×
27.01.2015
216.013.2032

Результат интеллектуальной деятельности: СПОСОБ БЕССЕНСОРНОГО УПРАВЛЕНИЯ ПОЛОЖЕНИЕМ РОТОРА В БЕСКОНТАКТНЫХ ПОДШИПНИКАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области энергомашиностроения, в частности к электромеханическим преобразователям энергии на бесконтактных подшипниках. Технический результат заключается в повышении точности управления и повышении надежности электрической машины с ротором на бесконтактных подшипниках. Способ бессенсорного управления положением ротора заключается в том, что измеряют электродвижущую силу каждой фазы электрической машины и раскладывают ее на гармонические составляющие, измеряют выходное напряжение машины и представляют его в двухфазной системе координат, в которой рассчитывают эквивалентные токи, измеряют скорость вращения ротора, и по изменению первой, третьей, девятой и сорок третьей гармоники электродвижущей силы судят о пространственном положении ротора, а по изменению напряжений, частоты вращения и эквивалентных токов в двухфазной системе координат судят об угловой координате ротора. Информация об изменении пространственного положения ротора и угловой координате поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области энергомашиностроения, в частности к электромеханическим преобразователям энергии на бесконтактных подшипниках.

Известен механизм с магнитным подвесом ротора (а.с. СССР №1569932, H02K 7/09, 1990 г.), в котором каждый канал системы содержит датчик положения ротора, пропорционально-интегрально-дифферснциальный регулятор, силовой преобразователь и два электромагнита.

Недостатком данной конструкции является сложность ее технической реализации и невысокая надежность, вызванная тем, что в данной системе применяются датчики перемещения ротора, которые необходимо устанавливать внутри корпуса электромеханического преобразователя энергии.

Известна конструкция системы управления магнитным подшипником (патент РФ №2181922 C2, H02P 6/16, H02K 7/09, H02K 29/06, 2002.04.27), каждый канал управления которой содержит датчик положения ротора, силовой преобразователь, два электромагнита, причем обмотки электромагнитов подключены к силовому преобразователю, каждый канал которого снабжен интегральным регулятором и форсирующим регулятором второго порядка, причем выход интегрального регулятора соединен с прямым входом форсирующего регулятора второго порядка, выход которого соединен со входом силового преобразователя, а выход датчика положения ротора соединен с инверсными входами обоих регуляторов.

Недостатком данной конструкции является сложность ее технической реализации и невысокая надежность, вызванная тем, что в данной системе применяются датчики перемещения ротора.

Известна конструкция магнитного подшипника (патент РФ №2246644 C1, F16C 32/04, 2005.02.20), в которой модуль управления содержит формирователь вектора радиального перемещения ротора, соединенный выходом через блок динамической обработки сигнала радиального отклонения со входом формирователя управляющих токов в обмотках управления радиальной опоры, который выходами подключен ко входам соответствующих усилителей мощности канала стабилизации радиального положения ротора, выходы которых являются первыми управляющими выходами модуля управления, блок контроля процесса управления, выполненный с возможностью передачи управляющей информации в систему автоматического управления машины, выпрямитель напряжения выходами соединен через емкостный фильтр с входами регулятора напряжения и источника вторичного электропитания, выполненного с возможностью подключения к выводам электропитания всех блоков модуля управления, причем один из выходов емкостного фильтра и выход регулятора напряжения являются третьими управляющими выходами модуля управления, при этом входы формирователя вектора радиального перемещения ротора являются первыми информационными входами модуля управления, а формирователь управляющих токов в обмотках управления радиальной опоры выполнен с возможностью реализации векторной стабилизации ротора по осям в радиальных направлениях.

Недостатком данной конструкции также является сложность ее технической реализации и невысокая надежность, вызванная тем, что в данной системе применяются датчики перемещения ротора, которые необходимо устанавливать внутри корпуса электромеханического преобразователя энергии.

Известен способ управления неустойчивостью в гидродинамических подшипниках (патент РФ №2399803, F16C 17/02, 08.06.2005), по которому управления неустойчивостью гидродинамических подшипников, включающих гидродинамические подшипники, используемые в узлах высокоскоростных роторов или валов, включающий использование магнитного подшипника в комбинации с гидродинамическим подшипником, причем гидродинамический подшипник используют в качестве подшипника, воспринимающего основную нагрузку, а магнитный подшипник используют в качестве средства управления неустойчивостью в гидродинамическом подшипнике.

Недостатком такого способа является сложность его технической реализации и невысокая надежность, вызванная тем, что в данной системе применяются датчики перемещения ротора, которые необходимо устанавливать внутри корпуса электромеханического преобразователя энергии.

Известен способ управления ротором в активных магнитных подшипниках (Журавлев Ю.Н. «Активные магнитные подшипники: Теория, расчет, применение» - СПб.: Политехника, 2003. - 206 с.: ил., стр.98), по которому измеряют электрическую величину - ток в обмотки электромагнита активного магнитного подшипника, электрически соединенного с регулятором и силовым преобразователем и по величине тока судят о положении ротора и управляют им.

Недостатком данного способа является невозможность контроля положения ротора при всех типах бесконтактных подшипников, и сложность технической реализации, связанная со значительным количеством информационных каналов, а также невозможность применения данного способа во всех типах гибридных магнитных подшипников (например, в комбинации газовых или гидростатических с магнитными подшипниками на постоянных магнитах).

Наиболее близким к заявляемому по технической сущности и достигаемому результату относится способ бессенсорного управления активными магнитными подшипниками (патент US 5696412 A, H02K 7/09, 20.10.1993), по которому управляющие электромагниты, электрически соединенные с регулятором и силовым преобразователем, помещают коаксиально в упорядоченном массиве, окружающем ротор, и измеряют электрическую величину на их зажимах, в качестве которой выступает падение напряжения, путем сравнения абсолютной величины падения напряжения двух противоположных электромагнитов судят о величине смещения, исходя из которой рассчитывается величина управляющего тока.

Недостатком данного способа является сложность его технической реализации, связанная со значительным количеством информационных каналов и электромагнитов, а также ограниченные функциональные возможности, обусловленные невозможностью применения данного способа во всех типах гибридных магнитных подшипников (например, в комбинации газовых или гидростатических с магнитными подшипниками на постоянных магнитах) и отсутствием возможности измерения угловой координаты.

Задача изобретения - расширение функциональных возможностей, благодаря возможности контроля положения ротора при всех типах бесконтактных подшипников и возможности измерения угловой координаты ротора, повышение надежности электрической машины с ротором на бесконтактных подшипниках, благодаря управлению положением ротора без датчиков, только по параметрам электрической машины, повышение точности контроля и управления, а также упрощение технической реализации, благодаря минимизации количества информационных каналов.

Техническим результатом является повышение точности управления и повышение надежности электрической машины с ротором на бесконтактных подшипниках, а также возможность применения во всех типах гибридных магнитных подшипников.

Поставленная задача решается и указанный результат достигается тем, что в способе бессенсорного управления положением ротора в бесконтактных подшипниках, заключающемся в измерении электрической величины, согласно изобретению, измеряют электродвижущую силу каждой фазы электрической машины и раскладывают ее на гармонические составляющие, измеряют выходное напряжение электрической машины и представляют его в двухфазной системе координат, в которой рассчитывают эквивалентные токи, измеряют скорость вращения ротора, и по изменению первой, третьей, девятой и сорок третьей гармоники электродвижущей силы судят о пространственном положении ротора, а по изменению напряжений, частоты вращения и эквивалентных токов в двухфазной системе координат судят об угловой координате ротора, при этом информация об изменении пространственного положения ротора и угловой координате поступает в регулятор и силовой преобразователь, которые регулируют величину воздействия управляющих элементов.

Кроме того, согласно изобретению, управляющие элементы могут быть выполнены в виде электромагнитов.

Также, согласно изобретению, управляющие элементы могут быть выполнены в виде газовых подшипников.

Также, согласно изобретению, управляющие элементы могут быть выполнены в виде гидродинамических подшипников.

Существо изобретения поясняется чертежами. На фиг.1 изображена расчетная схема электрической машины при смещении ротора. На фиг.2 изображен баланс сил, действующих на ротор на магнитных подшипниках (на фиг.2: R1 - сила реакции первого подшипника, R2 - сила реакции второго подшипника, Fm - сила тяжести, Fц - центробежная сила).

Пример конкретной реализации способа.

Изменение воздушного зазора в электрической машине на бесконтактных подшипниках представляется в виде:

где δ - рабочий воздушный зазор;

δn - номинальный воздушный зазор;

x, y - пространственные координаты ротора (величина смещения ротора по осям x и y);

α - угловая координата ротора (угол поворота ротора).

Зависимость пространственных координат ротора от изменения гармоник описывается выражением:

k1, k2, k3, k4 - коэффициенты аппроксимирующего полинома;

Δν - величина отклонения гармоники ЭДС относительно симметричного режима.

При этом угловая координата (угол поворота ротора) в выражении (2) определяется из системы уравнений:

LS, R - индуктивность и активное сопротивление фазы;

iq, id - эквивалентные токи в двухфазной системе координат;

Uq, Ud - напряжения в двухфазной системе координат;

Ф - магнитный поток в рабочем зазоре электрической машины;

ω - угловая скорость ротора.

Тогда, при смещении ротора на 25% от номинального положения под действием центробежных сил (фиг.2), например, в высокоскоростном трехфазном магнитоэлектрическом генераторе на магнитных подшипниках возникают колебания ротора, при этом измеряется кривая электродвижущей силы для фаз A, B, C, которая раскладывается на гармонические составляющие, и анализируются первая, третья, девятая, сорок третья гармонические составляющие, так как на данные гармоники смещение ротора оказывает наибольшее влияние. Полученные значения для первой, третьей, девятой, сорок третьей гармоники электродвижущей силы поступают, например, в микропроцессор Arduino, где они сравниваются со значениями симметричного режима, занесенными ранее в память микропроцессора, и если измеренные значения первой, третьей, девятой, сорок третьей гармонических составляющих электродвижущей силы отличаются от занесенных в память микропроцессора значений симметричного режима, то определяется величина отклонения первой, третьей, девятой, сорок третьей гармоники электродвижущей силы относительно симметричного режима и по отклонению судят о положении ротора в пространстве, так для фазы A, B, C высокоскоростного трехфазного магнитоэлектрического генератора на магнитных, газовых или гидродинамических подшипниках значения первой, третьей, девятой, сорок третьей гармоник ЭДС симметричного режима составляют соответственно 117,5 В, 117,55 В, 117,55 В, 7,46 В, 7,524 В, 7,351 В, 3,36 В, 3,335 В, 3,299 В, 7,22 В, 7,285 В, 7,379 В, а измеренные соответственно 120,63 В, 120,58 В, 120,63 В, 7,664 В, 7,649 В, 7,533 В, 3,47 В, 3,451 В, 3,423 В, 7,776 В, 7,803 В, 7,820 В. Угловая координата ротора, определяемая по измеряемому напряжению в двухфазных координатах, частоте вращения и рассчитанному эквивалентному току в двухфазных координатах составляет 25 градусов. Полученные пространственные и угловая координаты ротора поступают в регулятор, изготовленный, например, на микросхеме КР140УД708, транзисторах КТ829, КТ315Г, КТ852, где рассчитывается управляющая величина, которую необходимо подать на управляющие элементы, которыми могу быть электромагниты, газовые или гидродинамические подшипники. Как следствие, посредством силового преобразователя увеличивается воздействие управляющих элементов на ротор высокоскоростного магнитоэлектрического генератора, который под действием силы управляющих элементов возвращается в исходное номинальное положение, и высокоскоростной трехфазный магнитоэлектрический генератор на магнитных, газовых или гидродинамических подшипниках эксплуатируется в нормальном режиме работы.

Таким образом, осуществляется бессенсорное управление положением ротора в бесконтактных подшипниках.

Итак, заявляемое изобретение позволяет расширить функциональные возможности, благодаря возможности контроля положения ротора при всех типах бесконтактных подшипников и возможности измерения угловой координаты ротора, повысить надежность электрической машины с ротором на бесконтактных подшипниках, благодаря управлению положением ротора без датчиков, только по параметрам электрической машины, повысить точность контроля и управления, а также упростить техническую реализацию, благодаря минимизации количества информационных каналов.

В результате повышается точность управления и надежность электрической машины с ротором на бесконтактных подшипниках, а также появляется возможность применения во всех типах гибридных магнитных подшипников.


СПОСОБ БЕССЕНСОРНОГО УПРАВЛЕНИЯ ПОЛОЖЕНИЕМ РОТОРА В БЕСКОНТАКТНЫХ ПОДШИПНИКАХ
СПОСОБ БЕССЕНСОРНОГО УПРАВЛЕНИЯ ПОЛОЖЕНИЕМ РОТОРА В БЕСКОНТАКТНЫХ ПОДШИПНИКАХ
Источник поступления информации: Роспатент

Showing 101-110 of 141 items.
27.04.2016
№216.015.379b

Система защиты магнитоэлектрического генератора от короткого замыкания и способ управления системой

Изобретение используется в области электротехники и электромашиностроения. Технический результат: повышение эксплуатационного ресурса обмотки статора, повышение надежности и пожаробезопасности магнитоэлектрического генератора при его минимальных массогабаритных показателях. Система защиты...
Тип: Изобретение
Номер охранного документа: 0002582593
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.37dc

Охлаждаемая рабочая перфорированная лопатка турбины

Охлаждаемая рабочая перфорированная лопатка турбины содержит перфорированную оболочку с охлаждающими отверстиями малого диаметра изогнутой формы. Средняя линия каждого из охлаждающих отверстий расположена в плоскости вдоль пера лопатки и нормальной к поверхности обвода профиля лопатки....
Тип: Изобретение
Номер охранного документа: 0002582539
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b7c

Электростатический сепаратор

Изобретение относится к системам очистки воздуха с использованием электрического поля для поляризации частиц и материала и может использоваться в системах отопления, вентиляции и кондиционирования воздуха, автономных блоках фильтров или вентиляторах, а также в промышленных системах очистки...
Тип: Изобретение
Номер охранного документа: 0002583844
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cae

Интегрированный высокотемпературный стартер-генератор и способ управления им

Изобретение относится к электротехнике, а именно к устройствам запуска авиационного двигателя и электроснабжения бортовой системы самолета. Стартер-генератор, вал ротора которого выполнен единым с валом газотурбинного двигателя, причем на валу установлены постоянные магниты с чередующимися...
Тип: Изобретение
Номер охранного документа: 0002583837
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3ec1

Способ калибровки магнитострикционных преобразователей линейных перемещений и устройство его реализации

Изобретение относится к измерительной технике и может быть применено в системах измерения линейного перемещения в заявленном устройстве и способе, реализующем указанное устройство. Сущность изобретения заключается в том, что проводят калибровку, при которой перемещают лазерный излучатель,...
Тип: Изобретение
Номер охранного документа: 0002584577
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.412b

Акселерометр-тахогенератор

Изобретение относится к электрическим микромашинам, а именно к датчикам угловых ускорений (акселерометрам), предназначенным для измерения угловых ускорений контролируемых валов в устройствах автоматики и вычислительной техники. Сущность изобретения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002584576
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.440d

Способ защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты пера лопаток компрессора от эрозии и солевой коррозии при температурах эксплуатации до 800°C. Подготавливают поверхности пера лопатки под нанесение...
Тип: Изобретение
Номер охранного документа: 0002585599
Дата охранного документа: 27.05.2016
13.01.2017
№217.015.744a

Магнитоэлектрический генератор и способ стабилизации его выходного напряжения

Изобретение относится к области электротехники и может быть использовано в магнитоэлектрических генераторах автономных систем электроснабжения. Технический результат: обеспечение возможности управления и стабилизации напряжения магнитоэлектрического генератора. На роторе генератора расположены...
Тип: Изобретение
Номер охранного документа: 0002597888
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.78ad

Ткань с электромагнитным нагревом

Изобретение относится к конструированию специальных видов ткани и может быть использовано в производстве одежды и аксессуаров для экстремальных условий, характеризующихся низкими значениями температуры окружающей среды. Технический результат изобретения - автономность работы ткани с...
Тип: Изобретение
Номер охранного документа: 0002599003
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.78b3

Способ ионно-плазменного нанесения многослойного покрытия на изделия из алюминиевых сплавов

Изобретение относится к области машиностроения, в частности к технологии упрочнения и повышения износостойкости лопаток компрессоров газотурбинных двигателей. Способ ионно-плазменного нанесения многослойного покрытия на изделия из алюминиевых сплавов включает предварительную полировку и очистку...
Тип: Изобретение
Номер охранного документа: 0002599073
Дата охранного документа: 10.10.2016
Showing 101-110 of 191 items.
27.12.2016
№216.013.9da2

Способ настройки многоцелевого станка для пятикоординатной обработки

Изобретение относится к станкостроению и может быть использовано в многоцелевых станках, используемых для многокоординатной обработки. Способ заключается в том, что определяют координаты осей вращения рабочих органов станка, для чего осуществляют измерение координат произвольных точек...
Тип: Изобретение
Номер охранного документа: 0002571984
Дата охранного документа: 27.12.2015
27.12.2016
№216.013.9dab

Способ деформационно-термической обработки объемных полуфабрикатов из al-cu-mg сплавов

Изобретение относится к области металлургии, в частности к термически упрочняемым сплавам на основе алюминия, а именно к способу деформационно-термической обработки высокопрочных сплавов системы Al-Cu-Mg, используемых в качестве конструкционных материалов для деталей авиакосмической техники и...
Тип: Изобретение
Номер охранного документа: 0002571993
Дата охранного документа: 27.12.2015
10.02.2016
№216.014.c32f

Способ линейной сварки трением

Изобретение может быть использовано при сварке блисков. На диске и лопатке формируют выступы с поверхностями контакта при сварке трением с необходимым технологическим припуском Р на периферии свариваемых деталей. Приводят лопатку в линейное колебание относительно диска в заданном направлении...
Тип: Изобретение
Номер охранного документа: 0002574566
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c49c

Многосекционный синхронный двигатель

Изобретение относится к области электротехники, а именно к бесконтактным электродвигателям с возбуждением от постоянных магнитов, и может быть использовано в качестве погружного электродвигателя. Технический результат: повышение прочности конструкции многосекционного синхронного двигателя....
Тип: Изобретение
Номер охранного документа: 0002574609
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c7e4

Устройство для чистки ствола орудия (варианты)

Группа изобретений относится к устройствам для обслуживания ствола орудия, а именно к устройствам для чистки ствола. Устройство содержит электродвигатель и планетарный редуктор, размещенные внутри чистящего ерша. Устройство также включает в себя энкодер, связанный с системой управления....
Тип: Изобретение
Номер охранного документа: 0002578919
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c977

Ротор электромеханического преобразователя энергии с постоянными магнитами (варианты)

Изобретение относится к энергомашиностроению и может быть использовано в электрических генераторах с постоянными магнитами. Технический результат: повышение синусоидальности кривой магнитной индукции в воздушном зазоре и снижение омических потерь в электрической машине от высших гармоник, а...
Тип: Изобретение
Номер охранного документа: 0002578131
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.2ff1

Датчик скорости изменения ускорения

Изобретение относится к информационно-измерительной технике и вибрационной технике и предназначено для использования в приборостроении и машиностроении. Датчик скорости изменения ускорения содержит ротор с постоянными магнитами, статор с магнитопроводом, измерительную обмотку, при этом...
Тип: Изобретение
Номер охранного документа: 0002580212
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3327

Устройство наблюдения за распределением тепловых потоков в днище поршня для оценки эффективности теплозащитных покрытий на нем

Изобретение относится к устройствам, предназначенным для теплофизических исследований теплозащитных покрытий на днище поршня и наблюдения за распределением тепловых потоков в днище поршня по скорости повышения температуры его внутренней поверхности при нагреве с внешней стороны, и может быть...
Тип: Изобретение
Номер охранного документа: 0002582153
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.342d

Способ раскрутки-торможения колес шасси

Изобретение относится к системам привода шасси и касается предварительной раскрутки колес шасси при посадке и торможения после посадки. Перед посадкой каждое колесо шасси вращают с окружной скоростью, равной скорости самолета, с помощью установленных на них электрических машин, которые питают...
Тип: Изобретение
Номер охранного документа: 0002581996
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.34c4

Термоэмиссионный магнитопровод статора

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов. Технический результат - повышение энергоэффективности, преобразование тепловых потерь в повышение КПД ЭМПЭ на 1-2%. Термоэмиссионный магнитопровод...
Тип: Изобретение
Номер охранного документа: 0002581606
Дата охранного документа: 20.04.2016
+ добавить свой РИД