×
10.01.2015
216.013.1dca

Результат интеллектуальной деятельности: САМОВОССТАНАВЛИВАЮЩИЕСЯ ЦЕМЕНТЫ

Вид РИД

Изобретение

№ охранного документа
0002539054
Дата охранного документа
10.01.2015
Аннотация: Изобретение относится к способу сохранения разобщения пластов в подземной скважине, в которой ствол скважины пересекает один или большее число пластов, содержащих углеводороды, включающему: (i) накачивание цементного раствора, содержащего термопластичные блок-сополимерные частицы, в скважину, причем блок-сополимер имеет структуру (A-b-B-b-A), где A представляет собой стеклообразный или полукристаллический блок, а B является эластомерным блоком; и (ii) предоставление цементному раствору возможность затвердеть, чтобы сформировать цементное кольцо. При этом появление микрозазоров, трещин или дефектов в цементном кольце позволяет углеводородам из продуктивного пласта вступать в контакт с частицами, позволяя частицам набухать, и позволяет цементному кольцу обладать свойствами самовосстановления. Изобретение также относится к применению указанных термопластичных блок-сополимерных частиц, для придания свойств самоизлечивания рецептуре цемента, который укладывается в подземной скважине, пересекающей один или большее число пластов, содержащих углеводороды, где после затвердевания цемент образует цементное кольцо, в котором частицы набухают при контакте с углеводородами из продуктивного пласта. Изобретение развито в зависимых пунктах формулы изобретения. 2 н. и 12 з.п. ф-лы, 5 ил., 10 табл., 5 пр.,

Область изобретения

[1] Настоящее раскрытие изобретения относится к самоадаптирующимся цементам. В частности, оно относится к затвердевшим цементам, которые «самозалечиваются», т.е. к рецептурам, которые могут адаптироваться для того, чтобы компенсировать изменения или дефекты в физической структуре цемента, или которые адаптируют свою структуру после фазы затвердевания цемента при цементировании нефтяных, газовых, водяных или геотермальных скважин, или тому подобного.

Уровень техники

[2] В процессе строительства скважин цемент используется в качестве крепления и опоры обсадной трубы внутри скважины и для предотвращения движения флюидов между различными подземными слоями, содержащими флюиды, или попадания в скважину нежелательных флюидов.

[3] Для предотвращения разрушения цементных колец были разработаны различные методы. Один из методов состоит в том, чтобы сконструировать цементное кольцо с учетом физических нагрузок, которые могут иметь место в течение срока его эксплуатации. Такой метод описан, например, в US 6296057. Другой метод состоит в том, чтобы включить в состав цемента материалы, которые улучшают физические свойства затвердевшего цемента. US 6458198 описывает добавление в цементный раствор аморфных металлических волокон для улучшения его прочности и сопротивления повреждению при ударной нагрузке. EP 1129047 и WO 00/37387 описывают добавление в цемент эластичных материалов (резины или полимеров), чтобы обеспечить определенную степень гибкости на цементном кольце.

[4] Тем не менее, описанные выше методы не обеспечивают восстановления разобщения пластов, как только цементное кольцо действительно выйдет из строя за счет образования трещин или микрозазоров.

[5] Известны несколько самозалечивающихся бетонов для использования в строительной промышленности. Они описаны, например, в US 5575841, US 5660624, US 5989334, US 6261360 и US 6527849, и в документе, озаглавленном “Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability”, Dry, С. М., Cement and Concrete Research 30 (2000) 1969-1977.

[6] Тем не менее, ни один из таких самозалечивающихся бетонов не может быть непосредственно применим к операциям цементирования скважин вследствие необходимости наличия способности материала к перекачке при его укладке.

[7] В конечном итоге были разработаны «самозалечивающиеся» цементы для нефтегазовой промышленности, такие как описанные в US 2007/0204765 A1, WO 2004/101951 и WO 2004/101952 A1. Такие составы, в общем случае, содержат присадки, которые реагируют и/или набухают при контакте с флюидами в забое скважины. Когда происходит повреждение цементного кольца, открывающее цементную матрицу или поверхности цементного кольца для воздействия пластовых флюидов, присадки реагируют и уплотняют трещины или разрывы, восстанавливая, таким образом, целостность цементной матрицы и разобщение пластов. Цементы скважины в процессе эксплуатации потенциально подвержены воздействию нескольких типов флюидов, включая жидкие и газообразные углеводороды, воду, соляные растворы и/или углекислый газ. Поэтому в зависимости от предполагаемой окружающей скважину среды было бы желательно использовать присадки, которые способны реагировать на воздействие одного или большего числа типов пластовых флюидов.

[8] Несмотря на большое число ценных работ в рассматриваемой области техники было бы желательным получить доступ к самозалечивающемуся затвердевшему цементу, который реагирует на пластовые флюиды, содержащие высокие концентрации газообразных углеводородов.

Сущность изобретения

[9] Настоящее раскрытие изобретения предлагает затвердевшие цементы, которые самозалечиваются, когда подвергаются воздействию углеводородов, и способы, с помощью которых они могут быть приготовлены и применены в подземных скважинах.

[10] В одном из аспектов варианты осуществления изобретения относятся к способам для сохранения разобщения пластов в подземной скважине, которая пересекает один или большее число пластов, содержащих углеводороды.

[11] В следующем аспекте варианты осуществления изобретения относятся к применениям термопластичных блок-полимерных частиц для придания свойств самозалечивания цементному составу, который помещен в подземную скважину, пересекающую один или большее число продуктивных пластов, содержащих углеводороды.

Описание чертежей

[12] Фиг.1 - это диаграмма, показывающая характеристики набухания стирол-изопрен-стирольных (СИС) и стирол-бутадиен-стирольных СБС) частиц в присутствии метана при различных температурах и давлениях.

[13] Фиг.2 - это схематическое представление экспериментального устройства для измерения способности самовосстановления образцов цемента с трещинами.

[14] Фиг.3 представляет снижения нормированной скорости потока для затвердевших цементов, содержащих частицы СИС и СБС, подвергнутых воздействию метана.

[15] Фиг.4 представляет влияние плотности раствора на снижения нормированной скорости потока для схватившихся цементов, содержащих частицы СИС и СБС, подвергнутых воздействию метана.

[16] Фиг.5 представляет снижения нормированной скорости потока для схватившихся цементов, содержащих частицы СИС и СБС, подвергнутых воздействию метана при различных давлениях.

Подробное описание изобретения

[17] Вначале следует отметить, что при разработке любого фактического варианта осуществления изобретения должны быть выполнены многочисленные внедрения - конкретные решения для достижения конкретных целей разработчика, таких как соблюдение связанных с системой и связанных с бизнесом ограничений, которые будут изменяться от одного внедрения к другому. Более того, следует признать, что такая опытно-конструкторская разработка может быть комплексной и продолжительной, но, тем не менее, окажется обычным делом для средних специалистов в рассматриваемой области техники, обладающих преимуществами данного раскрытия изобретения. Кроме того, используемый/раскрытый здесь состав также может включать и некоторые другие компоненты, отличающиеся от упомянутых. В описании сущности изобретения и в данном подробном описании каждое численное значение следует вначале истолковывать как измененное термином «приблизительно» (если только оно уже специально не изменено подобным образом), а затем еще раз истолковывать уже как не измененное подобным образом, если иное не указано в контексте. Также в описании сущности изобретения и в данном подробном описании следует понимать, что диапазон концентрации, указанный или описанный как применимый, подходящий или тому подобное, предполагает, что любая и всякая концентрация в пределах диапазона, включая конечные точки, должна рассматриваться как уже заявленная. Например, «диапазон от 1 до 10» должен пониматься как указывающий все без исключения числа в континууме между приблизительно 1 и приблизительно 10. Поэтому даже если явно идентифицированы конкретные точки данных или даже никакие из точек данных в пределах диапазона, или же содержится ссылка только на несколько конкретных точек, должно быть понятно, что авторы изобретения признают и понимают, что все точки данных в пределах диапазона должны рассматриваться как указанные, и что авторы изобретения обладают данными в отношении всего диапазона и всех точек в пределах диапазона.

[18] Данное раскрытие изобретения относится к составам для цементирования подземных скважин, включающим затвердевающий материал, воду и, по меньшей мере, одну присадку, которая набухает в случае структурного разрушения или повреждения затвердевающего материала (т.е. цементного кольца). Такое поведение восстанавливает и сохраняет физический и гидравлический барьер в зоне разрушения. В результате сохраняется разобщение пластов в подземной скважине. Такие затвердевающие цементы называются «самозалечивающимися» или «самовосстанавливающимися». В этом применении оба термина используются равнозначно и должны пониматься как способность цементного кольца восстанавливать гидравлическую изоляцию в случае увеличения проницаемости матрицы, структурных дефектов, таких как трещины или разрывы, или отделения от обсадной трубы или поверхностей продуктивного пласта (т.е. микрозазоров).

[19] Примеры затвердевающих материалов включают (не ограничиваясь перечисленным) портландцемент, микроцемент, геополимеры, смеси цемента и геополимера, гипс, смеси извести и кремния, смолы, фосфорно-магниевые цементы или химически связанные фосфатные керамики (ХСФК).

[20] Как указывалось выше, существует потребность в самоизлечивающихся затвердевших цементах, которые используются в условиях окружающей среды, содержащих высокие концентрации газообразных углеводородов, в частности метана. Как ни странно, авторы изобретения обнаружили, что свойства самоизлечивания могут быть получены в этой окружающей среде путем включения в состав цемента термопластичных блок-сополимерных частиц. Типичные блок-сополимеры включают чередующиеся секции одного химического соединения, разделенные секциями другого химического соединения, или связующей группой низкого молекулярного веса. Например, блок-сополимеры могут иметь структуру (A-b-B-b-A), где A представляет стеклообразный или полукристаллический блок, а В - это эластомерный блок. В принципе, A может быть любым полимером, который обычно рассматривается как термопластичный (например, полистирол, полиметилметакрилат, изотактический полипропилен, полиуретан и т.д.), а В может быть любым полимером, который обычно рассматривается как эластомерный (например, полиизопрен, полибутадиен, полимеры простого эфира, сложные полиэфиры и т.д.).

[21] Последующие варианты осуществления изобретения относятся к способам для сохранения разобщения пластов в подземной скважине, содержащей ствол скважины, которая пересекает один или большее число продуктивных пластов, содержащих углеводороды. Способ включает накачивание цементного раствора, включающего термопластичные блок-сополимерные частицы, в скважину, и предоставление цементному раствору возможности сформировать цементное кольцо. Специалисты в рассматриваемой области техники согласятся с тем, что цементный раствор, в общем случае, считается поддающимся перекачиванию насосом, если его вязкость меньше или равна 1000 мП при скорости сдвига 100 с-1 во всем температурном диапазоне, воздействующем на раствор во время размещения в скважине. Цементное кольцо может быть расположено между обсадной трубой скважины и стенкой ствола скважины или между обсадной трубой и другой обсадной колонной. Если микрозазоры, трещины или дефекты в цементном кольце, на поверхности раздела обсадная колонна-цемент или на поверхности раздела цемент-стенка ствола скважины, то частицы будут подвержены воздействию углеводородов продуктивного пласта, что заставит их набухать и позволит цементному кольцу обладать свойствами самозалечивания.

[22] Также дальнейшие варианты осуществления изобретения нацелены на использования термопластичных блок-сополимерных частиц, чтобы придать свойства самозалечивания затвердевшему цементному кольцу в подземной скважине, которая пересекает один или большее число продуктивных пластов, содержащих углеводороды. Частицы набухают при контакте с углеводородами из продуктивного пласта, в частности с газообразными углеводородами.

[23] Для всех аспектов предел прочности на разрыв блок-сополимера может изменяться в пределах между (не ограничиваясь перечисленным) приблизительно 1,5 МПа и 40 МПа, предпочтительно между 3,4 и 34 МПа. Еще более предпочтительный предел прочности может располагаться в пределах между 2 МПа и 3,45 МПа или между 28 МПа и 34 МПа.

[24] Предпочтительные термопластичные блок-сополимеры включают стирол-изопрен-стирол (СИС), стирол-бутадиен-стирол (СБС) и их смеси. Блок-сополимерная присадка может находиться в одной или в большем числе форм, включая (не ограничиваясь перечисленным) сферическую, яйцевидную, волокнистую, лентообразную и форму ячейки.

[25] Концентрация блок-сополимерных частиц, преимущественно, составляет приблизительно от 10% до 55% по объему твердых веществ в цементном растворе, и также известна как процент от объема готовой смеси (ПОГС). Наиболее предпочтительная концентрация находится в пределах приблизительно от 20% до 50% ПОГС. Диапазон размера частиц предпочтительно находится между приблизительно 100 мкм и 900 мкм, и более предпочтительно между приблизительно 200 мкм и 800 мкм.

[26] Одной из существующих в настоящее время проблем, с которой сталкивается добывающая промышленность, является присутствие в некоторых скважинах высокой концентрации газообразных углеводородов, таких как метан, пропан и/или этан. Такие газообразные углеводороды, будучи значительно более неустойчивыми, чем углеводороды в жидком виде, имеют тенденцию проникать в разрывы и/или микрозазоры, которые могут присутствовать в цементном кольце и, таким образом, изменять давление и условия безопасности скважины, поскольку целостность уменьшается. Авторы изобретения определили, что представленные рецептуры могут решить эту проблему вплоть до очень высокой концентрации газообразных углеводородов. В предпочтительном варианте осуществления изобретения газообразные концентрации углеводородного флюида больше, чем приблизительно 91 молекулярный процент, и более предпочтительно больше приблизительно 95 молекулярных процентов. Кроме того, давление углеводорода, которому подвергается цементное кольцо, предпочтительно выше приблизительно 3,5 МПа, более предпочтительно выше приблизительно 6,9 МПа и наиболее предпочтительно выше приблизительно 13,7 МПа.

[27] Блок-сополимерные частицы также могут быть герметизированы с помощью защитного слоя. Слой может разрываться или разрушаться при воздействии одного или большего числа пусковых факторов, включая (не ограничиваясь перечисленным) контакт с углеводородом, распространение трещины внутри матрицы затвердевшего цемента, время и/или температуру.

[28] В дополнение к блок-сополимерным частицам цементные растворы также могут включать общеупотребительные присадки, такие как ингибиторы, ускорители, наполнители, присадки для регулирования водоотдачи, добавки для борьбы с поглощением бурового раствора, присадки от миграции газа и антипенные агенты. Кроме того, цементные растворы могут содержать присадки, которые улучшают упругость и прочность затвердевшего цемента. Такие присадки включают (не ограничиваясь перечисленным) частицы, имеющие модуль Юнга ниже приблизительно 5000 МПа и коэффициент Пуассона выше приблизительно 0,3. Предпочтительно такие частицы должны иметь модули Юнга ниже приблизительно 2000 МПа. Примеры включают (не ограничиваясь перечисленным) полипропилен, полиэтилен, бутадиен-акрилонитрил, бутадиен-стирол и полиамид. Такие присадки также могут включать волокна, выбранные из перечня, включающего полиамид, полиэтилен и поливиниловый спирт. Также может быть включена металлическая микролента.

[29] Блок-сополимерные частицы также могут использоваться в рецептурах цементов со специально рассчитанными размерами частиц, включающих смеси трех или четырех видов малых, средних и крупных частиц. Такие рецептуры приведены в качестве примеров в US 5518996 и/или CA 2117276.

[30] Блок-сополимерные частицы также могут соединяться с одним или большим числом компаундов из списка, включающего водную обратную эмульсию полимера, включающую группу бетаинов, поли-2,2,1-бициклогептен (полинорборнен), алкилстирол, сшитые замещенные винилакрилатные сополимеры, диатомовую землю, натуральный каучук, вулканизированный каучук, полиизопреновый каучук, винилацетатный каучук, хлоропреновый каучук, бутадиен-акрилонитрильный каучук, бутадиен-акрилонитрильный гидрокаучук, этиленпропилендиеновый мономер, каучук на основе этиленпропиленового мономера, бутадиенстирольный каучук, стирольный/пропиленовый/диеновый мономер, бромированный поли(изобутилен-со-4-метилстирол), бутилкаучук, хлорсульфированные полиэтилены, полиакрилатный каучук, полиуретан, силиконовый каучук, бромбутилкаучук, хлорбутилкаучук, хлорированный полиэтилен, эпихлоргидриновый этиленоксидный сополимер, этиленакрилатный каучук, этиленпропилендиеновый терполимерный каучук, сульфированный полиэтилен, фторокремнийорганические каучуки, фторэластомер и акрилатные сополимеры с замещенным стиролом.

[31] Специалисты в рассматриваемой области техники согласятся с тем, что раскрытый способ и использование не обязательно должны применяться на протяжении всей длины цементируемого подземного интервала. В таких случаях последовательно укладывается более чем один состав цементного раствора. Первый раствор называется «первой порцией», а последний раствор называется «последней порцией». При подобных обстоятельствах предпочтительно, чтобы предлагаемый в изобретении раствор укладывался таким образом, чтобы он располагался в зонах, где присутствуют углеводороды. В большинстве случаев это будет иметь место в забое ствола скважины или возле него; поэтому предлагаемый в изобретении способ и использование должны предпочтительно применяться к последней порции раствора. Специалисты в рассматриваемой области техники также согласятся с тем, что раскрытый способ и использование не только будут полезными для первичного цементирования, но также и для операций ремонтного цементирования, таких как исправительное цементирование под давлением и установка цементных пробок.

[32] Прочие и последующие цели, характеристики и преимущества изобретения будут совершенно очевидными для специалистов в рассматриваемой области техники после изучения описания приведенных ниже примеров, взятых в сочетании с сопроводительными чертежами.

ПРИМЕРЫ

[33] Приведенные ниже примеры служат для дальнейшего иллюстрирования раскрытия изобретения.

[34] В таблице 1 перечислены стирол-изопрен-стирольные (СИС) полимеры и стирол-бутадиен-стирольные (СБС) полимеры, которые использовались в примерах.

Таблица 1
Поставщики и характеристики СИС и СБС полимеров, использованных в примерах*
Характеристика СИС № 1 СИС № 2 СБС № 1 СБС № 2 СБС № 3 СБС № 4
Источник ICO Полимеры Kraton ICO Полимеры ICO Полимеры ICO Полимеры Kraton
Наименование продукта ICO 1 D1161 PTM ICO 3 ICO 4 ICO 5 D1192EM
Индекс расплава (200°C/5 кг) (г/10 мин) 13 13,5 <1 23-37 <1 <1
Плотность, (кг/м3) 963 920 940 940 981 940
Предел прочности на разрыв, (МПа) 17 21 16 10 33
Твердость по Шору A (30с) 24 32 72 70
Удлинение при разрыве, (%) 1400 1300 680 900 880
*Способы испытаний:
ISO 1133 (Измерение индекса расплава).
ISO 37 (Предел прочности на разрыв и удлинение при измерениях предела прочности на разрыв).
ISO 2781 (Измерение плотности).
ISO 868 (Полимеры в соответствии с требованиями Международной организации по стандартизации) и ASTM 2240 (Kraton) (Измерение твердости).

Пример 1

[35] Несколько частиц полимера были помещены внутрь динамометрического элемента, снабженного окном, позволяющим наблюдать за поведением материалов внутри элемента. Поставщиком элемента была компания Temco Inc., Хьюстон, Техас (США). Температура элемента также была регулируемой. Телевизионная камера записывала изображения изнутри динамометрического элемента, а программа анализа изображений использовалась, чтобы интерпретировать поведение материалов внутри элемента. Для измерения размера частиц программа исследовала поперечное сечение частиц в элементе.

[36] После помещения частиц полимера в элемент последний был герметизирован. Затем элемент был нагрет до требуемой температуры. Были измерены исходные размеры частиц.

[37] Затем к элементу была подключена линия для подачи газообразного метана, а давление метана было поднято до 21 МПа в течение периода, равного 3 минутам. Давление в элементе сохранялось в течение 2 часов, после чего размеры частиц были снова измерены.

[38] Испытания проводились при 22°C и 42°C с СИС полимером (СИС № 1 из таблицы 1) и СБС полимером (СБС № 3). Результаты представлены на фиг.1. При обеих температурах оба полимера - СИС и СБС продемонстрировали хорошие характеристики.

Пример 2

[0039] Были измерены свойства цементных растворов, содержащих частицы СИС или СБС. Испытания соответствовали стандартным методам, опубликованным Международной организацией по стандартизации (ISO): “Petroleum and natural gas industries-Cements and materials for well cementing-Part 2: Testing of well cements,” International Organization for Standards Publication № ISO 10426-2. Были испытаны два цементных раствора - один, содержащий частицы СИС (СИС № 1), и другой, содержащий частицы СБС (СБС № 3). Условия испытаний были следующими: статическая температура на забое скважины: 53°C; динамическая температура на забое скважины 44°C; давление на забое: 21 МПа (3000 фунтов на кв.дюйм).

[40] Состав раствора, содержащего СБС, приведен в таблице 2, а результаты испытаний представлены в таблицах 3 и 4. Плотность раствора составляла 1606 кг/м3, а доля объема твердой фазы (ДОТФ) раствора составляла 51,8%.

Таблица 2
Состав испытательного цементного раствора, содержащего СБС в качестве самозалечивающей частицы
Компонент Тип Кол-во, (кг/м3)
Цемент Портландцемент класса G 696
Самозалечивающая частица СБС № 3 214,5
Двуокись кремния Размер соответствует 200 отверстиям сита на линейный дюйм (74 мкм) 200,5
Вода Пресная 395
Частица с малым удельным весом Бутадиен-акрилонитрильный сополимер 5
Антивспениватель Полипропиленгликоль 4
Диспергатор Полимеламинсульфонат 9
Вещество, препятствующее оседанию 90% кристаллическая двуокись кремния; 10% полисахаридный биополимер 1
Реагент, снижающий водоотдачу RHODOFLAC™, доступный от поставщика Rhodia Nederland 72
Замедлитель схватывания и твердения цемента Лигносульфонат кальция 2,5

Таблица 3
Реологические свойства испытательного цементного раствора, содержащего СБС в качестве самозалечивающей частицы
Перемешивание Кондиционирование - 20 минут
Пластическая вязкость: 233 сП Пластическая вязкость: 219 сП
Предел текучести: 4,3 кПа (9 фунт-сил/100 кв.футов) Предел текучести: 8,1 кПа (17 фунт-сил/100 кв.футов)

Таблица 4
Дополнительные свойства испытательного цементного раствора, содержащего СБС в качестве самозалечивающей частицы
Измерение Результаты
Свободный флюид 0,8%
Потеря флюида 13 мл
Время схватывания раствора 8:53 (до 70 единиц консистенции Бердена)
Изменение предела прочности при сжатии * 500 фунт/кв.дюйм [3,4 МПа] (УАЦ) после 23:42
* 1000 фунт/кв.дюйм [7 МПа] (УАЦ) после 72:58
* 783 фунт/кв.дюйм [5,4 МПа] (разрушение); 512 фунт/кв.дюйм [3,5 МПа] (УАЦ) после 24:00
* 1316 фунт/кв.дюйм [9 МПа] разрушение (996 фунт/кв.дюйм [6,9 МПа] (УАЦ) после 72:00
Предел прочности на разрыв* 1,9 МПа
*Цемент выдерживался в течение 7 дней при температуре 53°C и под давлением 20 МПа перед измерением предела прочности на разрыв.

Состав раствора, содержащего СИС, приведен в таблице 5, а результаты испытаний представлены в таблицах 6 и 7. Плотность раствора составляла 1606 кг/м3, а доля объема твердой фазы (ДОТФ) раствора составляла 51,7%.

Таблица 5
Состав испытательного цементного раствора, содержащего СИС в качестве самозалечивающей частицы
Компонент Тип Кол-во (кг/м3)
Цемент Портландцемент класса G 694
Самозалечивающая частица СИС № 1 208
Антивспениватель Полипропиленгликоль 5
Двуокись кремния Размер соответствует 200 отверстиям сита на линейный дюйм (74 мкм) 219
Вода Пресная 393
Диспергатор Полимеламинсульфонат 8
Вещество, препятствующее оседанию Биополимер 1
Реагент, снижающий водоотдачу RHODOFLAC™, доступный от поставщика Rhodia Nederland 81

Таблица 6
Реологические свойства испытательного цементного раствора, содержащего СИС в качестве самозалечивающей частицы
Перемешивание Кондиционирование - 20 минут
Пластическая вязкость: 119 сП
Предел текучести: 6,7 кПа (14 фунт-сил/100 кв.футов)
Пластическая вязкость: 107 сП
Предел текучести: 9,1 кПа (19 фунт-сил/100 кв.футов)

Таблица 7
Дополнительные свойства испытательного цементного раствора, содержащего СИС в качестве самозалечивающей частицы
Измерение Результаты
Свободная вода 0,3%
Время схватывания раствора 4:13 (до 70 единиц консистенции Бердена)
Изменение предела прочности при сжатии (измеренное с помощью УАЦ) 500 фунт/кв.дюйм [3,4 МПа] после 11:52
1000 фунт/кв.дюйм [7 МПа] после 32:00
867 фунт/кв.дюйм [6 МПа] после 24:00
1260 фунт/кв.дюйм [8,7 МПа] после 72:00

Пример 3

[42] Различные рецептуры цемента, содержащие СИС или СБС, были оценены в отношении их свойств самозалечивания. Составы растворов представлены в таблице 8. Рецептура, содержавшая бутадиен-акрилонитрильный сополимерный каучук (АБСК), была включена как контрольная, не обладающая способностью самозалечивания.

Таблица 8
Составы растворов для испытаний на способность самозалечивания
Тип частиц Единица АБСК СИС № 1 СИС № 2 СБС № 1 СБС № 2 СБС № 3 СБС № 4
Плотность (кг/м3) 1571 1498 1606 1498 1498 1498 1606
ДОТФ (%) 55 50,3 52,3 50 50,6 50 52
Частица (кг/м3) 286 240 210 243 239 243 213
Цемент 616 560 645 555 563 553 641
Двуокись кремния 219 199 281 197 200 196 279
Вода 436 494 459 498 491 497 463
Антивспениватель* 3 4 3 4 4 6 3
Диспергатор* 5 0 5 0 0 3 5
Вещество, препятствующее оседанию* 1 1 1 1 1 1 1
Замедлитель схватывания и твердения цемента* 5 0 0 0 0 0 0
*Антивспениватель: полипропиленгликоль; диспергатор: полимеламинсульфонат; вещество, препятствующее оседанию: 90%
кристаллическая двуокись кремния, 10% полисахаридный биополимер; замедлитель схватывания и твердения цемента: лигносульфонат кальция.

[43] Каждый цементный раствор был приготовлен в соответствии со способом, описанным в ISO Publication 10426-2, а образцы были приготовлены способом, требующим выполнения бразильской методики испытаний на разрыв. Это испытание также описано в ISO Publication 10426-2. Образцы цементного керна имели длину 66 мм и диаметр 22 мм. Образцы выдерживались при комнатной температуре и атмосферном давлении. Времена затвердевания представлены в таблице 9. Колонки с двумя числами указывают на то, что были выполнены два испытания.

Таблица 9
Времена затвердевания
Наименование частиц АБСК СИС № 1 СИС № 2 СБС № 1 СБС № 2 СБС № 3 СБС № 4
Время затвердения (дней) 40/121 48 104 101 79/77 78/105 100

[45] Образцы подвергались растрескиванию с помощью бразильского способа, затем перемещались в стальную трубку и закреплялись за счет герметика. Как показано на фиг.2, стальная трубка 101 имеет длину 180 мм. В ней имеются две секции по 90 мм - одна с внутренним диаметром 31,5 мм, а вторая - с внутренним диаметром 29,5 мм. Образец цемента с трещинами 102 размещается внутри трубы, а герметик 103 наносится вокруг образца. Посередине вдоль образца цемента за счет разных диаметров внутри трубки имеется кромка 104 для предотвращения скольжения образца цемента.

[46] Состав герметика представлял собой портландцементный раствор с плотностью 1,88 кг/м3, содержащий 2,7 мл/кг диспергатора - полинафтолиновый сульфонат, 2,7 мл/кг антивспенивателя - полисилоксана, 178 мл/кг стирол-бутадиенового латекса и 2,1% по весу цемента ускорителя затвердевания цемента - хлористого кальция.

[47] Затем через образцы с трещинами продувался чистый метан в течение 24 часов при противодавлении 21 МПа и температуре окружающей среды (20°С-23°C). Регистрировались скорость потока и изменения давления, и рассчитывались нормированные скорости потока. Результаты приведены на фиг.3.

[48] Цементные матрицы, включающие частицы СИС, продемонстрировали снижение нормированных скоростей потока больше, чем на 98%. Характеристики цементных матриц, включающих частицы СБС, продемонстрировали снижение нормированных скоростей потока в пределах между 49% и 97%. Контрольный образец не показал снижения скорости потока.

Пример 4

[49] Влияние плотности раствора на характеристики затвердевших цементов, содержащих СИС № 1 или СБС № 3, исследовалось с использованием способов, описанных в примере 3. Составы растворов приведены в таблице 10.

Таблица 10
Составы раствора для испытаний на самозалечивание
Плотность (кг/м3) 1606 1606 1498 1498
ДОТФ (%) 52 51,5 50,3 50,7
Тип частиц СИС № 1 СБС № 3 СИС № 1 СБС № 3
Частица (кг/м3) 213 216 240 242,5
Цемент класса G 641,5 635,5 560 554,3
Двуокись кремния 280 277 199 196
Вода 462,5 467,5 494 496,5
Антивспениватель* 5 5 4 4
Диспергатор* 3 3 0 3
Вещество, препятствующее оседанию* 1 1 1 1

[50] Цементные растворы затвердевали в течение 7 дней при температуре 53°C и давлении 20 МПа. Результаты испытаний на самозалечивание представлены на фиг.4. Для обеих цементных матриц изменения плотности не оказывает влияния на характеристики в терминах снижения скорости потока.

Пример 5

[51] Влияние давления на характеристики затвердевших цементов, содержащих СИС № 1 или СБС № 3, исследовалось с использованием способов, описанных в примере 3. Испытывались рецептуры из таблицы 9 с плотностью 1606 кг/м3.

[52] Образцы затвердевали в течение 7 дней при температуре 53°C и давлении 20 МПа. Измерения снижения скоростей потока выполнялись при четырех давлениях метана: 3,5 МПа, 7 МПа, 13,7 МПа и 20 МПа. Результаты, представленные на фиг.5, показывают, что снижение скорости потока было достигнуто при давлении 3,5 МПа для затвердевшего цемента, содержащего СИС, и при давлении 7 МПа для затвердевшего цемента, содержащего СБС.


САМОВОССТАНАВЛИВАЮЩИЕСЯ ЦЕМЕНТЫ
САМОВОССТАНАВЛИВАЮЩИЕСЯ ЦЕМЕНТЫ
САМОВОССТАНАВЛИВАЮЩИЕСЯ ЦЕМЕНТЫ
САМОВОССТАНАВЛИВАЮЩИЕСЯ ЦЕМЕНТЫ
САМОВОССТАНАВЛИВАЮЩИЕСЯ ЦЕМЕНТЫ
Источник поступления информации: Роспатент

Showing 131-140 of 324 items.
10.09.2015
№216.013.7ab4

Способ нагнетания рабочей жидкости с поверхности скважины в ствол скважины (варианты)

Группа изобретений относится к операциям нагнетания жидкостей с поверхности скважины в ее ствол при высоких давлениях, таким как, например, гидравлический разрыв пласта, включающий разделение жидкости на чистый поток, содержащий минимальное количество твердых материалов, и грязный поток,...
Тип: Изобретение
Номер охранного документа: 0002563001
Дата охранного документа: 10.09.2015
27.09.2015
№216.013.7fbd

Способ обработки подземных пластов

Группа изобретения относится к гидравлическому разрыву пласта. Технический результат - улучшение проводимости пачек из мелкодисперсного расклинивающего агента. Способ получения в подземном пласте полиэлектролита в составе для обработки включает этапы введения в подземный пласт состава для...
Тип: Изобретение
Номер охранного документа: 0002564298
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7fe2

Армированная волокнами полимерная нефтепромысловая труба и способ ее изготовления

Изобретение обеспечивает выполнение высокотемпературных армированных волокнами полимерных нефтепромысловых труб. Изобретение включает в себя способ совмещения волоконного материала и высокотемпературной термоотвреждаемой смолы для создания высокоэффективного композитного материала. Композитный...
Тип: Изобретение
Номер охранного документа: 0002564335
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.803d

Способ (варианты) и система для заканчивания скважины с использованием плазменных зарядов

Группа изобретений относится к области перфорации скважин. Способ заканчивания скважины заключается в вводе плазменного заряда, содержащего усеченный конус, имеющий конец с юбкой, конец с вершиной и металл, проходящий от конца с юбкой к концу с вершиной, в скважину и в воздействии...
Тип: Изобретение
Номер охранного документа: 0002564426
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.8042

Способы проведения измерений при предварительном исследовании скважин методом понижения уровня и устройство для этого

Изобретение относится к способу и устройству проведения измерений при предварительном исследовании скважин методом понижения уровня пластовой жидкости в забое скважины. Техническим результатом является понижение уровня пластовой жидкости в забое скважины и проведение измерений. Способ содержит...
Тип: Изобретение
Номер охранного документа: 0002564431
Дата охранного документа: 27.09.2015
27.10.2015
№216.013.87b9

Способ многопластового гидроразрыва в стволе скважины

Изобретение относится к горному делу и может быть применено для многопластового гидроразрыва в стволе скважины. Способ формирует в подземной структуре пропускные каналы в двух или более пластах вокруг ствола скважины. Такие каналы разделены друг от друга длиной определенного участка ствола...
Тип: Изобретение
Номер охранного документа: 0002566348
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.885d

Способ изготовления статора для забойного двигателя

Изобретение относится к области бурения скважин и, более конкретно, к способу изготовления статора забойного двигателя. Способ изготовления статора для забойного двигателя включает в себя создание шпинделя 506, имеющего наружную геометрию, комплементарную с необходимой внутренней геометрией...
Тип: Изобретение
Номер охранного документа: 0002566512
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.88b9

Экран направленной антенны удельного сопротивления

Изобретение относится к приборам для скважинных измерений, используемым для измерения электромагнитных свойств подземной скважины. Прибор (100) каротажа в процессе бурения включает в себя направленную антенну удельного сопротивления и экран (150, 250, 350, 450, 550) антенны. Экран (150, 250,...
Тип: Изобретение
Номер охранного документа: 0002566604
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.91b9

Инверсия формы импульса и инверсия с выбеливанием данных сейсморазведки в частотной области

Изобретение относится к области сейсмической разведки. Техническим результатом является повышение точности определения акустического импеданса для данных сейсморазведки. Машиночитаемый носитель информации, содержащий инструкции, которые при выполнении компьютером осуществляют способ...
Тип: Изобретение
Номер охранного документа: 0002568921
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.927b

Система и способ для выполнения операций интенсификации добычи в скважине

Изобретение относится к разработке, осуществлению и использованию результатов операций интенсификации, выполняемых на буровой. Техническим результатом является получение более точных данных о параметрах интенсификации для буровой. Способ включает выполнение определения характеристик резервуара...
Тип: Изобретение
Номер охранного документа: 0002569116
Дата охранного документа: 20.11.2015
Showing 131-140 of 236 items.
10.07.2015
№216.013.61b4

Способ и устройство измерения размеров перфорационного канала

Изобретение относится к измерению перфорационных каналов в нефтяных скважинах. Техническим результатом является уменьшение реверберационного шума. Способ содержит а. размещение каротажного устройства, включающего в себя ультразвуковой приемоизлучатель, в скважине, имеющей обсадную трубу, причем...
Тип: Изобретение
Номер охранного документа: 0002556554
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.61b7

Композиции и способы очистки ствола скважины перед цементированием

Изобретение относится к композициям и способам обработки буровой скважины. Технический результат изобретения заключается в улучшении связывания цемента в затрубном пространстве между обсадной трубой и поверхностью горной породы. Композиция для очистки ствола скважины содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002556557
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6486

Кумулятивный заряд

Группа изобретений относится к области добычи нефти и газа. Перфорирующий аппарат для использования в скважине, содержащий кумулятивный заряд; оболочку кумулятивного снаряда; взрывчатое вещество кумулятивного снаряда, расположенное внутри оболочки; облицовку кумулятивного снаряда, сцепляющуюся...
Тип: Изобретение
Номер охранного документа: 0002557281
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.697f

Доставка зернистого материала под землю

Группа изобретений относится к горному делу и может быть применена для гидравлического разрыва пласта. Скважинный флюид включает жидкость-носитель на водной основе, гидрофобные волокна, суспендированные в нем, гидрофобный зернистый материал, также суспендированный в жидкости-носителе и газ для...
Тип: Изобретение
Номер охранного документа: 0002558560
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c7b

Электромагнитная расстановка для операций подземной магнитной дальнометрии

Изобретение относится к области геофизики и может быть использовано при разведке нефти и природного газа. Электромагнитная расстановка содержит множество размещенных по оси электромагнитов, расположенных в немагнитном корпусе. Расстановка дополнительно содержит электрический модуль, такой как...
Тип: Изобретение
Номер охранного документа: 0002559329
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.71f3

Уточненное определение ориентации проводящего пласта за счет выполнения коррекции ошибки зонда в стволе скважины

Изобретение относится к индукционному каротажу. Сущность: способ включает измерение многоосевого индукционного отклика внутри практически непроводящего пласта с использованием прибора, помещенного в ствол скважины, пробуренной в свите пластов. Разность относительно нулевой проводимости...
Тип: Изобретение
Номер охранного документа: 0002560741
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7368

Система и способ для выполнения операций интенсификации добычи в скважине

Изобретение относится к способу для ступенчатой операции интенсификации добычи из скважины. Техническим результатом является повышение интенсификации добычи из скважины. Способ включает создание из измеренных скважинных данных набора показателей качества из множества диаграмм, использование...
Тип: Изобретение
Номер охранного документа: 0002561114
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.77ef

Устройство и способ борьбы с пескопроявлением в скважине с использованием датчика положения инструмента

Предложены способ и инструментальный узел для контроля положения рабочего инструмента в стволе скважины. Техническим результатом является повышение точности позиционирования рабочего инструмента в скважине. Предложенный способ содержит следующие этапы: позиционируют рабочий инструмент, имеющий...
Тип: Изобретение
Номер охранного документа: 0002562292
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77f2

Система и способы обнаружения и мониторинга эрозии

Изобретение относится к системе и способу обнаружения и мониторинга эрозии в различных средах, включая окружающую среду нисходящих скважин. Способ, в котором размещают индикаторный элемент в материале скважинного компонента посредством встраивания защитного индикаторного элемента внутрь...
Тип: Изобретение
Номер охранного документа: 0002562295
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7ab4

Способ нагнетания рабочей жидкости с поверхности скважины в ствол скважины (варианты)

Группа изобретений относится к операциям нагнетания жидкостей с поверхности скважины в ее ствол при высоких давлениях, таким как, например, гидравлический разрыв пласта, включающий разделение жидкости на чистый поток, содержащий минимальное количество твердых материалов, и грязный поток,...
Тип: Изобретение
Номер охранного документа: 0002563001
Дата охранного документа: 10.09.2015
+ добавить свой РИД