×
10.02.2015
216.013.22a1

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИОННО-ПЛАЗМЕННОГО ТРАВЛЕНИЯ И НАНЕСЕНИЯ ТОНКИХ ПЛЕНОК

Вид РИД

Изобретение

№ охранного документа
0002540318
Дата охранного документа
10.02.2015
Аннотация: Изобретение относится к области нанесения тонких пленок в вакууме и может быть использовано, например, в микроэлектронике. Устройство содержит вакуумную камеру и магнитную систему. В вакуумной камере расположен анод, выполненный в виде полого прямоугольного параллелепипеда, в отверстиях оснований которого расположены мишень и подложкодержатель. Возле открытых торцов расположены напротив друг друга два спиральных термокатода, имеющие полукруглые отражатели, закрывающие торцы. Параллельно мишени и подложке установлены магнитоуправляемые заслонки. Магнитная система выполнена в виде двух соленоидов, связанных магнитопроводом и установленных возле отражателей снаружи камеры. Длина термокатода l, расстояние между мишенью и подложкодержателем h, расстояние между катодами L и диаметр мишени d выбраны из соотношений: 0,13L≤h≤0,3L; 0,45L≤d; l=1,14d. Изобретение позволяет увеличить равномерность распределения плотности ионного тока по поверхности мишени и потока наносимого материала, что приводит к повышению качества пленок при увеличении производительности и экономичности устройства. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области нанесения тонких пленок в вакууме и может быть использовано в микроэлектронике при разработке установок для ионно-плазменного травления и нанесения тонких пленок различных материалов.

Известна установка ионно-плазменного распыления, в которой вольфрамовый термокатод помещен в отдельную камеру, сообщающуюся с вакуумной камерой через небольшое отверстие. Кольцевой анод и мишень расположены соосно в вакуумной камере. Магнитное поле создается кольцевым соленоидом, установленным снаружи вакуумной камеры [1].

При таком расположении термокатода и анода в магнитном поле плазма собирается в узкий шнур, что приводит к неравномерности распределения ионного тока по поверхности мишени и подложки, а следовательно, к неравномерному травлению и распылению.

Известна установка для ионно-плазменного распыления, в которой в вакуумной камере ионизационная система выполнена в виде двух одинаковых электродов - термокатодов [2].

Недостатками этого устройства являются:

- термокатоды работают поочередно, один из них при работе является анодом, что приводит к его быстрому износу;

- отсутствие магнитной системы не позволяет создать плазму высокой интенсивности и, следовательно, вести качественное распыление или травление.

Известно устройство для ионно-плазменного нанесения тонких пленок, принятое за прототип [3]. Устройство содержит вакуумную камеру, в которой размещена разрядная камера, имеющая щель, напротив которой располагается отражатель. В разрядной камере вдоль щели расположен протяженный термокатод в виде накаленной нити, сбоку от которого расположен анод. Магнитные наконечники постоянных магнитов установлены внутри камеры. В устройстве создается плоский ленточный поток плазмы.

Недостатками устройства являются:

- разрядная камера, находясь внутри вакуумной камеры, вызывает ее дополнительный нагрев;

- нить термокатода утончается неравномерно по длине, при травлении возникает большой разброс глубины травления в различных местах мишени.

Техническим результатом изобретения является увеличение равномерности распределения плотности ионного тока по поверхности мишени и потока наносимого материала, что приводит к повышению качества пленок при увеличении производительности и экономичности устройства.

Технический результат достигается тем, что устройство для ионно-плазменного травления и нанесения тонких пленок содержит вакуумную камеру и магнитную систему. В вакуумной камере расположены анод, протяженный термокатод с отражателем, напротив друг друга распыляемая мишень и подложкодержатель. Анод выполнен в виде полого прямоугольного параллелепипеда, в отверстиях оснований которого расположены мишень и подложкодержатель. Возле открытых торцов расположены напротив друг друга два спиральных термокатода, имеющие полукруглые отражатели, закрывающие торцы. Параллельно мишени и подложке установлены магнитоуправляемые заслонки. Магнитная система выполнена в виде двух соленоидов, связанных магнитопроводом и установленных возле отражателей снаружи камеры. Длина термокатода 1, расстояние между мишенью и подложкодержателем h, расстояние между катодами L и диаметр мишени d выбраны из соотношений:

0.13L≤h≤0.3L; 0.45L≤d; l=1,14d.

Мишень может быть установлена на держателе, выполненном в виде полого куба с возможностью вращения.

Магнитопровод может быть расположен с одной стороны камеры и иметь на концах постоянные магниты.

Отражатели могут быть выполнены полыми с отверстиями со стороны катода.

В данной конструкции технологическая область устройства, то есть пространство между мишенью и подложкодержателем и область непосредственного формирования плазмы высокой плотности совмещены. Конструкция является одной из разновидностей ячеек Пеннинга. Характерной особенностью такой ячейки является наличие двух отражателей, замкнутого анода между ними и продольного магнитного поля.

Плазма в предлагаемом устройстве создается в скрещенных электрическом и магнитном полях. Электроны термокатодов совершают большое количество осцилляции между отражателями, прежде чем попадут на анод. В отличие от известных конструкций на пути потока плазмы нет электродов. Осциллирующие электроны не теряются и тем самым плотность образующейся плазмы не уменьшается.

Протяженный спиральный термокатод позволяет увеличить плотность потока электронов на единицу длины. Соответственно увеличивается поток плазмы.

Полукруглые отражатели могут быть полыми, куда через натекатель подается рабочий газ и выходит через отверстия к катоду. Это также способствует увеличению плотности ионной плазмы.

Параллельно мишени и подложке установлены магнитоуправляемые заслонки, перекрывающие поток распыляемых материалов подложки или мишени. Тем самым препятствующие их загрязнению.

Магнитная система, выполненная в виде двух соленоидов, связанных магнитопроводом и установленных возле отражателей снаружи камеры, создает магнитное поле в пространстве между термокатодами Магнитопровод может быть расположен с одной стороны вакуумной камеры и иметь на концах постоянные магниты, которые создают в пространстве между термокатодами дополнительное однородное магнитное поле. Мишень может быть установлена на держателе, выполненном в виде полого куба с возможностью вращения. При напылении многослойных структур на каждую грань куба помещают мишень, изготовленную из материала одного из слоев. Держатель выполнен полым, что ускоряет его остывание, что способствует повышению производительности.

Соотношения были установлены экспериментально. При этих условиях плазма равномерно распределяется по всей поверхности мишени и образцов, размещенных на подложкодержателе. При этом достигается экономичность распределения плотности ионного тока и повышается качество пленок.

Когда расстояние между мишенью и подложкодержателем h меньше 0,13L возникает неустойчивость зажигания и стационарность горения разряда, а при h больше 0,3L уменьшается плотность плазмы.

Устройство для ионно-плазменного травления и нанесения тонких пленок поясняется чертежом.

На фиг.1 представлено устройство для ионно-плазменного травления и нанесения тонких пленок, где

вакуумная камера - 1,

анод - 2,

протяженный спиральный термокатод - 3,

отражатель - 4,

мишень - 5,

подложкодержатель - 6,

магнитоуправляемая заслонка - 7,

соленоид - 8,

магнитопровод - 9,

натекатель - 10,

отверстие в отражателе - 11,

крышка камеры - 12,

постоянные магниты - 13.

Пример.

Вакуумная камера 1 выполнена из нержавеющей стали Х18Н10Т с двойными стенками диаметром 350 мм и крышкой 12. Камера 1 охлаждается проточной водой. Анод 2 выполнен в виде полого прямоугольного параллелепипеда из молибдена марки МЧ, торцы полости которого открыты, высота полости 25 мм и ширина 86 мм, в основаниях параллелепипеда выполнены отверстия, для мишени 5 диаметром 78 мм, а для подложкодержателя 72 мм. Открытые торцы анода 2 закрыты полукруглыми полыми отражателями 4, выполненными из молибдена МРН. Рабочий газ подается в отражатель 4 через натекатель 10 и выходит к термокатоду 3 через 10 отверстий 11 диаметром 1,5 мм. Термокатод 3 изготовлен в виде спирали из вольфрамовой проволоки ВРН диаметром 0,6 мм. Диаметр спирали 6 мм, а длина l=85 мм. Термокатод 3 установлен перед отражателем 4 и одним концом соединен с ним. В отверстиях оснований анода 2 напротив друг друга установлены мишень 5 и подложкодержатель 6. Расстояние между ними h равно 25 мм, расстояние между термокатодами L равно 160 мм, диаметр мишени d=75 мм, диаметр подложкодержателя 70 мм. Соленоиды 8 с магнитопроводом 9, изготовленным из электротехнической стали марки 10895 и постоянными магнитами 13 из самарий кобальта, установлены снаружи камеры 1 возле отражателей 4.

Устройство для защиты смотрового окна вакуумной камеры работает следующим образом.

Вакуумная камера 1 откачивается до высокого остаточного вакуума 1·10-4 Па. В камеру 1 через натекатель 10 напускают рабочий газ до необходимого уровня давления. Давление в камере поддерживается постоянным в течение всего процесса. На соленоиды 8 подают ток возбуждения. На анод 2 подается электрический потенциал положительный относительно отражателей 4. На термокатоды 3 подается напряжение накала. Между термокатодами 3 образуется плазма. Мишень 5 закрывается заслонкой 7 и на подложкодержатель 6 с установленными образцами подается отрицательный относительно анода 2 электрический потенциал 50-100 В. Происходит процесс травления. Ток разряда составляет 0,8А. Процесс травления идет с увеличением отрицательного потенциала до 0,2-2 кВ.

Ионный ток на подложке составляет 500 мА, плотность его 10 мА/см2. Неравномерность распределения плотности тока по подложке не более 10%. После окончания травления, открывают заслонку 7 и открывают мишень 5. Закрывают подложкодержатель 6 с установленными образцами заслонкой 7 и открытую мишень 5 протравливают. Открывают заслонку 7, на открытую мишень 5 подают отрицательный потенциал относительно анода 2 и напыляют пленки на образцы. После напыления перекрывают напуск рабочего газа, снимают питающие напряжения и извлекают изделия после остывания из камеры 1 через крышку 12.

Экономичность устройства зависит от эффективности использования ионов газового разряда. Ионы вытягиваются из плазмы на электроды, находящиеся под отрицательным потенциалом относительно плазмы. Расположение мишени и подложкодержателя в полости прямоугольного параллелепипеда обеспечивает значительно больший ионный ток на мишени или подложке, чем на катодах.

Эксперимент проводился на молибденовой мишени. Измеренная скорость ионного травления составила 8 нм/с, а скорость напыления пленок молибдена на подложку 5 нм/с. Мощность рассеивания в устройстве составляла 640 Вт, мощность разряда 160 Вт. Экономичность при токе на подложке (образце) составила 0,62 мА/Вт, что выше, чем в известных устройствах.

Источники информации

1. В.А. Попович и др. «Установка ионно-плазменного распыления», « Электронная техника» Серия 1, Электроника СВЧ, выпуск 5, 1973.

2. SU 247001, МПК6 C23C 14/42, С23С 14/32.

3. US 4175029, НПК 204/298.


УСТРОЙСТВО ДЛЯ ИОННО-ПЛАЗМЕННОГО ТРАВЛЕНИЯ И НАНЕСЕНИЯ ТОНКИХ ПЛЕНОК
Источник поступления информации: Роспатент

Showing 41-50 of 60 items.
29.03.2019
№219.016.f396

Лампа бегущей волны миллиметрового диапазона длин волн

Изобретение относится к области электронной техники, а именно к электровакуумным приборам O-типа, и может быть использовано в лампах бегущей волны (ЛБВ) непрерывного и импульсного действия миллиметрового диапазона длин волн с замедляющей системой (ЗС) типа цепочки связанных резонаторов и...
Тип: Изобретение
Номер охранного документа: 0002307421
Дата охранного документа: 27.09.2007
29.03.2019
№219.016.f6d7

Способ изготовления листового стекла из полого стеклянного цилиндра

Изобретение относится к области изготовления листового стекла из полых стеклянных цилиндров. Техническим результатом является повышение прозрачности листового стекла, а также возможность получения листового стекла с толщиной, близкой к толщине стекла исходного полого стеклянного цилиндра, и...
Тип: Изобретение
Номер охранного документа: 0002433090
Дата охранного документа: 10.11.2011
10.04.2019
№219.017.02d8

Способ определения расстояния между электродами вакуумированного электровакуумного прибора (варианты)

Изобретение относится к электронной технике, а именно к способам определения расстояния между электродами электровакуумных приборов (ЭВП). Техническим результатом является обеспечение возможности определения с высокой точностью наименьшего расстояния между электродами ЭВП при изменении...
Тип: Изобретение
Номер охранного документа: 0002395864
Дата охранного документа: 27.07.2010
18.05.2019
№219.017.5484

Объемный свч-резонатор

Изобретение относится к электронной СВЧ-технике, а именно к объемным СВЧ-резонаторам, в частности, для приборов О-типа, например клистронов. Объемный СВЧ-резонатор с индуктивной настройкой частоты содержит элемент индуктивной настройки частоты, выполненный в виде настроечного винта,...
Тип: Изобретение
Номер охранного документа: 0002287211
Дата охранного документа: 10.11.2006
18.05.2019
№219.017.55f3

Многоканальный волноводный делитель мощности

Изобретение относится к электронной технике, в частности к многоканальным волноводным делителям мощности, и может быть использовано при создании многоканальных супергетеродинных приемников преимущественно миллиметрового диапазона длин волн и в СВЧ-измерительной технике. Многоканальный...
Тип: Изобретение
Номер охранного документа: 0002348091
Дата охранного документа: 27.02.2009
18.05.2019
№219.017.55f6

Устройство для генерирования электрических импульсов напряжения

Изобретение относится к радиоэлектронике, в частности к электровакуумным приборам СВЧ, предназначенным для генерирования сверхкоротких электрических импульсов напряжения со сверхвысокой частотой повторения, и может быть использовано, например, в радиолокации, радиопротиводействии и в других...
Тип: Изобретение
Номер охранного документа: 0002342733
Дата охранного документа: 27.12.2008
18.05.2019
№219.017.57fd

Многолучевая миниатюрная "прозрачная" лампа бегущей волны

Изобретение относится к электронной технике, в частности к многолучевым миниатюрным «прозрачным» многорежимным лампам бегущей волны (ЛБВ). Технический результат - повышение уровня выходной импульсной и средней мощности при одновременном обеспечении простоты, технологичности и малых габаритов...
Тип: Изобретение
Номер охранного документа: 0002337425
Дата охранного документа: 27.10.2008
18.05.2019
№219.017.5870

Свч-прибор о-типа

Изобретение относится к электронной технике СВЧ, а именно к мощным широкополосным СВЧ приборам O-типа, например к однолучевым и многолучевым клистронам или клистродам. Техническим результатом является обеспечение работы преимущественно в длинноволновой части сантиметрового диапазона длин волн с...
Тип: Изобретение
Номер охранного документа: 0002364977
Дата охранного документа: 20.08.2009
18.05.2019
№219.017.58e6

Свч-прибор о-типа

Изобретение относится к электронной СВЧ-технике, а именно к мощным широкополосным СВЧ-приборам О-типа, например к многолучевым клистронам, работающим преимущественно в средней и коротковолновой части сантиметрового диапазона длин волн. СВЧ-прибор О-типа состоит из последовательно расположенных...
Тип: Изобретение
Номер охранного документа: 0002328053
Дата охранного документа: 27.06.2008
18.05.2019
№219.017.59d6

Связующее вещество паяльной пасты

Изобретение относится к пайке, в частности к составу пастообразной паяльной пасты для пайки и лужения при температурах до 350°С. Связующее вещество паяльной пасты содержит глицерин, сорбит и активирующую добавку. Активирующая добавка содержит соль, которая образована щелочью и органической...
Тип: Изобретение
Номер охранного документа: 0002454308
Дата охранного документа: 27.06.2012
Showing 31-35 of 35 items.
27.03.2016
№216.014.c778

Устройство предварительной сепарации и фильтрации

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для предварительного разделения газожидкостной смеси в системе сбора и подготовки продукции нефтяных и газовых скважин. Устройство предварительной сепарации и фильтрации включает трубопровод, патрубки для...
Тип: Изобретение
Номер охранного документа: 0002578686
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2c8b

Иммерсионный магнитный объектив эмиссионного электронного микроскопа

Изобретение относится к электронным линзам, а точнее к иммерсионным магнитным объективам, и может быть использовано при формировании эмиссионного изображения исследуемого объекта на люминесцентном экране эмиссионного электронного микроскопа с большим электронно-оптическим увеличением при...
Тип: Изобретение
Номер охранного документа: 0002579458
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.301b

Установка химической очистки и сушки изделий

Изобретение относится к химической очистке и сушке изделий. Установка содержит смежные ванны предварительного и чистового обезжиривания и промывки и камеру сушки, устройства подогрева, устройства контроля и регулирования температуры обезжиривающего раствора и его уровня и выполнена в...
Тип: Изобретение
Номер охранного документа: 0002580259
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.7212

Трубное устройство предварительной сепарации

Изобретение относится к нефтяной и нефтегазоперерабатывающей промышленности и может быть использовано для предварительного разделения смеси на газ и жидкость в системах сбора и подготовки продукции нефтяных и газовых скважин. Устройство содержит трубопровод, в котором размещены завихритель и...
Тип: Изобретение
Номер охранного документа: 0002596754
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.794a

Установка низкотемпературной пайки в жидком теплоносителе

Изобретение может быть использовано при низкотемпературной пайке в жидком теплоносителе деталей мягкими припоями, в частности каркасов для корпусов микросборок СВЧ-диапазона. Камера каждой из двух ванн устройства выполнена в виде куба и размещена в кожухе с теплоизоляцией. Устройства подогрева...
Тип: Изобретение
Номер охранного документа: 0002599065
Дата охранного документа: 10.10.2016
+ добавить свой РИД