×
10.02.2015
216.013.231e

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи. Сущность: способ заключается в том, что измеряют массивы мгновенных значений напряжений и токов трех фаз в начале и в конце линии для одних и тех же моментов времени. Передают сигналы с конца линии в ее начало по каналу связи. Сохраняют пары цифровых отсчетов как текущие и формируют соответствующие им векторные значения, по которым формируют векторные значения симметричных составляющих напряжений и токов прямой последовательности фазы А в начале и конце линии , , , . Определяют расстояние до места обрыва фазы по выражению: где - коэффициент распространения электромагнитной волны;
Основные результаты: Способ определения места обрыва на воздушной линии электропередачи, основанный на мониторинге электрической сети, отличающийся тем, что измеряют массивы мгновенных значений напряжений и токов трех фаз в начале , , , , , и в конце , , , , , линии для одних и тех же моментов времени t=t,t,...,t с дискретностью массивов мгновенных значений ,где - период сигнала напряжения/тока, - число разбиений на периоде ,передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие и формируют соответствующие им векторные значения , , , , , , , , , , по которым формируют векторные значения симметричных составляющих напряжений и токов прямой последовательности фазы А в начале и конце линии , , , , затем определяют расстояние до места обрыва фазы по выражению: ,где - коэффициент распространения электромагнитной волны; - коэффициент затуханиялектромагнитной волны; - коэффициент изменения фазы электромагнитной волны; - волновое сопротивление линии; - длина линии.

Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи.

Известен способ определения местоположения и вида повреждения на воздушной линии электропередачи [RU 100632 U1, МПК G01R 31/08 (2006.01), опубл. 20.12.2010], где с помощью конденсатора емкостью С регистрируют суммарную напряженность электрического поля Е, пропорциональную сумме фазных напряжений, а посредством катушки с ферромагнитным сердечником индуктивностью L регистрируют суммарную индукцию магнитного поля В, пропорциональную сумме линейных токов. Полученную информацию обрабатывают с помощью устройства, состоящего из последовательно соединенных усилителей и пороговых устройств, причем пороговые устройства настраиваются в соответствии с фиксированными значениями токов и напряжений, представленными авторами там же. В блоке логического сравнения осуществляется сопоставление полученной информации с пороговыми значениями, на основании которого делается вывод о наличии, виде и месторасположении повреждения.

Недостатками этого способа являются необходимость монтажа и эксплуатации дополнительных приборов, а также невозможность определения точного месторасположения повреждения.

Известен способ определения поврежденного участка и типа повреждения в электроэнергетической сети с разветвленной топологией [RU 2455654, МПК G01R 31/08 (2006.01), опубл. 10.07.2012], выбранный в качестве прототипа, заключающийся в том, что производят мониторинг электрической сети расположенным на питающей сеть подстанции ведущим устройством, осуществляющим сканированием сети предварительный сбор информации о целостности сегментов сети путем опроса ведомых устройств. Ведомые устройства, расположенные на границах сети на каждом конце линии разветвленной сети, подают высокочастотные напряжения прямой последовательности на все три фазных провода линии электропередачи, сдвинутые по фазе друг относительно друга на 120º, а ведущее устройство принимает и записывает трехфазное высокочастотное напряжение, получаемое ведущим устройством от каждого ведомого устройства в отдельности, при этом при совместной обработке всех записанных трехфазных высокочастотных сигналов со всех ведомых устройств определяют место обрыва фазы воздушной линии электропередачи.

Недостатком способа является то, что определяют не точное место обрыва, а лишь сегмент сети, где произошел обрыв фазы. Кроме того, не учитывают распределенность параметров линии электропередачи.

Задачей изобретения является разработка способа, позволяющего более точно определять место обрыва за счет учета распределенности параметров воздушной линии электропередачи.

Поставленная задача решена за счет того, что способ определения места обрыва на воздушной линии электропередачи, также как и в прототипе, основан на мониторинге электрической сети.

Согласно изобретению измеряют массивы мгновенных значений напряжений и токов трех фаз в начале , , , , , и в конце , , , , , линии для одних и тех же моментов времени tj=t1,t2,...,tN с дискретностью массивов мгновенных значений

,

где - период сигнала напряжения/тока,

- число разбиений на периоде ,

передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие и формируют соответствующие им векторные значения , , , , , , , , , , по которым формируют векторные значения симметричных составляющих напряжений и токов прямой последовательности фазы А в начале и конце линии , , , , затем определяют расстояние до места обрыва фазы по выражению:

,

где - коэффициент распространения электромагнитной волны;

- коэффициент затухания электромагнитной волны;

- коэффициент изменения фазы электромагнитной волны;

- волновое сопротивление линии;

- длина линии.

Предложенный способ является универсальным, так как позволяет определить обрыв как одной, так и двух фаз на воздушной линии электропередачи, а также за счет учета распределенности параметров воздушной линии электропередачи и использования в качестве исходных данных массивов мгновенных значений токов и напряжений, измеренных на обоих концах линии, является более точным.

На фиг. 1 представлена структурная схема реализации способа определения места обрыва на воздушной линии электропередачи.

На фиг. 2 показана аппаратная схема устройства, реализующего рассматриваемый способ определения места обрыва на воздушной линии электропередачи.

В таблице 1 приведены цифровые отсчеты мгновенных значений сигналов напряжений и токов трех фаз в начале линии , , , , , .

В таблице 2 приведены цифровые отсчеты мгновенных значений сигналов напряжений и токов трех фаз в конце линии , , , , , .

В таблицах 3 −5 приведены промежуточные результаты расчета места обрыва на воздушной линии электропередачи.

В таблице 6 представлены реальное и определенное предложенным способом значение расстояния до места обрыва, а также погрешность определения места обрыва на линии.

Предлагаемый способ может быть осуществлен с помощью устройства для определения места обрыва на воздушной линии электропередачи, представленного на фиг. 1. В начале и в конце воздушной линии электропередачи 1 (ЛЭП) установлены регистраторы аварийных процессов (на фиг. 1 не показаны). Регистраторы аварийных процессов через каналы связи связаны с системой сбора и обработки информации, которая обычно расположена в начале воздушной линии электропередачи 1 (ЛЭП). Вход блока расчета параметров обрыва на линии 2 связан с началом воздушной линии электропередачи 1 (ЛЭП) и через канал связи 3 −с ее концом. Выход блока расчета параметров обрыва на линии 2 подключен к вычислительной машине 4 (ЭВМ).

Блок расчета параметров обрыва на линии 2 (фиг. 2) состоит из двенадцати устройств выборки и хранения 5 (УВХ1), 6 (УВХ2), 7 (УВХ3), 8 (УВХ4), 9 (УВХ5), 10 (УВХ6), 11 (УВХ7), 12 (УВХ8), 13 (УВХ9), 14 (УВХ10), 15 (УВХ11), 16 (УВХ12), выход каждого из которых подключен к соответствующему программатору 17 (П1), 18 (П2), 19 (П3), 20 (П4), 21 (П5), 22 (П6), 23 (П7), 24 (П8), 25 (П9), 26 (П10), 27 (П11), 28 (П12).

Входы устройств выборки и хранения 5 (УВХ1), 6 (УВХ2), 7 (УВХ3), 8 (УВХ4), 9 (УВХ5), 10 (УВХ6) подключены к регистраторам аварийных процессов в начале воздушной линии электропередачи 1 (ЛЭП). Входы устройств выборки и хранения 11 (УВХ7), 12 (УВХ8), 13 (УВХ9), 14 (УВХ10), 15 (УВХ11), 16 (УВХ12), подключены к регистраторам аварийных процессов в конце воздушной линии электропередачи 1 (ЛЭП)

К выходам первого 17 (П1), второго 18 (П2) и третьего 19 (П3) программаторов подключен тринадцатый 29 (П13) программатор.

К выходам четвертого 20 (П4), пятого 21 (П5) и шестого 22 (П6) программаторов подключен четырнадцатый 30 (П14) программатор.

К выходам седьмого 23 (П7), восьмого 24 (П8) и девятого 25 (П9) программаторов подключен пятнадцатый 31 (П15) программатор.

К выходам десятого 26 (П10), одиннадцатого 27 (П11) и двенадцатого 28 (П12) программаторов подключен шестнадцатый 32 (П16) программатор.

К выходам тринадцатого 29 (П13), четырнадцатого 30 (П14), пятнадцатого 31 (П15) и шестнадцатого 32 (П16) программаторов подключен семнадцатый программатор 33 (П17), выход которого подключен к вычислительной машине 4 (ЭВМ) (фиг. 1).

Все устройства выборки-хранения хранения 5 (УВХ1), 6 (УВХ2), 7 (УВХ3), 8 (УВХ4), 9 (УВХ5), 10 (УВХ6), 11 (УВХ7), 12 (УВХ8), 13 (УВХ9), 14 (УВХ10), 15 (УВХ11) и 16 (УВХ12) могут быть реализованы на микросхемах 1100СК2. Все программаторы 17 (П1), 18 (П2), 19 (П3), 20 (П4), 21 (П5), 22 (П6), 23 (П7), 24 (П8), 25 (П9), 26 (П10), 27 (П11), 28 (П12), 29 (П13), 30 (П14), 31 (П15), 32 (П16), 33 (П17) могут быть выполнены на микроконтроллере серии 51 производителя atmel AT89S53. Для работы пользователя может быть предусмотрена кнопочная клавиатура FT008, имеющая 8 кнопок, предназначенных для включения питания, запуска измерения, сохранения полученных значений и сегментный индикатор SCD55100 для вывода рассчитанного места обрыва на воздушной линии электропередачи.

В качестве примера способа определения места обрыва на воздушной линии электропередачи рассматривается обрыв двух фаз на расстоянии воздушной линии электропередачи, напряжением 500 кВ протяженностью 600 км, выполненной проводом АС-500/64.

Посредством регистраторов аварийных процессов измеряют в режиме обрыва мгновенные значения сигналов напряжений и токов трех фаз в начале , , , , , (таблица 1) и в конце , , , , , (таблица 2) линии электропередачи 1 (ЛЭП) для одних и тех же моментов времени tj=t1,t2,...,tN с дискретностью массивов мгновенных значений

,

где - период сигнала напряжения /тока,

- число разбиений на периоде .

Сигналы , , , , , с конца линии электропередачи 1 (ЛЭП) передают в ее начало по каналу связи 3. Далее сигналы , , , , , , , , , , , поступают соответственно на входы первого 5 (УВХ1), второго 6 (УВХ2), третьего 7 (УВХ3), четвертого 8 (УВХ4), пятого 9 (УВХ5), шестого 10 (УВХ6), седьмого 11 (УВХ7), восьмого 12 (УВХ8), девятого 13 (УВХ9), десятого 14 (УВХ10), одиннадцатого 15 (УВХ11) и двенадцатого 16 (УВХ12) устройств выборки и хранения блока расчета параметров обрыва 2 (фиг. 2), где их записывают и хранят как текущие.

Затем одновременно с выходов первого 5 (УВХ1), второго 6 (УВХ2), третьего 7 (УВХ3), четвертого 8 (УВХ4), пятого 9 (УВХ5), шестого 10 (УВХ6), седьмого 11 (УВХ7), восьмого 12 (УВХ8), девятого 13 (УВХ9), десятого 14 (УВХ10), одиннадцатого 15 (УВХ11) и двенадцатого 16 (УВХ12) устройств выборки-хранения сигналы , , , , , , , , , , и поступают соответственно на входы первого 17 (П1), второго 18 (П2), третьего 19 (П3), четвертого 20 (П4), пятого 21 (П5), шестого 22 (П6), седьмого 23 (П7), восьмого 24 (П8), девятого 25 (П9), десятого 26 (П10), одиннадцатого 27 (П11) и двенадцатого 28 (П12) программаторов, на выходе которых по формулам [Функциональный контроль и диагностика электротехнических и электромеханических систем и устройств по цифровым отсчетам мгновенных значений тока и напряжения / В.С. Аврамчук, Н.Л. Бацева, Е.И. Гольдштейн, И.Н. Исаченко, Д.В. Ли, А.О. Сулайманов, И.В. Цапко // Под ред. Е.И. Гольдштейна. Томск: Печатная мануфактора, 2003. - 240 с.] формируют соответствующие им векторные значения , , , , , (таблица 3), , , , , и (таблица 4):

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , ;

, , .

где - массив, который преобразуется в вектор, совмещенный с осью абсцисс,

- действующее значение этого массива.

Далее одновременно с выходов первого 17 (П1), второго 18 (П2), третьего 19 (П3) программаторов сигналы , , поступают в тринадцатый программатор 29 (П13), на выходе которого формируется векторное значение напряжения фазы А прямой последовательности в начале линии (первый столбец таблицы 5):

.

Одновременно с выходов четвертого 20 (П4), пятого 21 (П5), шестого 22 (П6) программаторов сигналы , , поступают в четырнадцатый программатор 30 (П14), на выходе которого формируется векторное значение тока фазы А прямой последовательности в начале линии (второй столбец таблицы 5):

.

Одновременно с выходов седьмого 23 (П7), восьмого 24 (П8), девятого 25 (П9) программаторов сигналы , , поступают в пятнадцатый программатор 31 (П15), на выходе которого формируется векторное значение напряжения фазы А прямой последовательности в конце линии (третий столбец таблицы 5):

.

Одновременно с выходов десятого 26 (П10), одиннадцатого 27 (П11) и двенадцатого 28 (П12) программаторов сигналы , , поступают в шестнадцатый программатор 32 (П16), на выходе которого формируется векторное значение тока фазы А прямой последовательности в конце линии (четвертый столбец таблицы 5):

.

Затем с выходов тринадцатого 29 (П13), четырнадцатого 30 (П14), пятнадцатого 31 (П15) и шестнадцатого 32 (П16) программаторов сигналы , , , соответственно поступают на вход семнадцатого 33 (П17) программатора, с помощью которого определяют расстояние до места обрыва воздушной линии (таблица 6):

=200 км.

По результатам расчетов таблицы 7 видно, что расчетное расстояние до места обрыва совпадает с реальным значением. Относительную погрешность ε вычисляют по формуле [Бронштейн И.Н., Семендяев К.А. Справочник для инженеров и учащихся ВТУзов. - М.: Наука, 1980, - 976 с.]:

,

где а - расчетное значение расстояния до места обрыва (является приближенным значением числа),

z - реальное значение (табл.7).

Таким образом, получен универсальный, простой, точный и информативный способ определения места обрыва на воздушной линии электропередачи.

Способ определения места обрыва на воздушной линии электропередачи, основанный на мониторинге электрической сети, отличающийся тем, что измеряют массивы мгновенных значений напряжений и токов трех фаз в начале , , , , , и в конце , , , , , линии для одних и тех же моментов времени t=t,t,...,t с дискретностью массивов мгновенных значений ,где - период сигнала напряжения/тока, - число разбиений на периоде ,передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие и формируют соответствующие им векторные значения , , , , , , , , , , по которым формируют векторные значения симметричных составляющих напряжений и токов прямой последовательности фазы А в начале и конце линии , , , , затем определяют расстояние до места обрыва фазы по выражению: ,где - коэффициент распространения электромагнитной волны; - коэффициент затуханиялектромагнитной волны; - коэффициент изменения фазы электромагнитной волны; - волновое сопротивление линии; - длина линии.
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОБРЫВА НА ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ
Источник поступления информации: Роспатент

Showing 141-147 of 147 items.
20.01.2016
№216.013.a26d

Устройство формирования нано и субнаносекундных свч импульсов

Устройство формирования нано- и субнаносекундных СВЧ-импульсов относится к радиотехнике и может быть использовано для формирования мощных СВЧ-импульсов наносекундной длительности с частотой следования входного микросекундного СВЧ-импульса, а также серии СВЧ-импульсов субнаносекундной...
Тип: Изобретение
Номер охранного документа: 0002573223
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a393

Способ получения электроизоляционной композиции

Изобретение относится к кабельной промышленности, а именно к способу получения электроизоляционной композиции, и предназначено для изоляции и оболочек кабелей и проводов, характеризующихся пониженным выделением дыма при горении. Получают композицию, масс.%: из полиэтилена высокого давления -...
Тип: Изобретение
Номер охранного документа: 0002573517
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.c35b

Фильтр тока обратной последовательности

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для выявления токов обратной последовательности в токопроводах фаз электроустановки. Фильтр тока обратной последовательности для электроустановки с токопроводами фаз А, В, С, расположенными по...
Тип: Изобретение
Номер охранного документа: 0002574038
Дата охранного документа: 27.01.2016
20.04.2016
№216.015.342a

Сверло одностороннего резания с твердосплавным стеблем

Изобретение относится к машиностроению и может быть использовано при сверлении глубоких отверстий малых диаметров. Сверло содержит стебель из твердого сплава, соединенный посредством цапфы с хвостовиком из стали. В стебле выполнены наружный V-образный прямой канал и внутренний прямой канал...
Тип: Изобретение
Номер охранного документа: 0002581541
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3c6d

Линейный индукционный ускоритель

Изобретение относится к ускорительной технике и может быть использовано для создания пучков заряженных частиц наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему 1 в виде набора ферромагнитных сердечников, охваченных...
Тип: Изобретение
Номер охранного документа: 0002583039
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3e39

Способ определения статических характеристик нагрузки по напряжению

Изобретение относится к области электротехники и может быть использовано для определения статических характеристик нагрузки по напряжению. Способ заключается в том, что в узле нагрузки производят последовательные изменения напряжения, измеряют напряжение и мощность и переводят измеренные...
Тип: Изобретение
Номер охранного документа: 0002584338
Дата охранного документа: 20.05.2016
25.08.2017
№217.015.b0de

Способ установления состояния предразрушения конструкционного изделия

Изобретение относится к контрольно-измерительной технике и может быть использовано лабораториями неразрушающего контроля, проектными и научно-исследовательскими организациями для диагностики трещинообразования в конструкционных материалах и прогнозирования состояния предразрушения конструкции....
Тип: Изобретение
Номер охранного документа: 0002613486
Дата охранного документа: 16.03.2017
Showing 221-230 of 237 items.
27.10.2015
№216.013.8a58

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытания на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002567019
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8aa5

Способ определения рения (vii) в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из интерметаллического соединения recu

Изобретение относится к аналитической химии и может быть использовано для анализа вод различного происхождения: питьевые воды, геотермальные источники, смывы хвостов обогащения, а также технологические сливы. Способ определения рения (VII) в водных растворах методом инверсионной...
Тип: Изобретение
Номер охранного документа: 0002567096
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8d18

Способ определения суммарной антиоксидантной активности экстрактов чаев методом вольтамперометрии на модифицированном электроде

Изобретение относится к фармацевтической промышленности, в частности к способу определения суммарной антиоксидантной активности экстрактов чаев методом вольтамперометрии на модифицированном фталоцианином кобальта Co(II) платиновом электроде. Способ определения суммарной антиоксидантной...
Тип: Изобретение
Номер охранного документа: 0002567727
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.92b9

Способ определения статических характеристик нагрузки по напряжению

Изобретение относится к области электротехники и может быть использовано для определения статических характеристик нагрузки по напряжению. Способ определения статических характеристик нагрузки по напряжению заключается в том, что в узле нагрузки производят последовательные изменения напряжения,...
Тип: Изобретение
Номер охранного документа: 0002569179
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9504

Способ определения скорости гравитационного оседания частиц летучей золы выбросов промышленных предприятий в приземном слое атмосферы

Изобретение относится к области исследования или анализа материалов с помощью нейтронно-активационного анализа мхов-биомониторов. Способ заключается в том, что в заданном направлении от промышленного предприятия на разных расстояниях от 1 до 5 км отбирают не менее 5 образцов эпифитного мха...
Тип: Изобретение
Номер охранного документа: 0002569767
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.956f

Способ ручной электродуговой сварки плавящимся электродом модулированным током

Изобретение относится к способу ручной электродуговой сварки плавящимся электродом модулированным током. На ток паузы налагают дополнительные импульсы сварочного тока, следующие с частотой не менее 50 Гц. Амплитуду и длительность дополнительных импульсов устанавливают равной номинальному...
Тип: Изобретение
Номер охранного документа: 0002569874
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9570

Способ получения материала, содержащего гексаборид лантана и диборид титана

Изобретение относится к порошковой металлургии, а именно к получению материалов с использованием самораспространяющегося высокотемпературного синтеза. Прессуют цилиндрическую заготовку из механически активированной смеси порошков оксида титана TiO, оксида лантана LaO и бора, полученную...
Тип: Изобретение
Номер охранного документа: 0002569875
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9589

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытания на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002569901
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9774

Способ определения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы

Изобретение относится к области исследования или анализа материалов, а именно к определению коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы с помощью нейтронно-активационного анализа. Способ заключается в том, что в заданном направлении от...
Тип: Изобретение
Номер охранного документа: 0002570392
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a239

Способ определения статических характеристик нагрузки по напряжению с защитой от аномальных искажений

Изобретение относится к области электротехники. Способ заключается в том, что, в узле нагрузки производят последовательные изменения напряжения, измеряют значения мощности и напряжения на нагрузке и осуществляют перевод в относительные единицы. Причем измерение значения мощности и напряжения на...
Тип: Изобретение
Номер охранного документа: 0002573171
Дата охранного документа: 20.01.2016
+ добавить свой РИД