×
27.01.2015
216.013.20ae

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ НАПРЯЖЕННОСТИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и предназначено для решения задач электромагнитной совместимости и экологической безопасности электротехнического и радиоэлектронного оборудования промышленных, транспортных, общественных и бытовых объектов. На габаритных обводах материальных объектов, содержащихся в пространстве, выбирают контрольные точки. Поочередно устанавливая датчик пространственного положения в этих контрольных точках, определяют их координаты и воспроизводят на экране монитора. После чего на экране монитора вычислительного устройства с помощью трехмерного графического редактора воспроизводят трехмерные геометрические фигуры, отображающие габаритные обводы материальных объектов, с контрольными точками, совмещенными с воспроизведенными на экране монитора выбранными контрольными точками материальных объектов. Датчиком пространственного положения сканируют пространство, содержащее материальные объекты, в том числе излучающее поле электрооборудование. Датчиком напряженности электромагнитного поля, совмещенным с указанным датчиком пространственного положения, фиксируют локальные значения напряженности электромагнитного поля. При этом пространственное распределение напряженности электромагнитного поля определяют воспроизведением его относительно пространственного расположения трехмерных фигур, отображающих габаритные обводы моделируемых ими материальных объектов. Предложение обеспечивает снижение стоимости и трудоемкости мероприятий по обеспечению электромагнитной совместимости электротехнического и высокочувствительного радиоэлектронного оборудования, а также экологической безопасности жилых, общественных, транспортных и производственных помещений. Технический результат заключается в снижении трудоемкости и упрощении моделирования пространственного распределения напряженности электромагнитного поля с привязкой его характеристик к координатам пространственных объемов сложной формы, укомплектованных электрооборудованием, излучающим электромагнитные поля. 4 ил.
Основные результаты: Способ определения пространственного распределения напряженности электромагнитного поля, при котором датчиком пространственного положения сканируют пространство, содержащее материальные объекты, в том числе электрооборудование, излучающее электромагнитное поле, при этом датчиком напряженности электромагнитного поля, скрепленным с указанным датчиком пространственного положения, фиксируют локальные значения напряженности электромагнитного поля, по текущим координатам датчиков и соответствующим им значениям напряженности электромагнитного поля вычисляют пространственное распределение поля, которое воспроизводят на экране монитора вычислительного устройства, отличающийся тем, что на габаритных обводах материальных объектов, содержащихся в пространстве, выбирают контрольные точки, затем определяют их координаты, поочередно устанавливая датчик пространственного положения в этих контрольных точках, и воспроизводят их на экране монитора вычислительного устройства, после чего на экране монитора вычислительного устройства воспроизводят трехмерные геометрические фигуры, отображающие габаритные обводы материальных объектов с контрольными точками, совмещенными с воспроизведенными на экране монитора выбранными контрольными точками материальных объектов, а пространственное распределение напряженности электромагнитного поля определяют воспроизведением его относительно пространственного расположения трехмерных фигур, отображающих габаритные обводы моделируемых ими материальных объектов.

Изобретение относится к измерительной технике и предназначено для решения задач электромагнитной совместимости и экологической безопасности электротехнического и радиоэлектронного оборудования промышленных, транспортных, общественных и бытовых объектов.

Известен способ и устройство определения пространственного распределения характеристик электромагнитного поля в пространстве безэховой камеры, в которой установлен объект для испытания, излучающий электромагнитное поле, заключающийся в том, что пространство безэховой камеры сканируют датчиком напряженности электромагнитного поля, который перемещают по жестко закрепленным в ней направляющим. При этом координаты положения датчика напряженности электромагнитного поля в фиксированных точках пространства безэховой камеры определяют с помощью лазерной системы позиционирования. По величинам напряженности электромагнитного поля в фиксированных точках и их координатам воспроизводят диаграмму распределения напряженности электромагнитного поля в пространстве безэховой камеры [источник: Anechoic chamber related issues for very large automated planar near field range. / S. Christopher Aruna Rao Suma Varughese M.S. Easwaran. / Proceeding of the International Conference on Electromagnetic Interference and compatibility ∗98. 3-6 December 2098 Hyderabad, India, p.p.86-113].

Недостатком этого способа является отсутствие мобильности средств его реализации, что не дает возможности определять пространственное распределение напряженности электромагнитного поля относительно стационарных объектов, излучающих электромагнитные поля, например помещений, насыщенных электрооборудованием и рабочими местами, так как их невозможно установить в безэховой камере. Поэтому известный способ не может быть использован для формирования систем компенсации электромагнитного поля излучаемого электрооборудованием стационарных объектов.

За прототип принят способ определения пространственного распределения напряженности электромагнитного (электрического или магнитного) поля, при котором датчиком пространственного положения сканируют пространство, содержащее материальные объекты, в том числе излучающее это поле электрооборудование. При этом датчиком напряженности электромагнитного поля, совмещенным с указанным датчиком пространственного положения, фиксируют локальные значения напряженности электромагнитного поля. По текущим координатам датчиков и соответствующих им значениям напряженности электромагнитного поля вычисляют пространственное распределение напряженности, которое воспроизводят на экране монитора вычислительного устройства (Патент РФ №2215297).

Недостатком этого способа является высокая трудоемкость моделирования пространственного распределения напряженности электромагнитного поля с привязкой к координатам материальных объектов сложной формы, укомплектованных электрооборудованием, излучающим электромагнитные поля. Это обусловлено тем, что распределение электромагнитного поля, воспроизводимого относительно стереоскопического изображения материальных объектов, расположенных в этом пространстве, позволяет использовать полученные отображения только для субъективных оценок электромагнитной обстановки. Субъективные оценки не могут быть количественно нормированы и использованы в качестве расчетных данных, например, для проектирования системы компенсации электромагнитных полей. Поэтому для моделирования электромагнитной обстановки на объекте, характеризующей распределение напряженности электромагнитного поля в пространстве, насыщенном материальными объектами, необходимо многократное проведение стереосъемок этого пространства с взаимно смещенных позиций, что приводит к увеличению объема исходных данных и значительно усложняет процесс моделирования пространственного распределения напряженности электромагнитного поля с привязкой его характеристик к координатам пространственных объемов сложной формы, укомплектованных электрооборудованием, излучающим электромагнитные поля. Кроме того, в корабельных и производственных условиях такое моделирование также затруднено сложностью преобразования стереоскопических изображений помещений, насыщенных разнообразным оборудованием, кабельными трассами, рабочими местами и другими материальными объектами, особенно корпусными конструкциями, обуславливающей необходимость обработки чрезмерно больших объемов избыточной информации для определения координат материальных объектов.

Техническим результатом настоящего изобретения является снижение трудоемкости и упрощение моделирования пространственного распределения напряженности электромагнитного поля с привязкой его характеристик к координатам пространственных объемов сложной формы, укомплектованных электрооборудованием, излучающим электромагнитные поля.

Для достижения указанного технического результата на габаритных обводах материальных объектов, содержащихся в пространстве, выбирают контрольные точки. Поочередно устанавливая датчик пространственного положения в этих контрольных точках, определяют их координаты и воспроизводят на экране монитора. После чего на экране монитора вычислительного устройства с помощью трехмерного графического редактора воспроизводят трехмерные геометрические фигуры, отображающие габаритные обводы материальных объектов, с контрольными точками, совмещенными с воспроизведенными на экране монитора выбранными контрольными точками материальных объектов. Датчиком пространственного положения сканируют пространство, содержащее материальные объекты, в том числе излучающее поле электрооборудование. Датчиком напряженности электромагнитного поля, совмещенным с указанным датчиком пространственного положения, фиксируют локальные значения напряженности электромагнитного поля. При этом пространственное распределение напряженности электромагнитного поля определяют воспроизведением его относительно пространственного расположения трехмерных фигур, отображающих габаритные обводы моделируемых ими материальных объектов.

При реализации настоящего способа трудоемкость графического отображения габаритов объектов при использовании трехмерного графического редактора пренебрежимо мала по сравнению с трудоемкостью ввода исходных данных для пересчета стереоскопического изображения сложных форм материальных объектов в трехмерные. Математическая модель полученного распределения напряженности электромагнитного поля описывается в той же системе координат, что и трехмерные габаритные изображения материальных объектов, что не требует специального программного обеспечения для применения к ним типовых графических преобразований изображений (например, построения сечений по координатным плоскостям и т.п.). Это и обуславливает положительный эффект от реализации предложения, заключающийся в снижении трудоемкости при относительно невысоких требованиях к вычислительным мощностям, а следовательно, и стоимости реализующей его аппаратуры.

Пример реализации способа определения пространственного распределения напряженности электромагнитного поля поясняется чертежами:

- на Фиг.1 изображено пространство, содержащее материальные объекты, в том числе электрооборудование, излучающее электромагнитное поле;

- на Фиг.2 изображено отображение на экране монитора вычислительного устройства контрольных точек габаритных обводов материальных объектов;

- на Фиг.3 изображено отображение на экране монитора вычислительного устройства геометрических фигур, моделирующих габаритные обводы материальных объектов;

- на Фиг.4 изображено пространственное распределение напряженности электромагнитного поля, воспроизведенное относительно пространственного расположения фигур, отображающих габаритные обводы моделируемых ими материальных объектов.

В ограниченном пространстве 1 (например, в машинном отделении корабля, на участке цеха и т.п.) расположены материальные объекты 2 (2.1, 2.2, …,2.5), в том числе электрооборудование, излучающее электромагнитное поле, помехочувствительное оборудование и рабочие места (Фиг.1). Также могут быть учтены и корпусные конструкции помещения (переборки, шпангоуты, а также двери, трапы и другие материальные объекты), на чертеже не показанные.

В пространстве 1 подвижно размещены перемещаемые вручную и скрепленные друг с другом датчик 3 напряженности электромагнитного поля и датчик 4 пространственного положения, реализуемый в виде ультразвукового передатчика, позиционируемого в системе координат, связанной с этим пространством. Для позиционирования датчика 4 в пространстве 1 также стационарно установлены по меньшей мере три ультразвуковых приемных модуля 5, взаимодействующих с датчиком 4. Приемные модули 5 подключены к модулю управления 6, определяющему в реальном времени положение датчика 4 в координатах пространства 1 путем триангуляции по величинам задержки приходящих от него на модули 5 ультразвуковых сигналов. Датчик 4, приемные модули 5 и модуль управления 6 в комплекте реализуют модульную систему позиционирования, взаимодействующую с вычислительным устройством 7. В качестве такой модульной системы позиционирования может быть использована, например, система RUCAP UM-16 поставляемая ООО «РУКЭП» и взаимодействующая с вычислительным устройством 7, функционирующим на базе операционной системы Windows 7 фирмы Майкрософт и снабженным также программным обеспечением, поддерживающим трехмерный графический редактор, например Autodesk 3ds Мах компании Autodesk Inc.

На мониторе вычислительного устройства 7 могут быть визуально воспроизведены геометрические фигуры 2.1∗, …2.5∗, отображающие материальные объекты 2.1,... 2.5, с контрольными точками соответственно 2.1.1∗, 2.1.2∗, 2.1.3∗, 2.2.1∗, …2.5.2∗, 2.5.3∗, обозначенные номерами, соответствующими отображаемым ими материальным объектам 2.1, …2.5 и выбранным на них контрольным точкам, соответственно 2.1.1, 2.1.2, 2.1.3, 2.2.1, …2.5.2, 2.5.3.

Например, габаритные обводы участка кабельной трассы 2.1 могут быть отображены цилиндром, образующая окружность которого задается выбранными на концах ее диаметра точками 2.1.2 и 2.1.3, а длина - точкой на удаленном конце 2.1.1. Эти точки однозначно определяют размер и положение цилиндра в отображении на экране монитора вычислительного устройства 7 пространства 1. Соответственно, габаритные обводы рабочего места 2 могут быть отображены параллелепипедом 2.2, грани которого параллельны осям выбранной системы координат. Размер и положение параллелепипеда 2.2 в пространстве 1 однозначно задается тремя выбранными контрольными точками, расположенными по его углам, соответственно, 2.2.1, 2.2.2. и 2.2.3.

При расположении габаритных обводов материальных объектов 2.1…2.5 сложной формы не по осям принятой для моделирования системы координат количество выбираемых контрольных точек может соответственно увеличиваться. При моделировании также могут быть применены и типовые операции объединения, вырезания, скашивания, вращения фигур 2.1∗ …2.5∗, предусмотренные в трехмерных графических редакторах.

Для реализации предлагаемого способа в пространстве 1, содержащем материальные объекты 2.1-2.5, выбирают контрольные точки 2.1.1, 2.1.2, 2.1.3, 2.2.1, …2.5.2, 2.5.3, однозначно определяющие расположение габаритных обводов материальных объектов 2.1 …2.5 в сканируемом пространстве.

Поочередно устанавливая датчик пространственного положения в контрольные точки 2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.5.2, 2.5.3, определяют их координаты и воспроизводят на экране монитора вычислительного устройства 7 (Фиг.2).

С помощью трехмерного графического редактора на экране монитора вычислительного устройства 7 изображают трехмерные геометрические фигуры 2.1∗, …2.5∗, отображающие габаритные обводы материальных объектов 2.1 …2.5. При этом совмещают контрольные точки 2.1.1∗, 2.1.2∗, 2.1.3∗, 2.5.1∗, 2.5.2∗, 2.5.3∗ фигур 2.1∗…2.5∗, с воспроизведенными на экране монитора соответствующими им выбранными контрольными точками 2.1.1, 2.1.2, 2.1.3…2.5.1, 2.5.2, 2.5.3 материальных объектов 2.1…2.5 (Фиг.3).

Как вариант (не показано), для определения пространственного распределения напряженности электромагнитного поля геометрические фигуры 2.1∗…2.5∗ предварительно изображают на экране монитора вычислительного устройства 7 с помощью трехмерного графического редактора в произвольном масштабе. С помощью графического редактора трансформируют воспроизведенные на экране монитора геометрические фигуры 2.1∗…2.5∗, совмещая их контрольные точки 2.1.1∗, 2.1.2∗, 2.1.3∗…2.2.1∗, 2.5.2∗, 2.5.3∗ с отображениями воспроизведенных на экране монитора выбранных контрольных точек 2.1.1, 2.1.2, 2.1.3…2.5.1, 2.5.2, 2.5.3.

Датчиками 3 и 4 сканируют пространство, содержащее материальные объекты 2.1...2.5, и ультразвуковыми приемными модулями 5 с модулем управления 6 позиционируют их положение и фиксируют локальные значения напряженности электромагнитного поля в этих положениях.

По текущим координатам датчиков 3 и 4 и соответствующих им значениям напряженности электромагнитного поля вычисляют пространственное распределение этой напряженности, визуальное изображение которого воспроизводят на экране монитора вычислительного устройства 7.

Пространственное распределение напряженности электромагнитного поля определяют воспроизведением его относительно пространственного расположения трехмерных геометрических фигур 2.1∗…2.5∗, отображающих габаритные обводы моделируемых ими материальных объектов 2.1…2.5, совмещая полученные визуальные изображения на экране монитора вычислительного устройства 7 (Фиг.4). При этом математические описания пространственного распределения напряженности электромагнитного поля и геометрических трехмерных фигур 2.1∗…2.5∗ оказываются выраженными в общей системе координат. Общая система координат позволяет использовать полученные математические описания в последующих расчетах, например для оценки электромагнитной совместимости электрооборудования, электромагнитной безопасности, разработки систем компенсации электромагнитных полей и т.п.

В зависимости от эксплуатационных требований и методов математической обработки результатов измерений на мониторе вычислительного устройства 7 могут воспроизводиться и иные формы визуального отображения пространственного распределения напряженности электромагнитного поля. Например, как это принято в области экологических измерений, могут задаваться координаты точек отображения распределения величины напряженности электромагнитного поля на горизонтальных плоскостях, расположенных на высотах 0,5; 1,0 и 1,8 м.

Предложенный способ, за счет возможности моделирования распределения электромагнитного поля в пространстве, прилегающем к электрооборудованию, излучающему электромагнитные поля, позволяет рассчитывать электромагнитную обстановку в пространстве 1 для разработки мероприятий по обеспечению электромагнитной совместимости и по защите персонала от электромагнитных полей. В результате применения способа снижается стоимость и трудоемкость мероприятий по обеспечению электромагнитной совместимости электротехнического и высокочувствительного радиоэлектронного оборудования, а также экологической безопасности жилых, общественных, транспортных и производственных помещений. Использование в предложенном способе векторной графики для математического описания геометрических фигур, отображающих габаритные обводы материальных объектов в пространстве, не требует значительных вычислительных ресурсов.

Способ определения пространственного распределения напряженности электромагнитного поля, при котором датчиком пространственного положения сканируют пространство, содержащее материальные объекты, в том числе электрооборудование, излучающее электромагнитное поле, при этом датчиком напряженности электромагнитного поля, скрепленным с указанным датчиком пространственного положения, фиксируют локальные значения напряженности электромагнитного поля, по текущим координатам датчиков и соответствующим им значениям напряженности электромагнитного поля вычисляют пространственное распределение поля, которое воспроизводят на экране монитора вычислительного устройства, отличающийся тем, что на габаритных обводах материальных объектов, содержащихся в пространстве, выбирают контрольные точки, затем определяют их координаты, поочередно устанавливая датчик пространственного положения в этих контрольных точках, и воспроизводят их на экране монитора вычислительного устройства, после чего на экране монитора вычислительного устройства воспроизводят трехмерные геометрические фигуры, отображающие габаритные обводы материальных объектов с контрольными точками, совмещенными с воспроизведенными на экране монитора выбранными контрольными точками материальных объектов, а пространственное распределение напряженности электромагнитного поля определяют воспроизведением его относительно пространственного расположения трехмерных фигур, отображающих габаритные обводы моделируемых ими материальных объектов.
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ НАПРЯЖЕННОСТИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ НАПРЯЖЕННОСТИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ НАПРЯЖЕННОСТИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ НАПРЯЖЕННОСТИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ
Источник поступления информации: Роспатент

Showing 121-130 of 371 items.
10.05.2015
№216.013.48c6

Смазочная композиция синтетического турбинного масла для паротурбинных установок

Настоящее изобретение относится к смазочной композиции синтетического турбинного масла для паротурбинных установок, которая включает основу, состоящую из смеси базовых компонентов: полиальфаолефинов с вязкостью 5,6-6,1 мм/с при 100°C и триметилолпропанового эфира карбоновых кислот C-C с...
Тип: Изобретение
Номер охранного документа: 0002550137
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a80

Способ создания предварительного напряжения в районе соединения стыкуемых элементов предварительно напряженного железобетонного понтона

Изобретение относится к технологии судостроения, а именно к методам создания предварительного напряжения в районе соединения предварительно напряженных железобетонных элементов на плаву. Предложенный способ создания предварительного напряжения в районе соединения стыкуемых элементов...
Тип: Изобретение
Номер охранного документа: 0002550579
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4ac1

Мягкий реданированный поплавок

Изобретение относится к мягким реданированным поплавкам транспортного средства. Мягкий реданированный поплавок содержит по меньшей мере один редан и по меньшей мере одну пневмооболочку, в которой размещен пневмобаллон. Пневмобаллон оснащен устройством для наполнения газом. Нижняя часть...
Тип: Изобретение
Номер охранного документа: 0002550644
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4b63

Способ управления мотор-генератором

Изобретение относится к области электротехники и может быть использовано в системах управления мотор-генераторными устройствами транспортных средств с двигателями внутреннего сгорания. Техническим результатом является снижение дополнительных (коммутационных) потерь в силовом преобразователе. В...
Тип: Изобретение
Номер охранного документа: 0002550813
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d1d

Винтовой нагнетатель

Изобретение относится к гидравлическим машинам объемного вытеснения с вращающимися рабочими органами, в частности к винтовым роторным нагнетателям. Винтовой нагнетатель содержит корпус 3, имеющий торцевые переднюю, заднюю и боковые стенки 4, 5 и 6, винтовые роторы 1 и 2, окно выпуска,...
Тип: Изобретение
Номер охранного документа: 0002551255
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.50b4

Устройство защиты от контрафакта и фальсификации интегральных схем

Изобретение относится к полупроводниковым микроэлектронным устройствам, а именно - к устройствам защиты от контрафакта и фальсификации интегральных схем (ИС), которые встраиваются в кристалл ИС. Технический результат - проверка подлинности ИС (т.е. ИС является либо подлинной, либо контрафактной...
Тип: Изобретение
Номер охранного документа: 0002552181
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.55bc

Устройство для подвода к двигателю газообразного топлива

Изобретение может быть использовано в двигателях внутреннего сгорания. Предложено устройство для подвода к двигателю газообразного топлива, содержащее трубку 1 для подачи газообразного топлива к впускному клапану 3 цилиндра двигателя, расположенную во впускном канале 4 головки цилиндров....
Тип: Изобретение
Номер охранного документа: 0002553478
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.55bd

Устройство для питания двигателя газообразным топливом

Изобретение может быть использовано в двигателях внутреннего сгорания. Предложено устройство для питания двигателя газообразным топливом, содержащее трубку 1 для подвода газообразного топлива к впускному клапану 3 цилиндра двигателя. Трубка 1 размещена во впускном канале 4 головки цилиндров 5...
Тип: Изобретение
Номер охранного документа: 0002553479
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.55c6

Система охлаждения с отключаемыми радиаторами

Изобретение относится к конструкциям систем охлаждения узлов и агрегатов транспортного средства. Система охлаждения с отключаемыми радиаторами содержит не менее одного охлаждаемого объекта (1), более одного радиатора (4) с вентилятором и более одного насоса (6). Радиаторы и насосы соединены...
Тип: Изобретение
Номер охранного документа: 0002553488
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.55de

Устройство вертостата с одним или двумя несущими винтами

Изобретение относится к области авиации, в частности к воздухоплаванию, а именно к конструкциям аэростатических летательных аппаратов с несущими винтами. Летательный аппарат вертостат содержит оболочку с несущим газом (1), один или два несущих винта (2), кабину для экипажа и пассажиров (3),...
Тип: Изобретение
Номер охранного документа: 0002553512
Дата охранного документа: 20.06.2015
Showing 121-130 of 282 items.
10.12.2014
№216.013.0f7f

Устройство для проведения гидродинамических испытаний в опытовом бассейне моделей быстроходных судов с воздушной каверной

Изобретение относится к области судостроения, более конкретно - к экспериментальной гидромеханике, и касается вопросов проведения экспериментальных исследований в опытовых бассейнах моделей быстроходных судов с воздушными кавернами на днище. Предложена конструкция корпуса модели судна с...
Тип: Изобретение
Номер охранного документа: 0002535384
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1329

Способ утоньшения фоточувствительного слоя матричного фотоприемника

Использование: для изготовления полупроводниковых фотоприемников и для создания многоэлементных фотоприемников различного назначения. Сущность изобретения заключается в том, что фоточувствительный элемент с «толстой» базовой областью утоньшается до нужной толщины (10-15 мкм) прецизионными...
Тип: Изобретение
Номер охранного документа: 0002536328
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1723

Легконагруженный водометный движитель

Изобретение относится к области судостроения и касается разработки легконагруженных водометных движителей. Легконагруженный водометный движитель состоит из рабочего колеса, спрямляющего аппарата, водовода и центрального тела, выступающего вперед и назад из водовода. Водовод представляет собой...
Тип: Изобретение
Номер охранного документа: 0002537351
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1827

Установка очистки хозяйственно-бытовых сточных вод

Изобретение может быть использовано для глубокой очистки бытовых и производственных сточных вод на малогабаритных блокированных установках, в том числе расположенных на нефтегазодобывающих платформах, терминалах и судах. Установка очистки хозяйственно-бытовых сточных вод содержит гидравлически...
Тип: Изобретение
Номер охранного документа: 0002537611
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1858

Способ регулирования двигателя внутреннего сгорания

Изобретение относится к двигателям внутреннего сгорания с газотурбинным наддувом. Техническим результатом является повышение эффективности работы и улучшение топливной экономичности двигателя, снабженного турбокомпрессором, сокращение выбросов оксидов азота. Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002537660
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1967

Трехосный автомобиль с комбинированной энергетической установкой

Изобретение относится к транспортному машиностроению. Трехосный автомобиль с комбинированной энергетической установкой содержит тепловой двигатель, связанный с колесами среднего моста, обратимые электрические машины, трансмиссию и бортовую управляющую систему. Автомобиль выполнен с приводом...
Тип: Изобретение
Номер охранного документа: 0002537931
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.20a5

Способ определения статического дисбаланса заготовок непосредственно на металлорежущем станке

Изобретение относится к области измерений, а именно к процессу определения статического дисбаланса заготовок, и может быть использовано для балансировки заготовок. Способ заключается в следующем. Планшайба станка (поворотный стол станка) с установленной на ней заготовкой устанавливается в...
Тип: Изобретение
Номер охранного документа: 0002539805
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.240f

Лопасть гребного винта судна ледового класса

Изобретение относится к области судостроения, в частности к лопастям гребных винтов судов ледового класса, в том числе и гребных винтов судов ледового класса, работающих в составе винторулевых колонок. Лопасть гребного винта судна ледового класса имеет плавную криволинейную поверхность, а в...
Тип: Изобретение
Номер охранного документа: 0002540684
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26ed

Устройство для измерения и контроля сопротивления изоляции под рабочим напряжением в силовых сетях переменного тока с резистивной нейтралью

Изобретение относится к области электротехники. Устройство содержит резистор, соединенный с нейтралью одним выводом, резистивный датчик тока, источник стабилизированного напряжения постоянного тока, шунтирующий конденсатор C1, RC-фильтр на 50 Гц, блок гальванической развязки, электронный...
Тип: Изобретение
Номер охранного документа: 0002541418
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2819

Система диагностики устойчивости комплекса радиоэлектронных приборов к преднамеренным силовым электромагнитным воздействиям

Изобретение относится к электроизмерительной области техники и может быть использовано для диагностики устойчивости оборудования к воздействию преднамеренных силовых электромагнитных воздействий (ПД ЭМВ). В систему диагностики, содержащую генератор испытательных помех с полеобразующей системой...
Тип: Изобретение
Номер охранного документа: 0002541722
Дата охранного документа: 20.02.2015
+ добавить свой РИД