×
10.01.2015
216.013.1dca

Результат интеллектуальной деятельности: САМОВОССТАНАВЛИВАЮЩИЕСЯ ЦЕМЕНТЫ

Вид РИД

Изобретение

№ охранного документа
0002539054
Дата охранного документа
10.01.2015
Аннотация: Изобретение относится к способу сохранения разобщения пластов в подземной скважине, в которой ствол скважины пересекает один или большее число пластов, содержащих углеводороды, включающему: (i) накачивание цементного раствора, содержащего термопластичные блок-сополимерные частицы, в скважину, причем блок-сополимер имеет структуру (A-b-B-b-A), где A представляет собой стеклообразный или полукристаллический блок, а B является эластомерным блоком; и (ii) предоставление цементному раствору возможность затвердеть, чтобы сформировать цементное кольцо. При этом появление микрозазоров, трещин или дефектов в цементном кольце позволяет углеводородам из продуктивного пласта вступать в контакт с частицами, позволяя частицам набухать, и позволяет цементному кольцу обладать свойствами самовосстановления. Изобретение также относится к применению указанных термопластичных блок-сополимерных частиц, для придания свойств самоизлечивания рецептуре цемента, который укладывается в подземной скважине, пересекающей один или большее число пластов, содержащих углеводороды, где после затвердевания цемент образует цементное кольцо, в котором частицы набухают при контакте с углеводородами из продуктивного пласта. Изобретение развито в зависимых пунктах формулы изобретения. 2 н. и 12 з.п. ф-лы, 5 ил., 10 табл., 5 пр.,

Область изобретения

[1] Настоящее раскрытие изобретения относится к самоадаптирующимся цементам. В частности, оно относится к затвердевшим цементам, которые «самозалечиваются», т.е. к рецептурам, которые могут адаптироваться для того, чтобы компенсировать изменения или дефекты в физической структуре цемента, или которые адаптируют свою структуру после фазы затвердевания цемента при цементировании нефтяных, газовых, водяных или геотермальных скважин, или тому подобного.

Уровень техники

[2] В процессе строительства скважин цемент используется в качестве крепления и опоры обсадной трубы внутри скважины и для предотвращения движения флюидов между различными подземными слоями, содержащими флюиды, или попадания в скважину нежелательных флюидов.

[3] Для предотвращения разрушения цементных колец были разработаны различные методы. Один из методов состоит в том, чтобы сконструировать цементное кольцо с учетом физических нагрузок, которые могут иметь место в течение срока его эксплуатации. Такой метод описан, например, в US 6296057. Другой метод состоит в том, чтобы включить в состав цемента материалы, которые улучшают физические свойства затвердевшего цемента. US 6458198 описывает добавление в цементный раствор аморфных металлических волокон для улучшения его прочности и сопротивления повреждению при ударной нагрузке. EP 1129047 и WO 00/37387 описывают добавление в цемент эластичных материалов (резины или полимеров), чтобы обеспечить определенную степень гибкости на цементном кольце.

[4] Тем не менее, описанные выше методы не обеспечивают восстановления разобщения пластов, как только цементное кольцо действительно выйдет из строя за счет образования трещин или микрозазоров.

[5] Известны несколько самозалечивающихся бетонов для использования в строительной промышленности. Они описаны, например, в US 5575841, US 5660624, US 5989334, US 6261360 и US 6527849, и в документе, озаглавленном “Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability”, Dry, С. М., Cement and Concrete Research 30 (2000) 1969-1977.

[6] Тем не менее, ни один из таких самозалечивающихся бетонов не может быть непосредственно применим к операциям цементирования скважин вследствие необходимости наличия способности материала к перекачке при его укладке.

[7] В конечном итоге были разработаны «самозалечивающиеся» цементы для нефтегазовой промышленности, такие как описанные в US 2007/0204765 A1, WO 2004/101951 и WO 2004/101952 A1. Такие составы, в общем случае, содержат присадки, которые реагируют и/или набухают при контакте с флюидами в забое скважины. Когда происходит повреждение цементного кольца, открывающее цементную матрицу или поверхности цементного кольца для воздействия пластовых флюидов, присадки реагируют и уплотняют трещины или разрывы, восстанавливая, таким образом, целостность цементной матрицы и разобщение пластов. Цементы скважины в процессе эксплуатации потенциально подвержены воздействию нескольких типов флюидов, включая жидкие и газообразные углеводороды, воду, соляные растворы и/или углекислый газ. Поэтому в зависимости от предполагаемой окружающей скважину среды было бы желательно использовать присадки, которые способны реагировать на воздействие одного или большего числа типов пластовых флюидов.

[8] Несмотря на большое число ценных работ в рассматриваемой области техники было бы желательным получить доступ к самозалечивающемуся затвердевшему цементу, который реагирует на пластовые флюиды, содержащие высокие концентрации газообразных углеводородов.

Сущность изобретения

[9] Настоящее раскрытие изобретения предлагает затвердевшие цементы, которые самозалечиваются, когда подвергаются воздействию углеводородов, и способы, с помощью которых они могут быть приготовлены и применены в подземных скважинах.

[10] В одном из аспектов варианты осуществления изобретения относятся к способам для сохранения разобщения пластов в подземной скважине, которая пересекает один или большее число пластов, содержащих углеводороды.

[11] В следующем аспекте варианты осуществления изобретения относятся к применениям термопластичных блок-полимерных частиц для придания свойств самозалечивания цементному составу, который помещен в подземную скважину, пересекающую один или большее число продуктивных пластов, содержащих углеводороды.

Описание чертежей

[12] Фиг.1 - это диаграмма, показывающая характеристики набухания стирол-изопрен-стирольных (СИС) и стирол-бутадиен-стирольных СБС) частиц в присутствии метана при различных температурах и давлениях.

[13] Фиг.2 - это схематическое представление экспериментального устройства для измерения способности самовосстановления образцов цемента с трещинами.

[14] Фиг.3 представляет снижения нормированной скорости потока для затвердевших цементов, содержащих частицы СИС и СБС, подвергнутых воздействию метана.

[15] Фиг.4 представляет влияние плотности раствора на снижения нормированной скорости потока для схватившихся цементов, содержащих частицы СИС и СБС, подвергнутых воздействию метана.

[16] Фиг.5 представляет снижения нормированной скорости потока для схватившихся цементов, содержащих частицы СИС и СБС, подвергнутых воздействию метана при различных давлениях.

Подробное описание изобретения

[17] Вначале следует отметить, что при разработке любого фактического варианта осуществления изобретения должны быть выполнены многочисленные внедрения - конкретные решения для достижения конкретных целей разработчика, таких как соблюдение связанных с системой и связанных с бизнесом ограничений, которые будут изменяться от одного внедрения к другому. Более того, следует признать, что такая опытно-конструкторская разработка может быть комплексной и продолжительной, но, тем не менее, окажется обычным делом для средних специалистов в рассматриваемой области техники, обладающих преимуществами данного раскрытия изобретения. Кроме того, используемый/раскрытый здесь состав также может включать и некоторые другие компоненты, отличающиеся от упомянутых. В описании сущности изобретения и в данном подробном описании каждое численное значение следует вначале истолковывать как измененное термином «приблизительно» (если только оно уже специально не изменено подобным образом), а затем еще раз истолковывать уже как не измененное подобным образом, если иное не указано в контексте. Также в описании сущности изобретения и в данном подробном описании следует понимать, что диапазон концентрации, указанный или описанный как применимый, подходящий или тому подобное, предполагает, что любая и всякая концентрация в пределах диапазона, включая конечные точки, должна рассматриваться как уже заявленная. Например, «диапазон от 1 до 10» должен пониматься как указывающий все без исключения числа в континууме между приблизительно 1 и приблизительно 10. Поэтому даже если явно идентифицированы конкретные точки данных или даже никакие из точек данных в пределах диапазона, или же содержится ссылка только на несколько конкретных точек, должно быть понятно, что авторы изобретения признают и понимают, что все точки данных в пределах диапазона должны рассматриваться как указанные, и что авторы изобретения обладают данными в отношении всего диапазона и всех точек в пределах диапазона.

[18] Данное раскрытие изобретения относится к составам для цементирования подземных скважин, включающим затвердевающий материал, воду и, по меньшей мере, одну присадку, которая набухает в случае структурного разрушения или повреждения затвердевающего материала (т.е. цементного кольца). Такое поведение восстанавливает и сохраняет физический и гидравлический барьер в зоне разрушения. В результате сохраняется разобщение пластов в подземной скважине. Такие затвердевающие цементы называются «самозалечивающимися» или «самовосстанавливающимися». В этом применении оба термина используются равнозначно и должны пониматься как способность цементного кольца восстанавливать гидравлическую изоляцию в случае увеличения проницаемости матрицы, структурных дефектов, таких как трещины или разрывы, или отделения от обсадной трубы или поверхностей продуктивного пласта (т.е. микрозазоров).

[19] Примеры затвердевающих материалов включают (не ограничиваясь перечисленным) портландцемент, микроцемент, геополимеры, смеси цемента и геополимера, гипс, смеси извести и кремния, смолы, фосфорно-магниевые цементы или химически связанные фосфатные керамики (ХСФК).

[20] Как указывалось выше, существует потребность в самоизлечивающихся затвердевших цементах, которые используются в условиях окружающей среды, содержащих высокие концентрации газообразных углеводородов, в частности метана. Как ни странно, авторы изобретения обнаружили, что свойства самоизлечивания могут быть получены в этой окружающей среде путем включения в состав цемента термопластичных блок-сополимерных частиц. Типичные блок-сополимеры включают чередующиеся секции одного химического соединения, разделенные секциями другого химического соединения, или связующей группой низкого молекулярного веса. Например, блок-сополимеры могут иметь структуру (A-b-B-b-A), где A представляет стеклообразный или полукристаллический блок, а В - это эластомерный блок. В принципе, A может быть любым полимером, который обычно рассматривается как термопластичный (например, полистирол, полиметилметакрилат, изотактический полипропилен, полиуретан и т.д.), а В может быть любым полимером, который обычно рассматривается как эластомерный (например, полиизопрен, полибутадиен, полимеры простого эфира, сложные полиэфиры и т.д.).

[21] Последующие варианты осуществления изобретения относятся к способам для сохранения разобщения пластов в подземной скважине, содержащей ствол скважины, которая пересекает один или большее число продуктивных пластов, содержащих углеводороды. Способ включает накачивание цементного раствора, включающего термопластичные блок-сополимерные частицы, в скважину, и предоставление цементному раствору возможности сформировать цементное кольцо. Специалисты в рассматриваемой области техники согласятся с тем, что цементный раствор, в общем случае, считается поддающимся перекачиванию насосом, если его вязкость меньше или равна 1000 мП при скорости сдвига 100 с-1 во всем температурном диапазоне, воздействующем на раствор во время размещения в скважине. Цементное кольцо может быть расположено между обсадной трубой скважины и стенкой ствола скважины или между обсадной трубой и другой обсадной колонной. Если микрозазоры, трещины или дефекты в цементном кольце, на поверхности раздела обсадная колонна-цемент или на поверхности раздела цемент-стенка ствола скважины, то частицы будут подвержены воздействию углеводородов продуктивного пласта, что заставит их набухать и позволит цементному кольцу обладать свойствами самозалечивания.

[22] Также дальнейшие варианты осуществления изобретения нацелены на использования термопластичных блок-сополимерных частиц, чтобы придать свойства самозалечивания затвердевшему цементному кольцу в подземной скважине, которая пересекает один или большее число продуктивных пластов, содержащих углеводороды. Частицы набухают при контакте с углеводородами из продуктивного пласта, в частности с газообразными углеводородами.

[23] Для всех аспектов предел прочности на разрыв блок-сополимера может изменяться в пределах между (не ограничиваясь перечисленным) приблизительно 1,5 МПа и 40 МПа, предпочтительно между 3,4 и 34 МПа. Еще более предпочтительный предел прочности может располагаться в пределах между 2 МПа и 3,45 МПа или между 28 МПа и 34 МПа.

[24] Предпочтительные термопластичные блок-сополимеры включают стирол-изопрен-стирол (СИС), стирол-бутадиен-стирол (СБС) и их смеси. Блок-сополимерная присадка может находиться в одной или в большем числе форм, включая (не ограничиваясь перечисленным) сферическую, яйцевидную, волокнистую, лентообразную и форму ячейки.

[25] Концентрация блок-сополимерных частиц, преимущественно, составляет приблизительно от 10% до 55% по объему твердых веществ в цементном растворе, и также известна как процент от объема готовой смеси (ПОГС). Наиболее предпочтительная концентрация находится в пределах приблизительно от 20% до 50% ПОГС. Диапазон размера частиц предпочтительно находится между приблизительно 100 мкм и 900 мкм, и более предпочтительно между приблизительно 200 мкм и 800 мкм.

[26] Одной из существующих в настоящее время проблем, с которой сталкивается добывающая промышленность, является присутствие в некоторых скважинах высокой концентрации газообразных углеводородов, таких как метан, пропан и/или этан. Такие газообразные углеводороды, будучи значительно более неустойчивыми, чем углеводороды в жидком виде, имеют тенденцию проникать в разрывы и/или микрозазоры, которые могут присутствовать в цементном кольце и, таким образом, изменять давление и условия безопасности скважины, поскольку целостность уменьшается. Авторы изобретения определили, что представленные рецептуры могут решить эту проблему вплоть до очень высокой концентрации газообразных углеводородов. В предпочтительном варианте осуществления изобретения газообразные концентрации углеводородного флюида больше, чем приблизительно 91 молекулярный процент, и более предпочтительно больше приблизительно 95 молекулярных процентов. Кроме того, давление углеводорода, которому подвергается цементное кольцо, предпочтительно выше приблизительно 3,5 МПа, более предпочтительно выше приблизительно 6,9 МПа и наиболее предпочтительно выше приблизительно 13,7 МПа.

[27] Блок-сополимерные частицы также могут быть герметизированы с помощью защитного слоя. Слой может разрываться или разрушаться при воздействии одного или большего числа пусковых факторов, включая (не ограничиваясь перечисленным) контакт с углеводородом, распространение трещины внутри матрицы затвердевшего цемента, время и/или температуру.

[28] В дополнение к блок-сополимерным частицам цементные растворы также могут включать общеупотребительные присадки, такие как ингибиторы, ускорители, наполнители, присадки для регулирования водоотдачи, добавки для борьбы с поглощением бурового раствора, присадки от миграции газа и антипенные агенты. Кроме того, цементные растворы могут содержать присадки, которые улучшают упругость и прочность затвердевшего цемента. Такие присадки включают (не ограничиваясь перечисленным) частицы, имеющие модуль Юнга ниже приблизительно 5000 МПа и коэффициент Пуассона выше приблизительно 0,3. Предпочтительно такие частицы должны иметь модули Юнга ниже приблизительно 2000 МПа. Примеры включают (не ограничиваясь перечисленным) полипропилен, полиэтилен, бутадиен-акрилонитрил, бутадиен-стирол и полиамид. Такие присадки также могут включать волокна, выбранные из перечня, включающего полиамид, полиэтилен и поливиниловый спирт. Также может быть включена металлическая микролента.

[29] Блок-сополимерные частицы также могут использоваться в рецептурах цементов со специально рассчитанными размерами частиц, включающих смеси трех или четырех видов малых, средних и крупных частиц. Такие рецептуры приведены в качестве примеров в US 5518996 и/или CA 2117276.

[30] Блок-сополимерные частицы также могут соединяться с одним или большим числом компаундов из списка, включающего водную обратную эмульсию полимера, включающую группу бетаинов, поли-2,2,1-бициклогептен (полинорборнен), алкилстирол, сшитые замещенные винилакрилатные сополимеры, диатомовую землю, натуральный каучук, вулканизированный каучук, полиизопреновый каучук, винилацетатный каучук, хлоропреновый каучук, бутадиен-акрилонитрильный каучук, бутадиен-акрилонитрильный гидрокаучук, этиленпропилендиеновый мономер, каучук на основе этиленпропиленового мономера, бутадиенстирольный каучук, стирольный/пропиленовый/диеновый мономер, бромированный поли(изобутилен-со-4-метилстирол), бутилкаучук, хлорсульфированные полиэтилены, полиакрилатный каучук, полиуретан, силиконовый каучук, бромбутилкаучук, хлорбутилкаучук, хлорированный полиэтилен, эпихлоргидриновый этиленоксидный сополимер, этиленакрилатный каучук, этиленпропилендиеновый терполимерный каучук, сульфированный полиэтилен, фторокремнийорганические каучуки, фторэластомер и акрилатные сополимеры с замещенным стиролом.

[31] Специалисты в рассматриваемой области техники согласятся с тем, что раскрытый способ и использование не обязательно должны применяться на протяжении всей длины цементируемого подземного интервала. В таких случаях последовательно укладывается более чем один состав цементного раствора. Первый раствор называется «первой порцией», а последний раствор называется «последней порцией». При подобных обстоятельствах предпочтительно, чтобы предлагаемый в изобретении раствор укладывался таким образом, чтобы он располагался в зонах, где присутствуют углеводороды. В большинстве случаев это будет иметь место в забое ствола скважины или возле него; поэтому предлагаемый в изобретении способ и использование должны предпочтительно применяться к последней порции раствора. Специалисты в рассматриваемой области техники также согласятся с тем, что раскрытый способ и использование не только будут полезными для первичного цементирования, но также и для операций ремонтного цементирования, таких как исправительное цементирование под давлением и установка цементных пробок.

[32] Прочие и последующие цели, характеристики и преимущества изобретения будут совершенно очевидными для специалистов в рассматриваемой области техники после изучения описания приведенных ниже примеров, взятых в сочетании с сопроводительными чертежами.

ПРИМЕРЫ

[33] Приведенные ниже примеры служат для дальнейшего иллюстрирования раскрытия изобретения.

[34] В таблице 1 перечислены стирол-изопрен-стирольные (СИС) полимеры и стирол-бутадиен-стирольные (СБС) полимеры, которые использовались в примерах.

Таблица 1
Поставщики и характеристики СИС и СБС полимеров, использованных в примерах*
Характеристика СИС № 1 СИС № 2 СБС № 1 СБС № 2 СБС № 3 СБС № 4
Источник ICO Полимеры Kraton ICO Полимеры ICO Полимеры ICO Полимеры Kraton
Наименование продукта ICO 1 D1161 PTM ICO 3 ICO 4 ICO 5 D1192EM
Индекс расплава (200°C/5 кг) (г/10 мин) 13 13,5 <1 23-37 <1 <1
Плотность, (кг/м3) 963 920 940 940 981 940
Предел прочности на разрыв, (МПа) 17 21 16 10 33
Твердость по Шору A (30с) 24 32 72 70
Удлинение при разрыве, (%) 1400 1300 680 900 880
*Способы испытаний:
ISO 1133 (Измерение индекса расплава).
ISO 37 (Предел прочности на разрыв и удлинение при измерениях предела прочности на разрыв).
ISO 2781 (Измерение плотности).
ISO 868 (Полимеры в соответствии с требованиями Международной организации по стандартизации) и ASTM 2240 (Kraton) (Измерение твердости).

Пример 1

[35] Несколько частиц полимера были помещены внутрь динамометрического элемента, снабженного окном, позволяющим наблюдать за поведением материалов внутри элемента. Поставщиком элемента была компания Temco Inc., Хьюстон, Техас (США). Температура элемента также была регулируемой. Телевизионная камера записывала изображения изнутри динамометрического элемента, а программа анализа изображений использовалась, чтобы интерпретировать поведение материалов внутри элемента. Для измерения размера частиц программа исследовала поперечное сечение частиц в элементе.

[36] После помещения частиц полимера в элемент последний был герметизирован. Затем элемент был нагрет до требуемой температуры. Были измерены исходные размеры частиц.

[37] Затем к элементу была подключена линия для подачи газообразного метана, а давление метана было поднято до 21 МПа в течение периода, равного 3 минутам. Давление в элементе сохранялось в течение 2 часов, после чего размеры частиц были снова измерены.

[38] Испытания проводились при 22°C и 42°C с СИС полимером (СИС № 1 из таблицы 1) и СБС полимером (СБС № 3). Результаты представлены на фиг.1. При обеих температурах оба полимера - СИС и СБС продемонстрировали хорошие характеристики.

Пример 2

[0039] Были измерены свойства цементных растворов, содержащих частицы СИС или СБС. Испытания соответствовали стандартным методам, опубликованным Международной организацией по стандартизации (ISO): “Petroleum and natural gas industries-Cements and materials for well cementing-Part 2: Testing of well cements,” International Organization for Standards Publication № ISO 10426-2. Были испытаны два цементных раствора - один, содержащий частицы СИС (СИС № 1), и другой, содержащий частицы СБС (СБС № 3). Условия испытаний были следующими: статическая температура на забое скважины: 53°C; динамическая температура на забое скважины 44°C; давление на забое: 21 МПа (3000 фунтов на кв.дюйм).

[40] Состав раствора, содержащего СБС, приведен в таблице 2, а результаты испытаний представлены в таблицах 3 и 4. Плотность раствора составляла 1606 кг/м3, а доля объема твердой фазы (ДОТФ) раствора составляла 51,8%.

Таблица 2
Состав испытательного цементного раствора, содержащего СБС в качестве самозалечивающей частицы
Компонент Тип Кол-во, (кг/м3)
Цемент Портландцемент класса G 696
Самозалечивающая частица СБС № 3 214,5
Двуокись кремния Размер соответствует 200 отверстиям сита на линейный дюйм (74 мкм) 200,5
Вода Пресная 395
Частица с малым удельным весом Бутадиен-акрилонитрильный сополимер 5
Антивспениватель Полипропиленгликоль 4
Диспергатор Полимеламинсульфонат 9
Вещество, препятствующее оседанию 90% кристаллическая двуокись кремния; 10% полисахаридный биополимер 1
Реагент, снижающий водоотдачу RHODOFLAC™, доступный от поставщика Rhodia Nederland 72
Замедлитель схватывания и твердения цемента Лигносульфонат кальция 2,5

Таблица 3
Реологические свойства испытательного цементного раствора, содержащего СБС в качестве самозалечивающей частицы
Перемешивание Кондиционирование - 20 минут
Пластическая вязкость: 233 сП Пластическая вязкость: 219 сП
Предел текучести: 4,3 кПа (9 фунт-сил/100 кв.футов) Предел текучести: 8,1 кПа (17 фунт-сил/100 кв.футов)

Таблица 4
Дополнительные свойства испытательного цементного раствора, содержащего СБС в качестве самозалечивающей частицы
Измерение Результаты
Свободный флюид 0,8%
Потеря флюида 13 мл
Время схватывания раствора 8:53 (до 70 единиц консистенции Бердена)
Изменение предела прочности при сжатии * 500 фунт/кв.дюйм [3,4 МПа] (УАЦ) после 23:42
* 1000 фунт/кв.дюйм [7 МПа] (УАЦ) после 72:58
* 783 фунт/кв.дюйм [5,4 МПа] (разрушение); 512 фунт/кв.дюйм [3,5 МПа] (УАЦ) после 24:00
* 1316 фунт/кв.дюйм [9 МПа] разрушение (996 фунт/кв.дюйм [6,9 МПа] (УАЦ) после 72:00
Предел прочности на разрыв* 1,9 МПа
*Цемент выдерживался в течение 7 дней при температуре 53°C и под давлением 20 МПа перед измерением предела прочности на разрыв.

Состав раствора, содержащего СИС, приведен в таблице 5, а результаты испытаний представлены в таблицах 6 и 7. Плотность раствора составляла 1606 кг/м3, а доля объема твердой фазы (ДОТФ) раствора составляла 51,7%.

Таблица 5
Состав испытательного цементного раствора, содержащего СИС в качестве самозалечивающей частицы
Компонент Тип Кол-во (кг/м3)
Цемент Портландцемент класса G 694
Самозалечивающая частица СИС № 1 208
Антивспениватель Полипропиленгликоль 5
Двуокись кремния Размер соответствует 200 отверстиям сита на линейный дюйм (74 мкм) 219
Вода Пресная 393
Диспергатор Полимеламинсульфонат 8
Вещество, препятствующее оседанию Биополимер 1
Реагент, снижающий водоотдачу RHODOFLAC™, доступный от поставщика Rhodia Nederland 81

Таблица 6
Реологические свойства испытательного цементного раствора, содержащего СИС в качестве самозалечивающей частицы
Перемешивание Кондиционирование - 20 минут
Пластическая вязкость: 119 сП
Предел текучести: 6,7 кПа (14 фунт-сил/100 кв.футов)
Пластическая вязкость: 107 сП
Предел текучести: 9,1 кПа (19 фунт-сил/100 кв.футов)

Таблица 7
Дополнительные свойства испытательного цементного раствора, содержащего СИС в качестве самозалечивающей частицы
Измерение Результаты
Свободная вода 0,3%
Время схватывания раствора 4:13 (до 70 единиц консистенции Бердена)
Изменение предела прочности при сжатии (измеренное с помощью УАЦ) 500 фунт/кв.дюйм [3,4 МПа] после 11:52
1000 фунт/кв.дюйм [7 МПа] после 32:00
867 фунт/кв.дюйм [6 МПа] после 24:00
1260 фунт/кв.дюйм [8,7 МПа] после 72:00

Пример 3

[42] Различные рецептуры цемента, содержащие СИС или СБС, были оценены в отношении их свойств самозалечивания. Составы растворов представлены в таблице 8. Рецептура, содержавшая бутадиен-акрилонитрильный сополимерный каучук (АБСК), была включена как контрольная, не обладающая способностью самозалечивания.

Таблица 8
Составы растворов для испытаний на способность самозалечивания
Тип частиц Единица АБСК СИС № 1 СИС № 2 СБС № 1 СБС № 2 СБС № 3 СБС № 4
Плотность (кг/м3) 1571 1498 1606 1498 1498 1498 1606
ДОТФ (%) 55 50,3 52,3 50 50,6 50 52
Частица (кг/м3) 286 240 210 243 239 243 213
Цемент 616 560 645 555 563 553 641
Двуокись кремния 219 199 281 197 200 196 279
Вода 436 494 459 498 491 497 463
Антивспениватель* 3 4 3 4 4 6 3
Диспергатор* 5 0 5 0 0 3 5
Вещество, препятствующее оседанию* 1 1 1 1 1 1 1
Замедлитель схватывания и твердения цемента* 5 0 0 0 0 0 0
*Антивспениватель: полипропиленгликоль; диспергатор: полимеламинсульфонат; вещество, препятствующее оседанию: 90%
кристаллическая двуокись кремния, 10% полисахаридный биополимер; замедлитель схватывания и твердения цемента: лигносульфонат кальция.

[43] Каждый цементный раствор был приготовлен в соответствии со способом, описанным в ISO Publication 10426-2, а образцы были приготовлены способом, требующим выполнения бразильской методики испытаний на разрыв. Это испытание также описано в ISO Publication 10426-2. Образцы цементного керна имели длину 66 мм и диаметр 22 мм. Образцы выдерживались при комнатной температуре и атмосферном давлении. Времена затвердевания представлены в таблице 9. Колонки с двумя числами указывают на то, что были выполнены два испытания.

Таблица 9
Времена затвердевания
Наименование частиц АБСК СИС № 1 СИС № 2 СБС № 1 СБС № 2 СБС № 3 СБС № 4
Время затвердения (дней) 40/121 48 104 101 79/77 78/105 100

[45] Образцы подвергались растрескиванию с помощью бразильского способа, затем перемещались в стальную трубку и закреплялись за счет герметика. Как показано на фиг.2, стальная трубка 101 имеет длину 180 мм. В ней имеются две секции по 90 мм - одна с внутренним диаметром 31,5 мм, а вторая - с внутренним диаметром 29,5 мм. Образец цемента с трещинами 102 размещается внутри трубы, а герметик 103 наносится вокруг образца. Посередине вдоль образца цемента за счет разных диаметров внутри трубки имеется кромка 104 для предотвращения скольжения образца цемента.

[46] Состав герметика представлял собой портландцементный раствор с плотностью 1,88 кг/м3, содержащий 2,7 мл/кг диспергатора - полинафтолиновый сульфонат, 2,7 мл/кг антивспенивателя - полисилоксана, 178 мл/кг стирол-бутадиенового латекса и 2,1% по весу цемента ускорителя затвердевания цемента - хлористого кальция.

[47] Затем через образцы с трещинами продувался чистый метан в течение 24 часов при противодавлении 21 МПа и температуре окружающей среды (20°С-23°C). Регистрировались скорость потока и изменения давления, и рассчитывались нормированные скорости потока. Результаты приведены на фиг.3.

[48] Цементные матрицы, включающие частицы СИС, продемонстрировали снижение нормированных скоростей потока больше, чем на 98%. Характеристики цементных матриц, включающих частицы СБС, продемонстрировали снижение нормированных скоростей потока в пределах между 49% и 97%. Контрольный образец не показал снижения скорости потока.

Пример 4

[49] Влияние плотности раствора на характеристики затвердевших цементов, содержащих СИС № 1 или СБС № 3, исследовалось с использованием способов, описанных в примере 3. Составы растворов приведены в таблице 10.

Таблица 10
Составы раствора для испытаний на самозалечивание
Плотность (кг/м3) 1606 1606 1498 1498
ДОТФ (%) 52 51,5 50,3 50,7
Тип частиц СИС № 1 СБС № 3 СИС № 1 СБС № 3
Частица (кг/м3) 213 216 240 242,5
Цемент класса G 641,5 635,5 560 554,3
Двуокись кремния 280 277 199 196
Вода 462,5 467,5 494 496,5
Антивспениватель* 5 5 4 4
Диспергатор* 3 3 0 3
Вещество, препятствующее оседанию* 1 1 1 1

[50] Цементные растворы затвердевали в течение 7 дней при температуре 53°C и давлении 20 МПа. Результаты испытаний на самозалечивание представлены на фиг.4. Для обеих цементных матриц изменения плотности не оказывает влияния на характеристики в терминах снижения скорости потока.

Пример 5

[51] Влияние давления на характеристики затвердевших цементов, содержащих СИС № 1 или СБС № 3, исследовалось с использованием способов, описанных в примере 3. Испытывались рецептуры из таблицы 9 с плотностью 1606 кг/м3.

[52] Образцы затвердевали в течение 7 дней при температуре 53°C и давлении 20 МПа. Измерения снижения скоростей потока выполнялись при четырех давлениях метана: 3,5 МПа, 7 МПа, 13,7 МПа и 20 МПа. Результаты, представленные на фиг.5, показывают, что снижение скорости потока было достигнуто при давлении 3,5 МПа для затвердевшего цемента, содержащего СИС, и при давлении 7 МПа для затвердевшего цемента, содержащего СБС.


САМОВОССТАНАВЛИВАЮЩИЕСЯ ЦЕМЕНТЫ
САМОВОССТАНАВЛИВАЮЩИЕСЯ ЦЕМЕНТЫ
САМОВОССТАНАВЛИВАЮЩИЕСЯ ЦЕМЕНТЫ
САМОВОССТАНАВЛИВАЮЩИЕСЯ ЦЕМЕНТЫ
САМОВОССТАНАВЛИВАЮЩИЕСЯ ЦЕМЕНТЫ
Источник поступления информации: Роспатент

Showing 111-120 of 324 items.
20.03.2015
№216.013.349c

Неоднородное размещение расклинивающего агента

Группа изобретений относится к интенсификации добычи углеводородов из пласта способом гидравлического разрыва. Технический результат - неоднородное размещение расклинивающего агента в трещинах гидроразрыва, повышающее их проводимость и продуктивность скважины. Способ индуцирования агрегации...
Тип: Изобретение
Номер охранного документа: 0002544943
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3d53

Неводные, кислоторастворимые, высокоплотные флюиды для заканчивания скважины и способ

Изобретение относится к композициям и способам для обработки подземного пласта. Способ включает вытеснение первого флюида на углеводородной основе, присутствующего в необсаженном интервале ствола скважины, вторым флюидом, контактирование второго флюида с кислым природным пластовым флюидом с...
Тип: Изобретение
Номер охранного документа: 0002547187
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4199

Способ гидроразрыва пласта с селективной закачкой потока

Группа изобретений относится к вторичным методам извлечения углеводородов из подземных пластов и, в частности, к методам гидроразрыва пласта без расклинивающего агента, а также к селективной закачке в отдельные подземные пласты. Технический результат - повышение эффективности добычи...
Тип: Изобретение
Номер охранного документа: 0002548291
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.46e7

Неплоская антенна для направленного каротажа сопротивления

Изобретение относится к скважинным измерительным устройствам, используемым для измерения электромагнитных свойств ствола скважины. Техническим результатом является обеспечение направленного действия антенны с возможностью принимать сигналы с разных сторон. Предложен скважинный измерительный...
Тип: Изобретение
Номер охранного документа: 0002549655
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.480b

Обработка скважины

Группа изобретений относится к нефтепромысловым применениям, в частности к способам для устранения поглощения бурового раствора в забое скважины, в подземном резервуаре. Способ включает подачу насосом в зону ствола скважины или в призабойную зону скважины гелеобразующего материала для борьбы с...
Тип: Изобретение
Номер охранного документа: 0002549950
Дата охранного документа: 10.05.2015
27.05.2015
№216.013.4dfd

Ядерно-магнитно-резонансный инструмент с внешними магнитами

Использование: для осуществления каротажа во время бурения с использованием ядерно-магнитно-резонансного инструмента. Сущность изобретения заключается в том, что выполняют ядерно-магнитно-резонансный каротаж во время бурения с использованием магнитов, помещенных снаружи утяжеленной бурильной...
Тип: Изобретение
Номер охранного документа: 0002551483
Дата охранного документа: 27.05.2015
27.05.2015
№216.013.4e77

Способ текущего ремонта подземных скважин

Изобретение относится к способам текущего ремонта подземных скважин. Способ включает нагнетание суспензии частиц кремнезема, которая сама по себе не имеет цементирующих свойств, в полости в поврежденной цементной оболочке или рядом с нею. При этом частицы кремнезема реагируют с затвердевшим...
Тип: Изобретение
Номер охранного документа: 0002551605
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.50f8

Порт световой связи для использования на скважинных инструментах

Изобретение относится к области приборов, перемещающихся в стволах скважин, пробуренных через подземные пласты горных пород. Техническим результатом является передача данных рабочего состояния прибора и/или данных, запомненных в приборе, и/или передача сигналов управления и рабочих инструкций...
Тип: Изобретение
Номер охранного документа: 0002552249
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.569f

Способ многоступенчатой обработки для интенсификации притока многоствольной скважины

Группа изобретений относится к способам подготовки и обработки для интенсификации притока скважины. Способ подготовки боковых стволов скважины включает бурение множества боковых стволов скважины из по существу вертикальной скважины. Устанавливают дефлектор селективного ввода со сквозным...
Тип: Изобретение
Номер охранного документа: 0002553705
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56ab

Растворимая мостовая пробка

Изобретение относится к мостовой пробке для размещения в скважине, ограниченной обсадной колонной. Мостовая пробка включает в себя компонент целостности для поддержания якорной целостности или структурной целостности в скважине во время создающего давления использования в ее верхней части,...
Тип: Изобретение
Номер охранного документа: 0002553717
Дата охранного документа: 20.06.2015
Showing 111-120 of 236 items.
10.02.2015
№216.013.220f

Кабельный обход и способ регулируемого ввода колонны насосно-компрессорных труб и кабеля, соседнего с ними, в скважину

Система и способ для регулируемого ввода колонны насосно-компрессорных труб и кабеля в ствол скважины содержит неподвижный кожух, обходной кабельный блок и уплотнительный узел. Неподвижный кожух имеет канал, сообщающийся со стволом скважины, поверхность уплотнения и кабельный проем,...
Тип: Изобретение
Номер охранного документа: 0002540172
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.290c

Способ и устройство завершения многоярусной скважины

Группа изобретений относится к горному делу и может быть применена при завершении многоярусной скважины. Устройство включает колонну, направленную в скважину, и расположенный в колонне инструмент. Инструмент приспособлен для образования гнезда с целью улавливания объекта, направляемого в...
Тип: Изобретение
Номер охранного документа: 0002541965
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2949

Способы определения особенностей пластов, осуществления навигации траекторий бурения и размещения скважин применительно к подземным буровым скважинам

Изобретение относится к области бурения подземных буровых скважин и измерения в них. Техническим результатом является расширение функциональных возможностей и повышение информативности исследований. Предложен способ направления бурения буровой скважины в целевом подземном пласте, включающий...
Тип: Изобретение
Номер охранного документа: 0002542026
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b7a

Многофазный расходомер и способ измерения пленки жидкости

Предложенная группа изобретений относится к средствам измерения расхода смеси многофазной жидкости, содержащей по меньшей мере одну газовую фазу и одну жидкую фазу. Заявленный расходомер содержит участок трубы и измерительный участок, через которые поступает смесь. Расходомер также содержит...
Тип: Изобретение
Номер охранного документа: 0002542587
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2d6f

Погружной электродвигатель с зазором с ферромагнитной жидкостью

Группа изобретений направлена на обеспечение возможности уменьшения потерь электроэнергии, подаваемой по длинным силовым кабелям к электрическому погружному насосу во время работы погружного электродвигателя. Система содержит источник питания на поверхности, силовые кабели между погружным...
Тип: Изобретение
Номер охранного документа: 0002543099
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2fc6

Анализ петрографических изображений для определения капиллярного давления в пористых средах

Изобретение относится к способам описания характеристик двухмерных и трехмерных образцов для определения распределений размеров тела пор и каналов пор, а также кривых зависимости капиллярного давления в пористой среде. Входная информация включает петрографические изображения высокого разрешения...
Тип: Изобретение
Номер охранного документа: 0002543698
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2fc7

Способ и устройство для автоматического восстановления геометрии скважины по измерениям низкочастотных электромагнитных сигналов

Изобретение относится к геофизическим измерениям в скважине. Сущность: способ включает в себя создание модели для прогнозирования измерений, которые получают приемниками благодаря передачам с помощью источников, на основании оцененных положений приемников относительно источников. Оцененные...
Тип: Изобретение
Номер охранного документа: 0002543699
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3461

Способ определения репрезентативных элементов площадей и объемов в пористой среде

Изобретение относится к области геофизики и может быть использовано при моделировании геологических объектов. Предложен способ (варианты) определения репрезентативных элементов площадей и объемов в пористой среде. Репрезентативный элемент площади (РЭП) является наименьшей площадью, которая...
Тип: Изобретение
Номер охранного документа: 0002544884
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3491

Полимерная жидкость с инициируемым загустеванием для закачивания в пласт и способы ее применения

Настоящее изобретение относится к эксплуатации углеводородсодержащих пластов или нагнетательных скважин. Способ для обработки подземных углеводородсодержащих пластов включает: a) обеспечение композицией, включающей инициатор загустевания, изменяющий pH, и полимер, способный гидратироваться в...
Тип: Изобретение
Номер охранного документа: 0002544932
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.349c

Неоднородное размещение расклинивающего агента

Группа изобретений относится к интенсификации добычи углеводородов из пласта способом гидравлического разрыва. Технический результат - неоднородное размещение расклинивающего агента в трещинах гидроразрыва, повышающее их проводимость и продуктивность скважины. Способ индуцирования агрегации...
Тип: Изобретение
Номер охранного документа: 0002544943
Дата охранного документа: 20.03.2015
+ добавить свой РИД