×
10.02.2015
216.013.231e

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи. Сущность: способ заключается в том, что измеряют массивы мгновенных значений напряжений и токов трех фаз в начале и в конце линии для одних и тех же моментов времени. Передают сигналы с конца линии в ее начало по каналу связи. Сохраняют пары цифровых отсчетов как текущие и формируют соответствующие им векторные значения, по которым формируют векторные значения симметричных составляющих напряжений и токов прямой последовательности фазы А в начале и конце линии , , , . Определяют расстояние до места обрыва фазы по выражению: где - коэффициент распространения электромагнитной волны;
Основные результаты: Способ определения места обрыва на воздушной линии электропередачи, основанный на мониторинге электрической сети, отличающийся тем, что измеряют массивы мгновенных значений напряжений и токов трех фаз в начале , , , , , и в конце , , , , , линии для одних и тех же моментов времени t=t,t,...,t с дискретностью массивов мгновенных значений ,где - период сигнала напряжения/тока, - число разбиений на периоде ,передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие и формируют соответствующие им векторные значения , , , , , , , , , , по которым формируют векторные значения симметричных составляющих напряжений и токов прямой последовательности фазы А в начале и конце линии , , , , затем определяют расстояние до места обрыва фазы по выражению: ,где - коэффициент распространения электромагнитной волны; - коэффициент затуханиялектромагнитной волны; - коэффициент изменения фазы электромагнитной волны; - волновое сопротивление линии; - длина линии.

Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи.

Известен способ определения местоположения и вида повреждения на воздушной линии электропередачи [RU 100632 U1, МПК G01R 31/08 (2006.01), опубл. 20.12.2010], где с помощью конденсатора емкостью С регистрируют суммарную напряженность электрического поля Е, пропорциональную сумме фазных напряжений, а посредством катушки с ферромагнитным сердечником индуктивностью L регистрируют суммарную индукцию магнитного поля В, пропорциональную сумме линейных токов. Полученную информацию обрабатывают с помощью устройства, состоящего из последовательно соединенных усилителей и пороговых устройств, причем пороговые устройства настраиваются в соответствии с фиксированными значениями токов и напряжений, представленными авторами там же. В блоке логического сравнения осуществляется сопоставление полученной информации с пороговыми значениями, на основании которого делается вывод о наличии, виде и месторасположении повреждения.

Недостатками этого способа являются необходимость монтажа и эксплуатации дополнительных приборов, а также невозможность определения точного месторасположения повреждения.

Известен способ определения поврежденного участка и типа повреждения в электроэнергетической сети с разветвленной топологией [RU 2455654, МПК G01R 31/08 (2006.01), опубл. 10.07.2012], выбранный в качестве прототипа, заключающийся в том, что производят мониторинг электрической сети расположенным на питающей сеть подстанции ведущим устройством, осуществляющим сканированием сети предварительный сбор информации о целостности сегментов сети путем опроса ведомых устройств. Ведомые устройства, расположенные на границах сети на каждом конце линии разветвленной сети, подают высокочастотные напряжения прямой последовательности на все три фазных провода линии электропередачи, сдвинутые по фазе друг относительно друга на 120º, а ведущее устройство принимает и записывает трехфазное высокочастотное напряжение, получаемое ведущим устройством от каждого ведомого устройства в отдельности, при этом при совместной обработке всех записанных трехфазных высокочастотных сигналов со всех ведомых устройств определяют место обрыва фазы воздушной линии электропередачи.

Недостатком способа является то, что определяют не точное место обрыва, а лишь сегмент сети, где произошел обрыв фазы. Кроме того, не учитывают распределенность параметров линии электропередачи.

Задачей изобретения является разработка способа, позволяющего более точно определять место обрыва за счет учета распределенности параметров воздушной линии электропередачи.

Поставленная задача решена за счет того, что способ определения места обрыва на воздушной линии электропередачи, также как и в прототипе, основан на мониторинге электрической сети.

Согласно изобретению измеряют массивы мгновенных значений напряжений и токов трех фаз в начале , , , , , и в конце , , , , , линии для одних и тех же моментов времени tj=t1,t2,...,tN с дискретностью массивов мгновенных значений

,

где - период сигнала напряжения/тока,

- число разбиений на периоде ,

передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие и формируют соответствующие им векторные значения , , , , , , , , , , по которым формируют векторные значения симметричных составляющих напряжений и токов прямой последовательности фазы А в начале и конце линии , , , , затем определяют расстояние до места обрыва фазы по выражению:

,

где - коэффициент распространения электромагнитной волны;

- коэффициент затухания электромагнитной волны;

- коэффициент изменения фазы электромагнитной волны;

- волновое сопротивление линии;

- длина линии.

Предложенный способ является универсальным, так как позволяет определить обрыв как одной, так и двух фаз на воздушной линии электропередачи, а также за счет учета распределенности параметров воздушной линии электропередачи и использования в качестве исходных данных массивов мгновенных значений токов и напряжений, измеренных на обоих концах линии, является более точным.

На фиг. 1 представлена структурная схема реализации способа определения места обрыва на воздушной линии электропередачи.

На фиг. 2 показана аппаратная схема устройства, реализующего рассматриваемый способ определения места обрыва на воздушной линии электропередачи.

В таблице 1 приведены цифровые отсчеты мгновенных значений сигналов напряжений и токов трех фаз в начале линии , , , , , .

В таблице 2 приведены цифровые отсчеты мгновенных значений сигналов напряжений и токов трех фаз в конце линии , , , , , .

В таблицах 3 −5 приведены промежуточные результаты расчета места обрыва на воздушной линии электропередачи.

В таблице 6 представлены реальное и определенное предложенным способом значение расстояния до места обрыва, а также погрешность определения места обрыва на линии.

Предлагаемый способ может быть осуществлен с помощью устройства для определения места обрыва на воздушной линии электропередачи, представленного на фиг. 1. В начале и в конце воздушной линии электропередачи 1 (ЛЭП) установлены регистраторы аварийных процессов (на фиг. 1 не показаны). Регистраторы аварийных процессов через каналы связи связаны с системой сбора и обработки информации, которая обычно расположена в начале воздушной линии электропередачи 1 (ЛЭП). Вход блока расчета параметров обрыва на линии 2 связан с началом воздушной линии электропередачи 1 (ЛЭП) и через канал связи 3 −с ее концом. Выход блока расчета параметров обрыва на линии 2 подключен к вычислительной машине 4 (ЭВМ).

Блок расчета параметров обрыва на линии 2 (фиг. 2) состоит из двенадцати устройств выборки и хранения 5 (УВХ1), 6 (УВХ2), 7 (УВХ3), 8 (УВХ4), 9 (УВХ5), 10 (УВХ6), 11 (УВХ7), 12 (УВХ8), 13 (УВХ9), 14 (УВХ10), 15 (УВХ11), 16 (УВХ12), выход каждого из которых подключен к соответствующему программатору 17 (П1), 18 (П2), 19 (П3), 20 (П4), 21 (П5), 22 (П6), 23 (П7), 24 (П8), 25 (П9), 26 (П10), 27 (П11), 28 (П12).

Входы устройств выборки и хранения 5 (УВХ1), 6 (УВХ2), 7 (УВХ3), 8 (УВХ4), 9 (УВХ5), 10 (УВХ6) подключены к регистраторам аварийных процессов в начале воздушной линии электропередачи 1 (ЛЭП). Входы устройств выборки и хранения 11 (УВХ7), 12 (УВХ8), 13 (УВХ9), 14 (УВХ10), 15 (УВХ11), 16 (УВХ12), подключены к регистраторам аварийных процессов в конце воздушной линии электропередачи 1 (ЛЭП)

К выходам первого 17 (П1), второго 18 (П2) и третьего 19 (П3) программаторов подключен тринадцатый 29 (П13) программатор.

К выходам четвертого 20 (П4), пятого 21 (П5) и шестого 22 (П6) программаторов подключен четырнадцатый 30 (П14) программатор.

К выходам седьмого 23 (П7), восьмого 24 (П8) и девятого 25 (П9) программаторов подключен пятнадцатый 31 (П15) программатор.

К выходам десятого 26 (П10), одиннадцатого 27 (П11) и двенадцатого 28 (П12) программаторов подключен шестнадцатый 32 (П16) программатор.

К выходам тринадцатого 29 (П13), четырнадцатого 30 (П14), пятнадцатого 31 (П15) и шестнадцатого 32 (П16) программаторов подключен семнадцатый программатор 33 (П17), выход которого подключен к вычислительной машине 4 (ЭВМ) (фиг. 1).

Все устройства выборки-хранения хранения 5 (УВХ1), 6 (УВХ2), 7 (УВХ3), 8 (УВХ4), 9 (УВХ5), 10 (УВХ6), 11 (УВХ7), 12 (УВХ8), 13 (УВХ9), 14 (УВХ10), 15 (УВХ11) и 16 (УВХ12) могут быть реализованы на микросхемах 1100СК2. Все программаторы 17 (П1), 18 (П2), 19 (П3), 20 (П4), 21 (П5), 22 (П6), 23 (П7), 24 (П8), 25 (П9), 26 (П10), 27 (П11), 28 (П12), 29 (П13), 30 (П14), 31 (П15), 32 (П16), 33 (П17) могут быть выполнены на микроконтроллере серии 51 производителя atmel AT89S53. Для работы пользователя может быть предусмотрена кнопочная клавиатура FT008, имеющая 8 кнопок, предназначенных для включения питания, запуска измерения, сохранения полученных значений и сегментный индикатор SCD55100 для вывода рассчитанного места обрыва на воздушной линии электропередачи.

В качестве примера способа определения места обрыва на воздушной линии электропередачи рассматривается обрыв двух фаз на расстоянии воздушной линии электропередачи, напряжением 500 кВ протяженностью 600 км, выполненной проводом АС-500/64.

Посредством регистраторов аварийных процессов измеряют в режиме обрыва мгновенные значения сигналов напряжений и токов трех фаз в начале , , , , , (таблица 1) и в конце , , , , , (таблица 2) линии электропередачи 1 (ЛЭП) для одних и тех же моментов времени tj=t1,t2,...,tN с дискретностью массивов мгновенных значений

,

где - период сигнала напряжения /тока,

- число разбиений на периоде .

Сигналы , , , , , с конца линии электропередачи 1 (ЛЭП) передают в ее начало по каналу связи 3. Далее сигналы , , , , , , , , , , , поступают соответственно на входы первого 5 (УВХ1), второго 6 (УВХ2), третьего 7 (УВХ3), четвертого 8 (УВХ4), пятого 9 (УВХ5), шестого 10 (УВХ6), седьмого 11 (УВХ7), восьмого 12 (УВХ8), девятого 13 (УВХ9), десятого 14 (УВХ10), одиннадцатого 15 (УВХ11) и двенадцатого 16 (УВХ12) устройств выборки и хранения блока расчета параметров обрыва 2 (фиг. 2), где их записывают и хранят как текущие.

Затем одновременно с выходов первого 5 (УВХ1), второго 6 (УВХ2), третьего 7 (УВХ3), четвертого 8 (УВХ4), пятого 9 (УВХ5), шестого 10 (УВХ6), седьмого 11 (УВХ7), восьмого 12 (УВХ8), девятого 13 (УВХ9), десятого 14 (УВХ10), одиннадцатого 15 (УВХ11) и двенадцатого 16 (УВХ12) устройств выборки-хранения сигналы , , , , , , , , , , и поступают соответственно на входы первого 17 (П1), второго 18 (П2), третьего 19 (П3), четвертого 20 (П4), пятого 21 (П5), шестого 22 (П6), седьмого 23 (П7), восьмого 24 (П8), девятого 25 (П9), десятого 26 (П10), одиннадцатого 27 (П11) и двенадцатого 28 (П12) программаторов, на выходе которых по формулам [Функциональный контроль и диагностика электротехнических и электромеханических систем и устройств по цифровым отсчетам мгновенных значений тока и напряжения / В.С. Аврамчук, Н.Л. Бацева, Е.И. Гольдштейн, И.Н. Исаченко, Д.В. Ли, А.О. Сулайманов, И.В. Цапко // Под ред. Е.И. Гольдштейна. Томск: Печатная мануфактора, 2003. - 240 с.] формируют соответствующие им векторные значения , , , , , (таблица 3), , , , , и (таблица 4):

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , .

где - массив, который преобразуется в вектор, совмещенный с осью абсцисс,

- действующее значение этого массива.

Далее одновременно с выходов первого 17 (П1), второго 18 (П2), третьего 19 (П3) программаторов сигналы , , поступают в тринадцатый программатор 29 (П13), на выходе которого формируется векторное значение напряжения фазы А прямой последовательности в начале линии (первый столбец таблицы 5):

.

Одновременно с выходов четвертого 20 (П4), пятого 21 (П5), шестого 22 (П6) программаторов сигналы , , поступают в четырнадцатый программатор 30 (П14), на выходе которого формируется векторное значение тока фазы А прямой последовательности в начале линии (второй столбец таблицы 5):

.

Одновременно с выходов седьмого 23 (П7), восьмого 24 (П8), девятого 25 (П9) программаторов сигналы , , поступают в пятнадцатый программатор 31 (П15), на выходе которого формируется векторное значение напряжения фазы А прямой последовательности в конце линии (третий столбец таблицы 5):

.

Одновременно с выходов десятого 26 (П10), одиннадцатого 27 (П11) и двенадцатого 28 (П12) программаторов сигналы , , поступают в шестнадцатый программатор 32 (П16), на выходе которого формируется векторное значение тока фазы А прямой последовательности в конце линии (четвертый столбец таблицы 5):

.

Затем с выходов тринадцатого 29 (П13), четырнадцатого 30 (П14), пятнадцатого 31 (П15) и шестнадцатого 32 (П16) программаторов сигналы , , , соответственно поступают на вход семнадцатого 33 (П17) программатора, с помощью которого определяют расстояние до места обрыва воздушной линии (таблица 6):

=200 км.

По результатам расчетов таблицы 7 видно, что расчетное расстояние до места обрыва совпадает с реальным значением. Относительную погрешность ε вычисляют по формуле [Бронштейн И.Н., Семендяев К.А. Справочник для инженеров и учащихся ВТУзов. - М.: Наука, 1980, - 976 с.]:

,

где а - расчетное значение расстояния до места обрыва (является приближенным значением числа),

z - реальное значение (табл.7).

Таким образом, получен универсальный, простой, точный и информативный способ определения места обрыва на воздушной линии электропередачи.

Способ определения места обрыва на воздушной линии электропередачи, основанный на мониторинге электрической сети, отличающийся тем, что измеряют массивы мгновенных значений напряжений и токов трех фаз в начале , , , , , и в конце , , , , , линии для одних и тех же моментов времени t=t,t,...,t с дискретностью массивов мгновенных значений ,где - период сигнала напряжения/тока, - число разбиений на периоде ,передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие и формируют соответствующие им векторные значения , , , , , , , , , , по которым формируют векторные значения симметричных составляющих напряжений и токов прямой последовательности фазы А в начале и конце линии , , , , затем определяют расстояние до места обрыва фазы по выражению: ,где - коэффициент распространения электромагнитной волны; - коэффициент затуханиялектромагнитной волны; - коэффициент изменения фазы электромагнитной волны; - волновое сопротивление линии; - длина линии.
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
Источник поступления информации: Роспатент

Showing 21-30 of 147 items.
27.02.2014
№216.012.a758

Способ определения места обрыва одной фазы воздушной линии электропередачи

Изобретение относится к электротехнике, а именно к средствам обработки информации в электротехнике, и может бить использовано для определения места короткого замыкания на воздушной линии электропередачи. Способ основан на мониторинге электрической сети, отличающийся тем, что измеряют массивы...
Тип: Изобретение
Номер охранного документа: 0002508555
Дата охранного документа: 27.02.2014
20.03.2014
№216.012.ad0f

Способ определения аскорбата лития в лекарственной форме методом вольтамперометрии

Изобретение относится к области количественного определения аскорбата лития в лекарственной форме с целью контроля качества выпускаемых на рынок препаратов на основе аскорбата лития. Способ определения аскорбата лития в лекарственной форме включает стадию пробоподготовки и вольтамперометическое...
Тип: Изобретение
Номер охранного документа: 0002510018
Дата охранного документа: 20.03.2014
10.05.2014
№216.012.c128

Способ иммобилизации биомолекул на поверхности магнитоуправляемых наночастиц железа покрытых углеродной оболочкой

Изобретение относится к cпособу иммобилизации белковых молекул на поверхности магнитоуправляемых наночастиц железа, покрытых углеродной оболочкой. Способ включает взаимодействие порошка с растворенным в воде 4-карбоксибензолдиазоний тозилатом для формирования ковалентной связи органических...
Тип: Изобретение
Номер охранного документа: 0002515197
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c311

Интерференционный переключатель резонансного свч компрессора

Изобретение относится к области радиотехники и может быть использовано в резонансных СВЧ компрессорах в качестве устройства вывода энергии для формирования мощных СВЧ импульсов наносекундной длительности. Технический результат - увеличение рабочей мощности переключателя при неизменной...
Тип: Изобретение
Номер охранного документа: 0002515696
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c465

Устройство для измерения температуры

Изобретение относится к технике измерения физической температуры объекта с помощью термопары и может быть использовано в области температурных измерений с использованием термопар, в частности, в литейном производстве для определения скоростей охлаждения различных зон слитка при кристаллизации...
Тип: Изобретение
Номер охранного документа: 0002516036
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c637

Вакуумно-дуговой генератор с жалюзийной системой фильтрации плазмы от микрочастиц

Изобретение относится к плазменным технологиям нанесения пленочных покрытий и предназначено для очистки плазменного потока дуговых ускорителей от микрокапельной фракции. Вакуумно-дуговой генератор с жалюзийной системой фильтрации плазмы от микрочастиц содержит охлаждаемый катод 1 в виде...
Тип: Изобретение
Номер охранного документа: 0002516502
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c7de

Способ оценки эффективности стимуляции антиоксидантной активности

Изобретение относится к медицине и описывает способ оценки эффективности стимуляции антиоксидантной активности путем определения концентрации восстановленного глутатиона, при этом дополнительно в инкубационную среду добавляют 1,4-дитиоэритритол и аскорбиновую кислоту и при увеличении уровня...
Тип: Изобретение
Номер охранного документа: 0002516925
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c858

Способ прогнозирования течения липидемии

Изобретение относится к области медицины и может быть использовано в кардиологии и терапии для прогнозирования течения липидемии. Способ включает исследование сыворотки крови до и после лечения, где дополнительно перед исследованием проводят трехкратное замораживание и оттаивание сыворотки...
Тип: Изобретение
Номер охранного документа: 0002517054
Дата охранного документа: 27.05.2014
20.06.2014
№216.012.d280

Комплексный препарат для профилактики и лечения кишечных инфекций

Изобретение относится к медицине и ветеринарии, а именно к медицинским и ветеринарным препаратам, предназначенным для профилактики и лечения кишечных инфекций различной этиологии у человека и животных. В комплексном препарате, содержащем носитель, представляющем собой энтеросорбент,...
Тип: Изобретение
Номер охранного документа: 0002519659
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.d8b5

Способ подземной газификации

Изобретение относится к горному делу и может быть применено для получения газообразного энергоносителя из угля или сланца на месте залегания. Способ включает бурение скважин с поверхности земли в обрабатываемый интервал в подземном пласте, размещение в скважинах электродов, приложение...
Тип: Изобретение
Номер охранного документа: 0002521255
Дата охранного документа: 27.06.2014
Showing 21-30 of 237 items.
27.05.2013
№216.012.45b5

Устройство управления асинхронным двигателем

Изобретение относится к области электротехники. Технический результат заключается в повышении управления электродвигателем. Для этого заявленное устройство содержит автономный инвертор напряжения, силовые выходы которого через датчики токов подключены к статорным обмоткам асинхронного...
Тип: Изобретение
Номер охранного документа: 0002483422
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.47f1

Способ управления перемещением грузов и устройство для его реализации

Изобретение относится к области транспортирования и предназначено для перемещения грузов. Устройство перемещения грузов содержит привод (1) вертикального перемещения, соединенный с грузом (5) тросом (6), датчики (8, 9) отклонения троса (6) от вертикали, датчик (7) натяжения троса (6), приводы...
Тип: Изобретение
Номер охранного документа: 0002483997
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4811

Сырьевая смесь для изготовления пеностекла

Изобретение относится к области производства теплоизоляционного пеностекла. Технический результат изобретения заключается в повышении прочности пеностекла, расширении сырьевой базы и снижении энергетических затрат при осуществлении технологического процесса. Сырьевая смесь для изготовления...
Тип: Изобретение
Номер охранного документа: 0002484029
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4871

Способ изготовления топливных брикетов из биомассы

Изобретение относится к способу получения топливных брикетов из биомассы, включающему термическую обработку биомассы при температуре 200-500°C без доступа воздуха, подготовку связующего вещества, получаемого растворением декстрина в пиролизном конденсате в соотношении 1:(5÷20), смешивание...
Тип: Изобретение
Номер охранного документа: 0002484125
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4c9b

Способ извлечения урана из руд

Изобретение относится к гидрометаллургии урана и может быть использовано для извлечения урана из руд. Способ включает выщелачивание урана и железа раствором серной кислоты с использованием в качестве окислителя трехвалентного железа, содержащегося в руде. После выщелачивания ведут извлечение...
Тип: Изобретение
Номер охранного документа: 0002485193
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fd9

Способ получения наночастиц свинца

Изобретение относится к способу получения наночастиц свинца. Способ включает получение раствора стеарата свинца в н-октаноле с последующим его кипячением при 195°C. После чего раствор охлаждают и путем декантации или фильтрации отделяют от него непрореагировавший стеарат свинца и продукты его...
Тип: Изобретение
Номер охранного документа: 0002486034
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.505f

Способ управления активностью катализатора процесса дегидрирования высших н-парафинов

Изобретение относится к способу управления активностью катализатора процесса дегидрирования высших н-парафинов. Способ включает регулирование активности катализатора за счет увеличения подачи воды в реактор и характеризуется тем, что расход воды дополнительно корректируют в зависимости от типа...
Тип: Изобретение
Номер охранного документа: 0002486168
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.51ab

Способ определения осмия инверсионно-вольтамперометрическим методом в природном и техногенном сырье

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов осмия. Способ определения осмия инверсионно-вольтамперометрическим методом в природном и техногенном сырье заключается в том, что осмий (VIII)...
Тип: Изобретение
Номер охранного документа: 0002486500
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5238

Способ формирования субнаносекундных свч импульсов и устройство для его осуществления

Изобретение относится к области радиотехники и предназначено для формирования серии мощных СВЧ импульсов субнаносекундной длительности с высокой частотой следования в пределах входного микросекундного СВЧ импульса, генерируемого в частотно-периодическом режиме. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002486641
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.554c

Сверхпроводящий размыкатель

Изобретение относится к электротехнике, в частности к сверхпроводящим размыкателям постоянного тока многократного действия. Размыкатель содержит отключающий элемент (1), выполненный в виде двух последовательно соединенных проводников (2, 3) из сверхпроводящего материала, к выводам которых...
Тип: Изобретение
Номер охранного документа: 0002487439
Дата охранного документа: 10.07.2013
+ добавить свой РИД