей...
Тип: Изобретение
Номер охранного документа: 0002505621
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9e5b

Способ получения циркониевой керамики

Изобретение относится к порошковой металлургии и может быть использовано в производстве высокопрочных конструктивных и инструментальных материалов и изделий, например, волочильных инструментов. Способ получения циркониевой керамики заключается в том, что порошковый материал на основе диоксида...
Тип: Изобретение
Номер охранного документа: 0002506247
Дата охранного документа: 10.02.2014
+ добавить свой РИД