×
10.01.2015
216.013.1d83

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕНАЛАДКИ ПАРОВОЙ ТУРБИНЫ

Вид РИД

Изобретение

№ охранного документа
0002538983
Дата охранного документа
10.01.2015
Аннотация: Изобретение заключается в способе переналадки паровой турбины (1), пар для которой создается парогенератором. Способ позволяет настраивать турбину (1) для перехода от первого максимума тепловой мощности парогенератора ко второму максимуму тепловой мощности парогенератора. Турбина (1) включает в себя модуль (2) высокого давления, содержащий, по меньшей мере, один комплект (2А) неподвижных лопаток, а также, по меньшей мере, один комплект (2B) подвижных лопаток, установленных на роторе (4). Способ предусматривает замену в модуле (2) высокого давления, по меньшей мере, одного комплекта (2А) неподвижных лопаток, рассчитанных для работы в условиях первого максимума тепловой мощности, на, по меньшей мере, один комплект (2А) неподвижных лопаток, рассчитанных для работы в условиях второго максимума тепловой мощности. Комплект или комплекты (2B) подвижных лопаток рассчитаны для работы в условиях первого и второго максимума тепловой мощности, ротор (4) и комплект или комплекты (2B) подвижных лопаток модуля (2) высокого давления остаются неизменными при переходе от первого максимума тепловой мощности парогенератора ко второму максимуму тепловой мощности. Способ позволяет избежать замены ротора при переналадке, сохраняя приемлемую эффективность для двух максимумов тепловой мощности. 7 з.п. ф-лы, 5 ил.

Изобретение состоит из способа переналадки паровой турбины, а именно активной паровой турбины. Способ по изобретению позволяет, в частности, настраивать турбину для увеличения или уменьшения максимальной тепловой мощности парогенератора, подающего в турбину пар.

Паровая турбина - это вращающееся устройство, предназначенное для преобразования тепловой энергии пара в механическую энергию, приводящую в действие электрогенератор, насос или другое вращающееся механическое приводное устройство. Под «механическим приводным устройством» понимается механически приводимое устройство, потребляющее мощность и выполняющее работу.

Турбина, в целом, включает в себя, по меньшей мере, три модуля: модуль высокого давления, модуль среднего давления, а также, по меньшей мере, один модуль низкого давления. Пар, подаваемый парогенератором, вначале направляется в модуль высокого давления, а затем в модуль среднего давления и модуль низкого давления.

Модуль высокого давления включает в себя множество ступеней, в каждой из которых имеется комплект неподвижных лопаток, а также комплект подвижных лопаток, установленных на роторе. Каждая из ступеней выполняет две функции:

- расширение пара, что соответствует преобразованию тепловой энергии пара в кинетическую энергию, а также

- преобразование кинетической энергии в механическую энергию посредством комплекта подвижных лопаток.

Турбина рассчитана на максимальную тепловую мощность парогенератора. Однако подобную максимальную тепловую мощность иногда бывает необходимо увеличить, например, если требуется увеличить подачу электроэнергии, вырабатываемую электрогенератором, который приводится в действие турбиной. В этом случае происходит переход от нижнего максимума тепловой мощности к верхнему максимуму тепловой мощности. В этом случае турбину приходится настраивать для работы в подобном режиме верхнего максимума тепловой мощности.

Для этого обычно одни активные части турбины меняются на другие, способные работать в условиях повышенного расхода пара. Активные части турбины - это части, обеспечивающие расширение пара, т.е. комплекты неподвижных лопаток и комплекты подвижных лопаток, установленных на роторе.

Подобный процесс является длительным и дорогостоящим, поскольку приходится менять ротор с установленными на нем подвижными лопатками, а также комплекты неподвижных лопаток.

Второе решение заключается в том, чтобы подготовиться к повышению максимальной тепловой мощности и спроектировать соответствующим образом турбину, например, проектируя турбину для верхнего максимума тепловой мощности и обеспечивая средства для ограничения расхода пара с целью эксплуатации турбины при нижнем максимуме тепловой мощности. Соответственно, по первому варианту данного второго решения возможно эксплуатировать турбину при нижнем максимуме тепловой мощности за счет ограничения, в целом, расхода пара при помощи паровпускных клапанов. По второму варианту данного решения возможно эксплуатировать турбину при нижнем максимуме тепловой мощности за счет ограничения расхода пара, проходящего через один из секторов первого комплекта неподвижных лопаток модуля высокого давления.

Между тем, недостаток подобного второго решения заключается в том, что снижается эффективность турбины.

Настоящее решение направлено на устранение подобных недостатков.

Изобретением предлагается, в частности, способ, позволяющий настроить турбину для перехода от первого максимума тепловой мощности, например нижнего максимума тепловой мощности парогенератора, ко второму максимуму тепловой мощности, например верхнему максимуму тепловой мощности парогенератора, с заменой небольшого количества частей в течение короткого периода времени и сохранением приемлемой эффективности для подобных двух максимумов тепловой мощности. Изобретение позволяет, в частности, производить настройку турбины во время проведения обычных регламентных работ по обслуживанию электростанции, примерно раз в две недели.

Изобретение, следовательно, состоит из способа переналадки паровой турбины, пар для которой создается парогенератором, способ позволяет настроить турбину для перехода от первого максимума тепловой мощности парогенератора ко второму максимуму тепловой мощности парогенератора, турбина включает в себя модуль высокого давления, содержащий, по меньшей мере, один комплект неподвижных лопаток, а также, по меньшей мере, один комплект подвижных лопаток, установленных на роторе.

Способ по изобретению предусматривает замену в модуле высокого давления, по меньшей мере, одного комплекта неподвижных лопаток, рассчитанных на работу в условиях первого максимума тепловой мощности на, по меньшей мере, один комплект неподвижных паток, рассчитанных на работу в условиях второго максимума тепловой мощности. Помимо этого, комплект или комплекты подвижных лопаток рассчитаны на работу в условиях первого и второго максимума тепловой мощности, ротор и комплект или комплекты подвижных лопаток модуля высокого давления остаются неизменными при переходе от первого максимума тепловой мощности ко второму максимуму тепловой мощности.

Таким образом, использование комплектов подвижных лопаток, изначально рассчитанных на эксплуатацию в условиях двух максимумов тепловой мощности, позволяет избежать одновременной замены ротора, сохраняя приемлемую эффективность для двух максимумов тепловой мощности. Помимо этого, замена, по меньшей мере, одного комплекта неподвижных лопаток в модуле высокого давления, без изменения его высоты, позволяет настроить турбину для работы в условиях повышенного или пониженного максимума тепловой мощности.

Комплект или комплекты подвижных лопаток могут быть рассчитаны для выдерживания механических напряжений, возникающих как при первом, так и при втором максимумах тепловой мощности таким образом, чтобы для каждой ступени модуля высокого давления комбинация, состоящая из комплекта подвижных лопаток и комплекта неподвижных лопаток, была настроена с термо-аэродинамической точки зрения для работы в условиях первого и второго максимумов тепловой мощности.

Каждый комплект неподвижных лопаток, рассчитанный на работу в условиях второго максимума тепловой мощности, а также заменяющий комплект неподвижных лопаток, рассчитанный на работу в условиях первого максимума тепловой мощности, могут быть комплектом неподвижных лопаток, который обеспечивает проход потока пара a) большего, чем заменяемый комплект неподвижных лопаток, если первый максимум тепловой мощности является нижним максимумом тепловой мощности, а второй максимум тепловой мощности является верхним максимумом тепловой мощности, или b) меньшего, чем заменяемый комплект неподвижных лопаток, если первый максимум тепловой мощности является верхним максимумом тепловой мощности, а второй максимум тепловой мощности является нижним максимумом тепловой мощности.

Таким образом, каждый комплект неподвижных лопаток, настроенный для работы в условиях второго максимума тепловой мощности, заменяющий комплект неподвижных лопаток, рассчитанный на работу в условиях первого максимума тепловой мощности, может содержать лопатки, расположенные относительно друг друга таким образом, чтобы площадь потока пара между двумя смежными лопатками была a) больше площади потока пара между двумя смежными лопатками заменяемого комплекта неподвижных лопаток, если первый максимум тепловой мощности является нижним максимумом тепловой мощности, а второй максимум тепловой мощности является верхним максимумом тепловой мощности, или b) меньше площади потока пара между двумя смежными лопатками заменяемого комплекта неподвижных лопаток, если первый максимум тепловой мощности является верхним максимумом тепловой мощности, а второй максимум тепловой мощности является нижним максимумом тепловой мощности.

Способ может быть способом переналадки турбины, содержащей модуль среднего давления, сопряженный с модулем высокого давления, упомянутый модуль среднего давления содержит, по меньшей мере, один комплект неподвижных лопаток, а также, по меньшей мере, один комплект подвижных лопаток, установленных на роторе модуля высокого давления. В этом случае способ может дополнительно содержать этап, заключающийся в ограничении величины a) суммарной тяги, воздействующей на ротор и создаваемой разницей давлений между впускным и выпускным отверстиями каждого комплекта подвижных лопаток в модуле высокого давления, а также b) суммарной тяги, воздействующей на ротор и создаваемой разницей давлений между впускным и выпускным отверстиями каждого комплекта подвижных лопаток в модуле среднего давления.

Этап ограничения величины суммарной тяги, воздействующей на ротор, может содержать нагнетание пара на упорную поверхность ротора, расположенную, по существу, ортогонально оси ротора. Упорная поверхность может быть разграничена за счет изменения диаметра ротора.

Паровая турбина может быть активной турбиной. Существуют два основных типа паровых турбин, часто объединяемые в одной и той же машине. С одной стороны, существуют активные турбины, в которых расширение происходит преимущественно (например, по меньшей мере, в 85% случаях) в комплектах неподвижных лопаток. Паровые турбины второго типа - это реактивные турбины, в которых расширение разделено между комплектами неподвижных и подвижных лопаток. Степень реактивности определяется распределением расширения между комплектами лопаток.

Другие признаки и преимущества настоящего изобретения станут более понятны после ознакомления со следующим описанием, предлагаемым в качестве иллюстративного и неограничивающего примера со ссылкой на прилагаемые чертежи, на которых:

- на фиг.1 показан вид в продольном сечении модуля высокого давления и модуля низкого давления паровой турбины, применительно к которой реализован способ по изобретению,

- на фигурах с 2А по 2С показаны различные положения комплекта неподвижных лопаток турбины и

- на фиг.3 показан вид части турбины на фиг.1.

Как показано на фиг.1, паровая турбина 1 содержит модуль 2 высокого давления, объединенный с модулем 3 среднего давления, также именуемый комбинированный корпус высокого давления/среднего давления. Модуль 2 высокого давления и модуль 3 среднего давления также могут быть отдельными. Пар из парогенератора (не показан) непрерывно проходит через модуль 2 высокого давления и модуль 3 среднего давления. Пар, таким образом, попадает в модуль 2 высокого давления через впускную трубку 21 модуля 2 высокого давления и выходит из него через выпускную трубку 22. Затем пар направляется на модуль 3 среднего давления через впускную трубку 31 и выходит из модуля 3 среднего давления через выпускную трубку 32.

Модуль 2 высокого давления включает в себя множество ступеней. По варианту осуществления, показанному на фиг.1, модуль 2 высокого давления содержит девять ступеней с E1 no E9. Может использоваться любое количество ступней. Каждая ступень содержит комплект 2А неподвижных лопаток и комплект 2В подвижных лопаток. Комплекты 2В подвижных лопаток установлены на роторе 4 и обеспечивают вращение ротора 4 за счет кинетической энергии пара, проходящего через комплекты 2А неподвижных лопаток.

Обводные трубы 5 предназначены для сброса пара и подачи его на станцию подогрева воды, что позволяет повысить эффективность установки.

Аналогично модуль 3 среднего давления содержит множество ступеней, в каждой из которых имеется комплект 3A неподвижных лопаток и комплект 3B подвижных лопаток, закрепленных на роторе 4. Модуль 3 среднего давления также содержит обводные трубы.

Способ по изобретению позволяет настроить турбину 1 для перехода от первого максимума тепловой мощности парогенератора ко второму максимуму тепловой мощности парогенератора, например, от нижнего максимума тепловой мощности к верхнему максимумом тепловой мощности.

Для этих целей используется турбина 1, в которой комплекты 2В подвижных лопаток модуля 2 высокого давления рассчитаны на работу в условиях либо первого максимума тепловой мощности, либо второго максимума тепловой мощности.

Комплекты 2B подвижных лопаток, таким образом, рассчитаны:

- с одной стороны, одинаково хорошо выдерживать механические напряжения, возникающие при первом максимуме тепловой мощности, а также механические напряжения, возникающие при втором максимуме тепловой мощности, а

- с другой стороны, выполнены таким образом, чтобы в каждой ступени модуля высокого давления комбинация из комплекта 2B подвижных лопаток и комплекта 2А неподвижных лопаток была настроена с термо-аэродинамической точки зрения (например, за счет их профиля или расположения) для работы при первом максимуме тепловой мощности, а также втором максимуме тепловой мощности.

Для настройки комплектов подвижных лопаток к работе в условиях механических напряжений, связанных с двумя крайними тепловыми мощностями, определяют профиль, размеры, материал, конструкцию и функциональные характеристики, наиболее подходящие для сил (например, центробежных сил), которые могут воздействовать на подобные комплекты лопаток во время их использования.

Для оптимизации эффективности профили и размеры комплектов 2A подвижных лопаток выбираются как функциональная зависимость от аналогичных параметров комплекта 2B неподвижных лопаток, их размеры и относительное расположение должны обеспечивать оптимальное использование вышеупомянутой комбинации независимо от тепловой мощности.

Для работы в условиях двух максимумов тепловой мощности, комплект 2B подвижных лопаток и комплект 2А неподвижных лопаток могут быть рассчитаны за счет управления на каждой ступени турбины 1 снижением энтальпии пара и степенью реактивности таким образом, чтобы снижение энтальпии пара и степень реактивности соответствовали диапазону настойки, необходимой для использования комплектов лопаток в условиях двух максимумов тепловой мощности. Например, поскольку для каждого максимума тепловой мощности существует оптимальное значение снижения энтальпии пара и степени реактивности, в качестве значения, подходящего для обеих мощностей, может использоваться функциональная зависимость двух оптимальных значений (например, среднее арифметическое или другая математическая функция).

Способ по изобретению заключается в замене в модуле 2 высокого давления, по меньшей мере, одного комплекта 2А неподвижных лопаток таким образом, чтобы он был рассчитан, в особенности по профилю, для работы в условиях требуемого максимума тепловой мощности, в частности верхнего максимума тепловой мощности, если турбина до этого эксплуатировалась при нижнем максимуме тепловой мощности или наоборот.

Замена осуществляется на первых ступенях модуля 2 высокого давления. Количество заменяемых комплектов 2А неподвижных лопаток функционально зависит от различий между первым максимумом тепловой мощности и вторым максимумом тепловой мощности.

По одному из вариантов осуществления лопатки заменяемых комплектов регулируются. Точнее, рассматриваемые лопатки комплектов 2А неподвижных лопаток располагаются таким образом, чтобы:

- увеличивать площадь потока пара в комплектах 2А неподвижных лопаток для верхнего максимума тепловой мощности, или

- уменьшать площадь потока пара в комплектах 2А неподвижных лопаток для нижнего максимума тепловой мощности.

Таким образом, на фигурах 2А и 2B показаны два возможных варианта расположения комплекта 2А неподвижных лопаток для нижнего максимума тепловой мощности, а на фиг.2C показан один возможный вариант расположения комплекта 2А неподвижных лопаток для верхнего максимума тепловой мощности. Размеры указаны в сантиметрах. Следует заметить, что у комплекта 2А неподвижных лопаток, настроенных для работы в условиях верхнего максимума тепловой мощности, смежные лопатки расположены относительно друг друга таким образом, чтобы площадь потока пара, проходящего между двумя лопатками, была больше (фиг.2С), чем площадь потока пара, проходящего между смежными лопатками комплекта 2А неподвижных лопаток, настроенных для работы в условиях нижнего максимума тепловой мощности (фигуры 2А и 2B).

Разница давлений между впускными и выпускными отверстиями комплектов 2B подвижных лопаток в каждом из модулей 2 высокого давления и модулей 3 низкого давления создает суммарную тягу на роторе 4. При переходе от первого максимума тепловой мощности, например более низкого, ко второму максимуму тепловой мощности, например более высокому, сумма этих двух тяг должна быть сбалансирована, т.е. должна быть ограничена пороговым значением, исключающим повреждение ротора 4.

Для этого, как показано, в том числе на фиг.3, которая является детализированным видом по фиг.1, пар направляется из отводной трубки 5 (показана на фиг.1) модуля 2 высокого давления на упорную поверхность 6 ротора 4 по трубке 7. Упорная поверхность 6, например, расположена между модулем 2 высокого давления и модулем 3 среднего давления, в центральной части корпуса, в случае использования комбинированного корпуса для высокого давления/среднего давления. Упорная поверхность 6 проходит, по существу, ортогонально оси ротора 4 и расположена между областью 4а и 4b ротора, разграничивая модуль 2 высокого давления от модуля 3 среднего давления, область 4b является областью ротора 4 большего диаметра, чем область 4a. Таким образом, упорная поверхность 6 подвержена давлению, сбрасываемому из модуля 2 высокого давления, что позволяет ограничивать суммарную тягу ротора 4.

Пар, выходящий из трубки 7, затем направляется в сторону камеры 8, тогда как камера 9 собирает пар и ограничивает утечку пара.


СПОСОБ ПЕРЕНАЛАДКИ ПАРОВОЙ ТУРБИНЫ
СПОСОБ ПЕРЕНАЛАДКИ ПАРОВОЙ ТУРБИНЫ
СПОСОБ ПЕРЕНАЛАДКИ ПАРОВОЙ ТУРБИНЫ
СПОСОБ ПЕРЕНАЛАДКИ ПАРОВОЙ ТУРБИНЫ
СПОСОБ ПЕРЕНАЛАДКИ ПАРОВОЙ ТУРБИНЫ
Источник поступления информации: Роспатент

Showing 71-80 of 218 items.
27.04.2015
№216.013.45db

Лопатка с аэродинамическим профилем и осевая турбомашина

Лопатка с аэродинамическим профилем включает в радиальном направлении внутреннюю полочную область и внешнюю венечную область, а в осевом направлении - переднюю входную кромку и заднюю выходную кромку, между полочной областью и венечной областью. Лопатка снабжена корытцем, вогнутым в радиальном...
Тип: Изобретение
Номер охранного документа: 0002549387
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.47ef

Турбомашина

Турбомашина работает при повышенной рабочей температуре, со стационарными и вращающимися компонентами (12, 16), между которыми для предотвращения контакта предусмотрен зазор. Зазор в состоянии останова машины принимает первое значение, а в установившемся режиме машины принимает второе значение....
Тип: Изобретение
Номер охранного документа: 0002549922
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.48ad

Подушка опорного подшипника для турбины

Изобретение относится к гидродинамическим подшипникам, в частности, для тяжелых роторов в силовых установках. Гидродинамический сегментный подшипник содержит несколько подушек (131), распределенных по окружности вокруг ротора большой паровой турбины. Каждая подушка (131) установлена на...
Тип: Изобретение
Номер охранного документа: 0002550112
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.48d7

Способ управления переключателем ответвлений под нагрузкой для цепи силового возбуждения, соответствующий блок и цепь силового возбуждения, содержащая такой блок

Использование: в области электротехники. Технический результат - повышение стабильности работы генератора. Заявлен способ управления переключателем ответвлений под нагрузкой для цепи (1) силового возбуждения, которая содержит генератор (3), повышающий трансформатор (5), снабженный...
Тип: Изобретение
Номер охранного документа: 0002550154
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4961

Регулятор газотурбинной установки и способ ее регулирования

Изобретение относится к энергетике. Способ работы газотурбинной установки в переходном режиме, при котором регулятор определяет значения управляющей команды для массового расхода входящего воздуха, для массового расхода топлива и для массового расхода воды или пара, если вода и пар...
Тип: Изобретение
Номер охранного документа: 0002550292
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4963

Горелка промежуточного подогрева

Изобретение относится к области энергетики. Горелка (1) промежуточного подогрева содержит канал (2) с трубкой (3), расположенной в канале с возможностью впрыскивания топлива в плоскости (4), перпендикулярной продольной оси (15) канала, причем конец (14) трубки (3) расположен по потоку перед...
Тип: Изобретение
Номер охранного документа: 0002550294
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.49af

Центробежная форсунка с выступающими частями

Центробежная форсунка содержит кольцеобразный кожух с ограничивающими стенками, имеющий входную область и выходную область в направлении главного потока, по меньшей мере две лопатки, которые расположены в кольцеобразном кожухе. Каждая лопатка имеет обтекаемый профиль поперечного сечения,...
Тип: Изобретение
Номер охранного документа: 0002550370
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a0c

Система газоочистки металлургической установки и способ очистки отходящего газа

Изобретение относится к системе газоочистки металлургической установки, способу очистки отходящего газа и металлургической установке, содержащей упомянутую систему газоочистки. Система газоочистки содержит, по меньшей мере, один блок газоочистки, устройство для создания потока отходящего газа,...
Тип: Изобретение
Номер охранного документа: 0002550463
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a72

Горелка предварительного смешивания

Настоящее изобретение относится к горелке предварительного смешивания для работы теплового генератора, по меньшей мере, содержащей вихревой генератор, смесительную секцию ниже по потоку от вихревого генератора и переходной элемент для передачи закрученного потока от вихревого генератора в...
Тип: Изобретение
Номер охранного документа: 0002550565
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4d21

Блок пояса роговского

Изобретение относится к метрологии, в частности к датчикам тока. Блок пояса Роговского для измерения высокочастотных электрических токов содержит витковые секции, соединенные последовательно с образованием связи с уменьшенным влиянием обратного импеданса. Причем по меньшей мере две витковые...
Тип: Изобретение
Номер охранного документа: 0002551259
Дата охранного документа: 20.05.2015
Showing 71-80 of 206 items.
20.04.2015
№216.013.4461

Способ эксплуатации газотурбинной установки и газотурбинная установка для реализации данного способа

Изобретение относится к энергетике. Способ эксплуатации газотурбинной установки, в которой сжатый воздух выходит из компрессора и подается для охлаждения термически нагруженных компонентов камеры сгорания или турбины. При этом, по меньшей мере, один поток охлаждающего воздуха предназначен для...
Тип: Изобретение
Номер охранного документа: 0002549003
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.45db

Лопатка с аэродинамическим профилем и осевая турбомашина

Лопатка с аэродинамическим профилем включает в радиальном направлении внутреннюю полочную область и внешнюю венечную область, а в осевом направлении - переднюю входную кромку и заднюю выходную кромку, между полочной областью и венечной областью. Лопатка снабжена корытцем, вогнутым в радиальном...
Тип: Изобретение
Номер охранного документа: 0002549387
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.47ef

Турбомашина

Турбомашина работает при повышенной рабочей температуре, со стационарными и вращающимися компонентами (12, 16), между которыми для предотвращения контакта предусмотрен зазор. Зазор в состоянии останова машины принимает первое значение, а в установившемся режиме машины принимает второе значение....
Тип: Изобретение
Номер охранного документа: 0002549922
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.48ad

Подушка опорного подшипника для турбины

Изобретение относится к гидродинамическим подшипникам, в частности, для тяжелых роторов в силовых установках. Гидродинамический сегментный подшипник содержит несколько подушек (131), распределенных по окружности вокруг ротора большой паровой турбины. Каждая подушка (131) установлена на...
Тип: Изобретение
Номер охранного документа: 0002550112
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.48d7

Способ управления переключателем ответвлений под нагрузкой для цепи силового возбуждения, соответствующий блок и цепь силового возбуждения, содержащая такой блок

Использование: в области электротехники. Технический результат - повышение стабильности работы генератора. Заявлен способ управления переключателем ответвлений под нагрузкой для цепи (1) силового возбуждения, которая содержит генератор (3), повышающий трансформатор (5), снабженный...
Тип: Изобретение
Номер охранного документа: 0002550154
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4961

Регулятор газотурбинной установки и способ ее регулирования

Изобретение относится к энергетике. Способ работы газотурбинной установки в переходном режиме, при котором регулятор определяет значения управляющей команды для массового расхода входящего воздуха, для массового расхода топлива и для массового расхода воды или пара, если вода и пар...
Тип: Изобретение
Номер охранного документа: 0002550292
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4963

Горелка промежуточного подогрева

Изобретение относится к области энергетики. Горелка (1) промежуточного подогрева содержит канал (2) с трубкой (3), расположенной в канале с возможностью впрыскивания топлива в плоскости (4), перпендикулярной продольной оси (15) канала, причем конец (14) трубки (3) расположен по потоку перед...
Тип: Изобретение
Номер охранного документа: 0002550294
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.49af

Центробежная форсунка с выступающими частями

Центробежная форсунка содержит кольцеобразный кожух с ограничивающими стенками, имеющий входную область и выходную область в направлении главного потока, по меньшей мере две лопатки, которые расположены в кольцеобразном кожухе. Каждая лопатка имеет обтекаемый профиль поперечного сечения,...
Тип: Изобретение
Номер охранного документа: 0002550370
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a0c

Система газоочистки металлургической установки и способ очистки отходящего газа

Изобретение относится к системе газоочистки металлургической установки, способу очистки отходящего газа и металлургической установке, содержащей упомянутую систему газоочистки. Система газоочистки содержит, по меньшей мере, один блок газоочистки, устройство для создания потока отходящего газа,...
Тип: Изобретение
Номер охранного документа: 0002550463
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a72

Горелка предварительного смешивания

Настоящее изобретение относится к горелке предварительного смешивания для работы теплового генератора, по меньшей мере, содержащей вихревой генератор, смесительную секцию ниже по потоку от вихревого генератора и переходной элемент для передачи закрученного потока от вихревого генератора в...
Тип: Изобретение
Номер охранного документа: 0002550565
Дата охранного документа: 10.05.2015
+ добавить свой РИД