×
10.02.2015
216.013.229a

Результат интеллектуальной деятельности: ФЛУОРОХРОМНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПРИМЕНЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002540311
Дата охранного документа
10.02.2015
Аннотация: Изобретение может быть использовано в медицине в качестве противоопухолевого лекарственного средства. Флуорохромный материал содержит комплекс металл-сален, представленный формулой где М представляет собой железо, а пик люминисцентной длины волны около 380 нм. Способ введения флуорохромного материала индивидууму включает внешнее приложение магнитного поля индивидууму для направления материала к целевой области и затем применение внешнего света к целевой области, что позволяет материалу стать люминесцентным. Изобретение позволяет расширить применение комплекса железо-сален и использовать его как противоопухолевое лекарственное средство для индивидуумов. 2 н. и 3 з.п. ф-лы, 2 ил.

Область техники, к которой относится изобретение

Настоящее изобретение относится к флуорохромному материалу, полученному из комплекса металл-сален, и способу применения флуорохромного материала.

Уровень техники

Обычно, когда лекарственное средство вводится в живой организм, оно достигает пораженного участка и проявляет свои фармакологические эффекты на этом пораженном участке, тем самым проявляя свои терапевтические эффекты. С другой стороны, даже если лекарственное средство достигает ткани, иной, чем пораженный участок (другими словами, нормальной ткани), оно не будет терапевтическим.

Следовательно, является важным направить лекарственное средство на пораженный участок. Методика направления лекарственного средства к пораженному участку называется доставкой лекарственного средства, которая активно изучается и разрабатывается в последнее время. Эта доставка лекарственного средства имеет по меньшей мере два преимущества.

Одним преимуществом является то, что на пораженном участке ткани может быть получена достаточно высокая концентрация лекарственного средства. Фармакологические эффекты не будут наблюдаться до тех пор, пока концентрация лекарственного средства на пораженном участке не будет постоянным значением или большим. Терапевтические эффекты не могут быть ожидаемыми, если концентрация низкая.

Вторым преимуществом является то, что лекарственное средство направляется только к пораженному участку ткани, и, следовательно, побочные реакции в отношении нормальной ткани могут быть подавлены.

Такая доставка лекарственного средства является наиболее эффективной для лечения рака противоопухолевыми агентами. Большинство противоопухолевых агентов подавляет клеточный рост раковых клеток, которые активно делятся, так что противоопухолевые агенты будут также подавлять клеточный рост даже нормальной ткани, в которой клетки активно делятся, такой как костный мозг, корни волос или слизистая пищеварительного тракта.

Следовательно, раковые пациенты, которым вводят противоопухолевые агенты, страдают от побочных реакций, таких как анемия, потеря волос и рвота. Поскольку такие побочные реакции накладывают тяжелые отпечатки на пациентов, необходимо ограничить дозировку, тем самым вызывая проблему невозможности достичь фармакологических эффектов противоопухолевых агентов.

Обобщенным наименованием для противоопухолевых агентов, обладающих способностью совмещать алкильную группу (-CH2-CH2-) с, например, аминокислотным белком, являются алкилирующие противораковые лекарственные средства среди таких антинеопластических лекарственных средств. Они алкилируют ДНК и ингибируют репликацию ДНК, вызывая смерть клеток.

Это действие работает независимо от клеточных циклов, также работает на клетках в периоде G0, имеет сильное влияние на клетки, которые активно растут и имеют склонность к повреждению, например костный мозг, слизистая пищеварительного тракта, зародышевые клетки или корни волос.

Более того, антиметаболитные антинеопластические лекарственные средства представляют собой соединения, имеющие структуры, подобные структурам нуклеиновых кислот или метаболитов в процессе синтеза белка, поражают клетки путем, например, ингибирования синтеза нуклеиновых кислот и специфично действуют на клетки митотического периода.

Кроме того, противоопухолевые антибиотики представляют собой химические вещества, полученные микроорганизмами, имеют воздействия, такие как ингибирование синтеза ДНК и разрыв нити ДНК, и проявляют противоопухолевую активность.

Также микротрубочные ингибиторы обладают противораковыми эффектами, непосредственно воздействующими на микротрубочки, которые играют важную роль в сохранении нормальных функций клеток, например, путем образования веретена в ходе деления клетки, локализации клеточных органелл и переноса веществ. Микротрубочные ингибиторы воздействуют на клетки, которые активно делятся, и нервные клетки.

Более того, лекарственное средство на основе платины ингибирует синтез ДНК путем образования нитей ДНК, межцепных связей или связей ДНК-белок. Представителем лекарственного средства является цисплатин, но он вызывает тяжелое повреждение почек и требует восполнения большого количества жидкости.

Кроме того, полученные из гормонов антинеопластические лекарственные средства являются эффективными против гормонозависимых опухолей. Женские гормоны или антиандрогенные лекарственные средства вводятся в андрогензависимый рак простаты.

Также молекулярно-направленные лекарственные средства представляют собой лечение, направленное на молекулы, которые соответствуют молекулярным биологическим характеристикам, специфичным для соответствующих злокачественных опухолей.

Более того, ингибиторы топоизомеразы представляют собой ферменты для временного образования разрывов в ДНК и изменения числа переплетений нитей ДНК. Ингибитор топоизомеразы I представляет собой фермент, который образует разрывы в одной нити кольцевой ДНК, позволяя другой нити проходить, и затем закрывает разрывы; а ингибитор топоизомеразы II временно разрывает обе две нити кольцевой ДНК, позволяя другим двум нитям ДНК проходить между прежними двумя нитями и восстанавливать разорванные нити.

Кроме того, неспецифичные иммуностимуляторы ингибируют увеличение раковых клеток путем активации иммунной системы.

Большинство противоопухолевых агентов ингибирует клеточный рост раковых клеток, которые активно делятся, так что противоопухолевые агенты будут также ингибировать клеточный рост даже нормальной ткани, в которой клетки активно делятся, такой как костный мозг, корни волос или слизистая пищеварительного тракта. Следовательно, раковые пациенты, которым вводятся противоопухолевые агенты, страдают от побочных реакций, таких как анемия, потеря волос и рвота.

Поскольку такие побочные реакции накладывают тяжелые отпечатки на пациентов, необходимо ограничить дозировку, тем самым вызывая проблему невозможности в достаточной степени достичь фармакологических эффектов противоопухолевых агентов. Кроме того, в наихудшем сценарии существует возможность, что пациенты могут умереть от побочных реакций.

Таким образом, ожидается ингибирование побочных реакций и проведение лечения рака эффективно путем направления противоопухолевых агентов к раковым клеткам посредством доставки лекарственного средства и предоставления противоопухолевым агентам возможности интенсивно проявлять фармакологические эффекты на раковые клетки. Местные анестетики имеют такую же проблему.

Местные анестетики используются для лечения местного зуда и болей, например, слизистой или кожи, вызванных геморроидальным заболеванием, стоматитом, пародонтитом, кариесом, удалением зуба или операциями. Лидокаин (название продукта: ксилокаин) известен как представитель местного анестетика; однако лидокаин является быстродействующим, но имеет антиаритмический эффект.

Кроме того, если лидокаин, который является анестетиком, инъецируется в спинномозговую жидкость при спинальной анестезии, лидокаин будет распространяться по спинномозговой жидкости; и в наихудшем сценарии есть опасность, что лидокаин может достигнуть цервикальной области спинного мозга и тем самым вызвать остановку дыхательной функции и привести к критическим побочным реакциям.

Таким образом, ожидается ингибирование побочных реакций и проведение лечения рака эффективно путем направления противораковых агентов к раковым клеткам посредством доставки лекарственного средства и предоставления противораковым агентам возможности интенсивно проявлять фармакологические эффекты на раковые клетки.

Кроме того, также ожидается предотвращение распространения местного анестетика, и достижение продолжительных медицинских эффектов, и снижение побочных реакций путем доставки лекарственного средства.

Примером конкретного способа доставки лекарственного средства является применение носителя. Это означает загрузку имеющего склонность к концентрированию на пораженном участке носителя лекарственным средством и принуждение носителя нести лекарственное средство к пораженному участку.

Перспективным кандидатом в качестве носителя является магнитное вещество, и существует предложенный способ прикрепления носителя, который является магнитным веществом, к лекарственному средству, позволяющий носителю накапливаться в пораженном участке посредством магнитного поля (см., например, патентную литературу 1).

Однако при использовании магнитного вещества в качестве носителя было обнаружено, что трудно перорально вводить магнитный носитель, молекулы носителя обычно огромные, и существуют технические проблемы в части силы связывания и сродства между носителем и молекулами лекарственного средства; и трудно изначально достигнуть практического применения магнитного носителя.

Таким образом, авторы настоящего изобретения предложили местный анестетик, в котором боковые цепи, дающие положительную или отрицательную плотность спинового заряда, связаны с основным скелетом органического соединения, и который в целом пригоден до такой степени, что местный анестетик направляется посредством участия магнита, внешним магнитным полем; и если местный анестетик применяется к телу человека или животному, он остается в области, где магнитное поле применяется местно посредством магнитного поля вне тела, и медицинские эффекты, которые местный анестетик изначально имеет, проявляются в этой области. В указанной выше публикации в качестве примера такого лекарственного средства описывается комплекс железо-сален (см. патентную литературу 2).

Также раскрыто противораковое лекарственное средство, содержащее комплекс железо-сален (см., например, патентную литературу 3).

Список ссылок

Патентная литература

Патентная литература 1. Опубликованная японская заявка на патент (Kokai) № 2001-10978;

Патентная литература 2. W02008/001851;

Патентная литература 3. Опубликованная японская заявка на патент (Kokai) № 2009-173631.

Сущность изобретения

Объектом настоящего изобретения является расширение применения комплекса железо-сален.

Для того чтобы достигнуть описанного выше объекта, настоящее изобретение представляет собой новый флуорохромный материал, содержащий нижеприведенную химическую формулу (I).

(N,N'-Бис(салицилиден)этилендиамин металл)

химическая формула (I)

Однако М представляет собой Fe (железо), Cr (хром), Mn (марганец), Co (кобальт), Ni (никель), Mo (молибден), Ru (рубидий), Rh (родий), Pd (палладий), W (вольфрам), Re (рений), Os (осмий), Ir (иридий), Pt (платину), Nd (ниобий), Sm (самарий), Eu (европий) или Gd (гадолиний).

В частности, соединение, где М является железом, излучает микроволновую фосфоресценцию в диапазоне от 300 нм до 500 нм. Следовательно, как описано в опубликованной японской заявке на патент (Kokai) № 2009-173631, комплексное соединение металл-сален может быть получено флуоресцентным, и пораженный участок ткани может быть визуально подтвержден путем введения комплексного соединения металл-сален, представленного химической формулой (I), в качестве противоопухолевого лекарственного средства индивидууму, такому как человек или животное, магнитно направляя его к целевой раковой ткани и затем облучая пораженный участок ткани лазерным светом или флуоресценцией при проведении операции для удаления пораженного участка ткани.

Что касается среднего диаметра частиц комплексного соединения металл-сален, чрезмерно большой диаметр частиц, возможно, может вызывать закупорку кровеносных сосудов соединением. С другой стороны, если диаметр частиц маленький, соединение, возможно, может терять свое магнитное свойство. Следовательно, подходящий средний диаметр частиц соединения составляет от 2 до 60 мкм, предпочтительно от 5 до 20 мкм, более предпочтительно от 8 до 15 мкм, особенно предпочтительно от 9 до 12 мкм и оптимально 10 мкм.

Диаметр частиц устанавливается в описанном выше диапазоне в ходе процесса перекристаллизации. Например, на стадии 7 синтеза, описанного далее, указывается, что «конечное вещество было перекристаллизовано из раствора диэтилового эфира и парафина», и целевой диаметр частиц может быть получен путем увеличения температуры вплоть до 80 градусов Цельсия сразу перед перекристаллизацией и затем охлаждения до комнатной температуры в течение 12 часов.

Результатом исследования авторов настоящего изобретения явилось изменение свойства намагничивания комплексного соединения металл-сален в зависимости от диаметра частиц. Если диаметр частиц слишком маленький, меньше, чем необходимо, свойство намагничивания комплексного соединения металл-сален является недостаточным; и если такое комплексное соединение металл-сален вводится индивидууму, такому как человек или животное, существует возможность, что комплексное соединение металл-сален может быть не доставлено к целевой области внешним магнитным полем. С другой стороны, если диаметр частиц слишком большой, больше, чем необходимо, существует возможность, что магнитные частицы могут агрегировать в кровеносных сосудах.

Как описано в опубликованной японской заявке на патент (Kokai) № 2009-173631, комплекс металл-сален, представленный химической формулой (I), пригоден в качестве противоопухолевого лекарственного средства, имеющего такое магнитное свойство, что, если оно вводится индивидууму без использования магнитного носителя и внешнее магнитное поле (например, 0,3 Т) затем применяется к индивидууму, молекулы направляются к области, к которой применяется магнитное поле.

Новый флуорохромный материал, содержащий химическую формулу (I), упомянутую выше, может быть получен в соответствии с настоящим изобретением, как объяснено выше.

Краткое описание чертежей

Фиг.1 представляет собой характеристическую диаграмму, показывающую результаты люминесцентного теста комплекса металл-сален.

Фиг.2 представляет собой характеристическую диаграмму, показывающую результаты измерения диаметра частиц комплекса металл-сален.

Подробное описание вариантов

Получение комплекса металл-сален (железо-сален)

Стадия 1:

Смесь 4-нитрофенола (Соединение 1) (25 г, 0,18 моль), гексаметилентетрамина (25 г, 0,18 моль) и полифосфорной кислоты (200 мл) смешивали в течение одного часа при температуре 100 градусов Цельсия. Затем в эту смесь ввели 500 мл этилацетата и 1 л (литр) воды и перемешивали до полного растворения. Кроме того, когда добавили 400 мл этилацетата к этому раствору, раствор разделился на две фазы. Впоследствии водную фазу удалили из раствора, который разделился на две фазы; и оставшееся соединение дважды промыли основным растворителем и высушивали над безводным MgSO4. В результате синтезировали 17 г Соединения 2 (выход 57%).

Стадия 2:

Соединение 2 (17 г, 0,10 моль), уксусный ангидрид (200 мл) и H2SO4 (минимально) перемешивали в течение одного часа при комнатной температуре. Конечный раствор смешивали в течение 0,5 часа в ледяной воде (2 л) до достижения гидролиза. Конечный раствор отфильтровывали и высушивали на воздухе, тем самым получая белый порошок. Порошок перекристаллизовывали с использованием растворителя, содержащего этилацетат. В результате получили 24 г Соединения 3 (выход 76%) в форме белых кристаллов.

Стадия 3:

Смесь углерода (2,4 г) с нанесенным 10% палладием с Соединением 3 (24 г, 77 моль) и метанолом (500 мл) восстанавливали в течение ночи при 1,5 атм в водородной восстанавливающей среде. После завершения восстановления продукт фильтровали и получили 21 г Соединения 4 в виде коричневого масла.

Стадии 4, 5:

Соединение 4 (21 г, 75 ммоль) и ди(трет-бутил)дикарбонат (18 г, 82 ммоль) перемешивали в течение ночи в безводном дихлорметане (ДХМ) (200 мл) в атмосфере азота. Конечный раствор (Соединение 5) выпаривали в вакууме и затем растворяли в метаноле (100 мл). Затем добавили гидроксид натрия (15 г, 374 ммоль) и воду (50 мл) и раствор орошали в течение 5 часов. Затем раствор охлаждали, фильтровали, промывали водой и высушивали в вакууме, тем самым получая коричневое соединение. Конечный раствор дважды подвергали флэш-хроматографии с использованием силикагеля, тем самым получая 10 г Соединения 6 (выход 58%).

Стадия 6:

Соединение 6 (10 г, 42 ммоль) вводили в 400 мл безводного этанола, смесь орошали при нагревании и добавили несколько капель этилендиамина (1,3 г, 21 ммоль) в 20 мл безводного этанола при перемешивании в течение 0,5 часа. Смесь переместили в контейнер со льдом, где ее охлаждали и перемешивали в течение 15 минут. Затем ее промывали 200 мл этанола, фильтровали и высушивали в вакууме, тем самым получая 8,5 г (выход 82%) Соединения 7.

Стадия 7:

Соединение 7 (8,2 г, 16 ммоль) и триэтиламин (22 мл, 160 ммоль) вводили в обезвоженный метанол (50 мл) и раствор хлорида железа (III) (FeCl3) (2,7 г, 16 ммоль), добавленный к 10 мл метанола, перемешивали в течение одного часа в атмосфере азота при комнатной температуре, тем самым получая коричневое соединение. Коричневое соединение затем высушивали в вакууме.

Конечное соединение разбавляли 400 мл дихлорметана, промывали дважды основным раствором, высушивали в сульфате натрия (Na2SO4) и высушивали в вакууме. Конечное соединение перекристаллизовывали из раствора диэтилового эфира и парафина и при анализе с помощью высокоэффективной жидкостной хроматографии выявили 5,7 г (выход 62%) комплекса A (комплекс железо-сален) с чистотой 95% или выше.

Когда необходимо использовать металлический комплекс, отличный от комплекса железо-сален, хлорид металла, отличного от железа (MCl3: где М является металлом), может быть использован вместо хлорида железа (III) (FeCl3). Кстати, в японской заявке на патент № 2009-177112 заявителя настоящей заявки раскрывается, что комплекс марганец-сален, комплекс хром-сален и комплекс кобальт-сален, отличный от комплекса железо-сален, имеет такие магнитные свойства, что они могут быть направлены внешним магнитным полем. Затем, из опубликованной японской заявки на патент (Kokai) № 2009-173631 следует, что металлический комплекс железо-сален или подобный обладает противоопухолевым эффектом.

Тест на люминесценцию

Тест на люминесценцию посредством фотолюминесцентного измерения проводили в отношении комплекса железо-сален, представленного химической формулой (I).

Измерение проводили с использованием PHOTOLUMINOR-S для спектрального анализа высокого разрешения (производитель HORIBA, Ltd). Измерение проводили в состоянии, когда комплекс металл-сален был растворен в хлороформе.

Полученные результаты представлены на фиг.1. Ссылаясь на фиг.1 было подтверждено, что пик, характерный для комплекса железо-сален, представленного химической формулой (I), возникает около 380 нм. Кстати, пики подтверждались около 270 нм, 530 нм и 800 нм на фиг.1, но они представляют собой справочные пики для возбуждающего лазера (лазера, который испускает белый свет при колебании нескольких длин волн RGM в одно и то же время). Длина волны пика варьируется в зависимости от формы кристалла комплекса железо-сален.

Измерение диаметра частиц

Диаметр частиц комплекса железо-сален химической формулы (I) измеряли с использованием способа лазерной дифракции. Устройство, используемое для измерения, представляло собой приборы гранулометрического анализа Microtrac (MT-3000II, производитель NIKKISO CO., LTD.). Образец помещали в гексаметафосфат натрия; и конечный раствор диспергировали в течение 10 минут с использованием гомогенизатора, образец затем облучали лазерным светом и измеряли его дифракцию (рассеивание) для обнаружения сортировки. Условия измерения и результаты измерения следующие.

Условия измерения

Время измерения: 30 секунд

Проницаемость частиц: проницаемые

Форма частиц: несферическая

Показатель преломления частиц: 1,81

Растворитель: вода

Показатель преломления растворителя: 1,333

Результаты измерения

Результаты измерения показаны на фиг.2 и ниже.

Средний диаметр частиц: 11,79 мкм

Стандартное отклонение: 6,289

Результатом измерения явилось обнаружение того, что диаметр частиц комплекса железо-сален составил 11,8 мкм, что достаточно подходит для применения к индивидуумам.

Если комплекс металл-сален способен излучать флуоресцентный цвет, такой как вышеупомянутый, комплекс железо-сален вводится индивидууму, магнитное поле прикладывается извне к индивидууму для направления комплекса металл-сален к целевой области, и внешний свет затем применяется к целевой области, как объяснено выше, может быть подтверждена люминесценция комплекса металл-сален.


ФЛУОРОХРОМНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПРИМЕНЕНИЯ
ФЛУОРОХРОМНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПРИМЕНЕНИЯ
ФЛУОРОХРОМНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПРИМЕНЕНИЯ
ФЛУОРОХРОМНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПРИМЕНЕНИЯ
ФЛУОРОХРОМНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПРИМЕНЕНИЯ
Источник поступления информации: Роспатент

Showing 101-106 of 106 items.
13.02.2020
№220.018.01d2

Способ получения кремниевого композиционного материала и устройство для получения кремниевого композиционного материала

Изобретение может быть использовано в химической промышленности. Способ получения композиционного материала на основе карбида кремния включает стадии: выдерживания преформы из карбида кремния в реакционной печи; подачу сырьевого газа, содержащего метилтрихлорсилан, в реакционную печь для...
Тип: Изобретение
Номер охранного документа: 0002714070
Дата охранного документа: 11.02.2020
28.03.2020
№220.018.10ec

Низкотемпературный резервуар и способ его изготовления

Низкотемпературный резервуар содержит основной корпус контейнера, который включает в себя металлическую оболочку, образующую пространство для хранения низкотемпературного резервуара, и стенку, выполненную из армированного волокном пластика, намотанного на внешнюю периферическую поверхность...
Тип: Изобретение
Номер охранного документа: 0002717931
Дата охранного документа: 26.03.2020
04.04.2020
№220.018.1317

Лопасть вентилятора

Предоставляется лопасть вентилятора, которая выполнена из композитного материала и которая не повреждается даже в случае, в котором большой посторонний объект сталкивается с лопастью вентилятора. Лопасть (20) вентилятора включает в себя: основную часть (21) пера, состоящую из композитного...
Тип: Изобретение
Номер охранного документа: 0002718381
Дата охранного документа: 02.04.2020
20.04.2020
№220.018.1649

Устройство для линейного фрикционного соединения и способ для линейного фрикционного соединения

Изобретение относится к устройству (1) для линейного соединения трением. Устройство содержит прижимающее устройство (10) для прижатия второго элемента (B) к первому элементу (A) в направлении прижатия и вибратор (20) для относительной вибрации первого элемента (A) и второго элемента (B)....
Тип: Изобретение
Номер охранного документа: 0002719234
Дата охранного документа: 17.04.2020
29.05.2020
№220.018.2211

Способ стабилизации хлорсиланового полимера

Изобретение может быть использовано в химической промышленности. Способ разложения хлорсиланового полимера, образующегося вторично на стадии способа химического осаждения из паров с использованием газа на основе хлорсилана, включает стадию приведения низшего спирта, такого как бутанол или более...
Тип: Изобретение
Номер охранного документа: 0002722027
Дата охранного документа: 26.05.2020
24.06.2020
№220.018.29d5

Устройство для отбора повторным нагреванием для газофазного процесса

Изобретение относится к устройству для отбора повторным нагревом твердофазных веществ из отходящего газа, содержащего непрореагировавший ингредиент, газофазного процесса. Устройство содержит емкость, выполненную удлиненной в осевом направлении в виде камеры, впускной канал и выпускной канал,...
Тип: Изобретение
Номер охранного документа: 0002724260
Дата охранного документа: 22.06.2020
Showing 61-68 of 68 items.
26.08.2017
№217.015.dd3e

Способ конструирования цилиндрического резервуара

Изобретение относится к области строительства, в частности к способу возведения цилиндрического резервуара. Способ возведения включает сборку металлического внутреннего резервуара индивидуальным и последовательным выполнением подъема с помощью подъемного устройства бокового листа внутреннего...
Тип: Изобретение
Номер охранного документа: 0002624471
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.e9fb

Устройство распознавания трехмерного объекта и способ распознавания трехмерного объекта

Изобретение относится к распознаванию трехмерного объекта. Техническим результатом является повышение точности сопряжения между собой трехмерного объекта и модели трехмерной формы. Устройство содержит: блок формирования изображений; блок сопряжения; блок обновления модели; блок оценки движения;...
Тип: Изобретение
Номер охранного документа: 0002628217
Дата охранного документа: 15.08.2017
19.01.2018
№218.016.04e9

Электрически проводящая структура для реактивного двигателя

Электрически проводящая структура для пропускания и отвода электрического тока от основного тела выходной направляющей лопасти в наружную опорную структуру содержит обшивку из металла, покрывающую переднюю кромку основного тела лопасти, и электрически проводящую прокладку из металла, содержащую...
Тип: Изобретение
Номер охранного документа: 0002630646
Дата охранного документа: 11.09.2017
20.01.2018
№218.016.1ba5

Конструкция лопатки статора и турбовентиляторный реактивный двигатель с использованием такой лопатки

Турбовентиляторный реактивный двигатель содержит кожух вентилятора, секцию корпуса двигателя, лопатку статора, металлическую обшивку, пару соединительных несущих корпусов и проводник. Лопатка статора соединяет кожух вентилятора и секцию корпуса двигателя и выполнена из композитного материала,...
Тип: Изобретение
Номер охранного документа: 0002636598
Дата охранного документа: 24.11.2017
13.02.2018
№218.016.1ff6

Уплотнение для турбовентиляторного двигателя

Уплотнение для герметизации зазора между лопаткой и накладкой спрямляющей лопатки направляющего аппарата состоит из соединительного участка для соединения с накладкой, гибкого участка гребня и гибкого участка буртика. Гибкий участок гребня выходит из соединительного участка и сужается в...
Тип: Изобретение
Номер охранного документа: 0002641421
Дата охранного документа: 17.01.2018
04.04.2018
№218.016.344b

Композитная лопасть и способ изготовления композитной лопасти

Композитная лопасть включает корпус 11 композитной лопасти, который состоит из композитного материала, включающего термоотверждающийся полимер или термопластический полимер и армирующие волокна, который изготавливается путем формования, и металлическую оболочку 12, которая прикрепляется к...
Тип: Изобретение
Номер охранного документа: 0002646165
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.3520

Турбина

Турбина реактивного двигателя содержит корпус турбины, лопатки турбины, кожух. Корпус турбины имеет цилиндрическую форму. Лопатки турбины выполнены с возможностью вращения вокруг оси корпуса турбины. Кожух включает в себя множество сегментов кожуха, расположенных кольцеобразно вдоль внутренней...
Тип: Изобретение
Номер охранного документа: 0002645892
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.42f7

Комплексное металл-саленовое соединение, обладающее собственным магнетизмом

Изобретение относится к противоопухолевому лекарственному препарату. Препарат содержит магнитный лекарственный препарат, включающий новое металл-саленовое комплексное соединение, обладающее собственным магнетизмом, представленное формулой (I). Формула (I) отражает структуру соединения (II),...
Тип: Изобретение
Номер охранного документа: 0002649391
Дата охранного документа: 03.04.2018
+ добавить свой РИД