×
10.01.2015
216.013.1d56

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ ДВУМЕРНОГО ИЗОБРАЖЕНИЯ БИОСИГНАЛА И ЕГО АНАЛИЗА

Вид РИД

Изобретение

Аннотация: Изобретение относится к средствам анализа изображения сигнала. Техническим результатом является повышение степени информативности данных анализа сигнала. В способе выбирают две подсистемы, в которых процессы наблюдают в виде синхронизированных квазипериодических сигналов x(t) и x(t), осуществляют синхронную запись сигналов в течение времени T, в координатах x(t)-x(t) строят фазовый портрет исследуемой динамической системы на интервале T, определяют замкнутую кривую, оконтуривающую портрет, определяют дескрипторы Фурье замкнутой кривой, осуществляют классификацию системы посредством обучаемого классификатора, построенного в пространстве дескрипторов Фурье. 2 з.п. ф-лы, 13 ил.

Изобретение относится к области медицины и анализу изображений, в частности к анализу многоканальных биосигналов, отражающих физиологические процессы в системах организма, и может быть использовано в технике регистрации и анализа кардиосигналов.

В существующей практике исследования квазипериодических биологических сигналов используются следующие способы их представления: воспроизведение биосигнала, например, электрокардиосигнала (ЭКС) на масштабированном бумажном носителе; воспроизведение ЭКС на экране монитора; выведение на экран дисплея неподвижного изображения фрагментов, записанного в память биосигнала. Эти способы характеризуются низкой оперативностью диагностирования, так как требуют временных затрат на дешифрацию информации, связанную с вычислительными процедурами. Это приводит к утомляемости оператора и снижению качества диагностирования.

Известен способ представления ЭКС, посредством которого кардиосигнал расчленяют на RR-отрезки, которые затем накладывают последовательно один на другой, синхронизируя их по максимуму RR-зубца на кардиомониторе. В результате наложения RR-отрезков друг на друга изображение ЭКС "оживает", становятся заметными малейшие флюктуации временных интервалов, амплитуд и форм зубцов ЭКС. Здесь возможны два вида наложения: со стиранием предыдущих отрезков и без стирания. В первом случае оператору предоставляется возможность оперативного обнаружения отклонений любого из параметров ЭКС и качественной оценки диапазона отклонений. Во втором случае оператор располагает интегральной картиной изменения структуры ЭКС, позволяющей произвести количественную оценку диапазона обнаруженного отклонения параметра (патент РФ №2033076 МПК7 A61B 5/04 «Способ представления электрокардиосигнала» [Текст] / Бакаев В.М.; Бакаев М.В.).

Недостаток данного способа состоит в сложности высокоточной временной синхронизации кардиосигналов. Формирование массива данных при записи сигналов электрокардиограммы предполагает их разделение по отдельным кардиоциклам с последующей статистической обработкой как внутри каждого кардиоцикла, так и по их межпериодным характеристикам в выбранном интервале обработки. При этом точность определения межпериодных статистических характеристик сигналов кардиоциклов определяется точностью временной привязки (синхронизации) каждого кардиоцикла по его характерным точкам или их совокупности. Наиболее известным способом синхронизации является синхронизация по самой характерной точке биосигнала, например, если это ЭКС - R-зубцу. Однако большинство биосигналов являются квазипериодическими сигналами, что не позволяет осуществить амплитудную привязку к характерной точке с требуемой точностью.

Наиболее близким к заявленному способу является способ формирования двумерного изображения биосигнала и его анализа, заключающийся в том, что в каждой точке исходного временного сигнала y(t) численными методами оценивается первая производная dy/dt и вся последующая обработка сигнала выполняется на фазовой плоскости в координатах y(t) - dy/dt. Компьютерная обработка ЭКГ предусматривает разделение фазовой траектории на отдельные сердечные циклы, селекцию траекторий с одинаковой морфологией (отбраковка ненадежных траекторий, вызванных артефактами либо экстрасистолами), усреднение траекторий в фазовом пространстве с последующей оценкой "эталонного" цикла во временной области по усредненной фазовой траектории. Этот способ позволяет одновременно оценивать как амплитудные, так и скоростные параметры любых элементов электрокардиосигнала, что дает возможность с высокой точностью оценить форму ЭКГ и обнаружить в ней такие отклонения, которые обычно скрыты от врача при традиционном анализе ЭКГ во временной области (Файнзильберг Л.С. Компьютерный анализ и интерпретация электрокардиограмм в фазовом пространстве [Текст] / Системнi дослiдження та iнформацiйнi технологii, 2004, №1. С. 32-46).

Недостатки данного способа формирования двумерного изображения биосигнала и его анализа обуславливаются следующими факторами. Отличительной особенностью способа является использование дополнительной информации, содержащейся в скоростных характеристиках исследуемого процесса. Однако скоростные характеристики процесса, определяемые на основе дифференцирования цифрового сигнала, не являются однозначными и определяются как выбранными правилами (параметрами окна цифрового фильтра) дифференцирования, так и способом фильтрации исходного сигнала. При анализе посредством этого способа имеется возможность использовать статистические параметры изображения, например, для электрокардиосигнала это параметр σ (рассеивание точек фазовых траекторий), дающий интегральное представление о вариабельности морфологии, отдельных циклов ЭКГ; угол α ориентации усредненной фазовой траектории, главным образом характеризующий соотношение амплитуд зубцов комплекса QRS; параметры симметрии отдельных фрагментов усредненной фазовой траектории относительно оси , которые характеризуют соотношение скоростей на восходящем и нисходящем участках соответствующих волн, в частности волны Т. Однако эти параметры не являются самодостаточными и используются как дополнительные параметры при оценке ЭКГ в стандартных отведениях.

Технической задачей предлагаемого способа является увеличение объема полезной информации, извлекаемой из биологических сигналов, и тем самым повышение точности диагностических методов, в частности повышение точности дифференциальной диагностики сердечно-сосудистых заболеваний, путем использования дополнительной информации о ритмической структуре параметров кардиосигнала, а также повышение степени автоматизации процесса анализа и классификации живой системы, информацию о которой можно получить посредством синхронного мониторинга двух и более квазипериодических сигналов в ее подсистемах.

Поставленная задача достигается тем, что в исследуемой живой системе выбирают две подсистемы, процессы в которых наблюдаются в виде синхронизированных квазипериодических сигналов x1(t) и x2(t), осуществляют синхронную запись этих сигналов в течение времени Т, определяемом целями исследований и природой исследуемой системы, в координатах x1(t)-x2(t) строят фазовый портрет исследуемой динамической системы на интервале Т, затем определяют замкнутую кривую, оконтуривающую этот портрет, определяют дескрипторы Фурье полученной замкнутой кривой, после чего осуществляют классификацию исследуемой системы посредством обучаемого классификатора, построенного в пространстве дескрипторов Фурье.

Для обучения классификатора формируют обучающую выборку, состоящую из изображений замкнутых кривых, оконтуривающих фазовые портреты динамических систем известных классов, построенных в координатах x1(t)-x2(t), определяют дескрипторы Фурье всех кривых, входящих в обучающую выборку, определяют число дескрипторов Ki для каждой i-й кривой обучающей выборки, определяют кривую с максимальным числом дескрипторов Кmax, к дескрипторам каждой i-й кривой в высокочастотной области добавляют Кmax-Ki дескрипторов с нулевым значением амплитуды, все спектральные составляющие в спектре i-го контура умножают на величину Kmax/Ki, задавшись ошибкой восстановления кривых по дескрипторам Фурье и оптимизирующим критерием, определяют число дескрипторов К, используемых для классификации динамической системы, и обучают нейронную сеть для классификации кривых с К нейронами в первом слое.

Для классификации исследуемой динамической системы по дескрипторам Фурье к ее дескрипторам Фурье в высокочастотную область добавляют Кmax - дескрипторов Фурье с нулевой амплитудой, умножают все дескрипторы на величину Кmax/ и из Кmax полученных дескрипторов выбирают К дескрипторов с младшими номерами, которые подают на К входных нейронов классификатора.

На фиг.1 показана структурная схема устройства, реализующего данный способ.

На фиг.2 представлена схема алгоритма, реализующего представленный способ.

На фиг.3 представлены детализированные схемы алгоритмов, реализующие отдельные укрупненные блоки схемы алгоритма фиг.2.

На фиг.4 представлены примеры синхронной записи двух кардиосигналов, отражающих состояние двух подсистем: периферических сосудов и сердца.

На фиг.5 показан фазовый портрет динамической системы, построенный на основе двух сигналов, представленных на фиг.4.

На фиг.6 показана замкнутая кривая, полученная в результате оконтуривания фазового портрета фиг.5.

На фиг.7 показаны дескрипторы Фурье оконтуривающей замкнутой кривой, представленной на фиг.6.

На фиг.8 показаны примеры восстановления границы контура по дескрипторам Фурье: М - число коэффициентов Фурье, использованных при восстановлении.

На фиг.9 приведены примеры параметрических кривых исходной и восстановленной оконтуривающей кривой фазового портрета.

На фиг.10 приведены графики зависимости информационных потерь от числа дескрипторов для двух оконтуривающих кривых.

Способ осуществляется с помощью устройства, структурная схема которого показана на фиг.1. В качестве квазипериодических сигналов x1(t) и x2(t) в данном устройстве используются фотоплетизмосигнал и ЭКС. Устройство состоит из датчика пульса 1 - фотоэлектрический датчик (устанавливается на подушечку большого пальца левой руки), датчика ЭКС 2 (усилитель биопотенциалов с электродами), двухканального аналого-цифрового интерфейса 3, к двум входам которого подключены выходы датчиков 1 и 2, ЭВМ 4, к системной шине которой подключен аналоговый интерфейс 3, клавиатуры 5, подключенной к порту ЭВМ 4, и монитора 6, подключенного к выходу ЭВМ 4.

Способ осуществляется согласно схеме алгоритма, представленной на фиг.2. В блоке 1 осуществляется ввод в компьютер времени мониторинга биосигналов Т и шага дискретизации Δt. В блоке 2 осуществляется синхронный ввод в компьютер двух сигналов x1(t) и x2(t), отражающих динамическое состояние системы. Детализированная схема алгоритма синхронного ввода представлена на фиг.3а.

В блоке 3 осуществляется построение фазового портрета динамической системы в координатах x1(t)-x2(t). Детализированная схема алгоритма построения фазового портрета в этих координатах представлена на фиг.3б. В блоке 13 определяют размер портрета в пикселях, а в блоке 14 - реальные динамические диапазоны сигналов. В блоке 15 определяют масштабные коэффициенты, позволяющие выразить отсчеты сигналов в координатах пикселей. В блоках 16 и 17 непосредственно получаем фазовый портрет системы путем активации пикселей в соответствующих координатах. При этом вполне возможно, что некоторые пиксели будут активироваться неоднократно, что при рассматриваемом способе построения двумерного изображения не имеет значения.

Оконтуривание фазового портрета осуществляется путем использования морфологических операций, реализованных в блоках 4 и 5. Непосредственно оконтуривание фазового портрета осуществляют посредством морфологической операции bwperim - выделение границы бинарного объекта (блок 5 фиг.2). Так как морфологический оператор bwperim оконтуривает бинарный объект без дыр, то фазовый портрет не должен содержать внутренних дыр. Для выполнения этого условия в блоке 4 осуществляют морфологическую операцию дилатации.

Замкнутую кривую фиг.6 разлагают в ряд Фурье, определяют соответствующие дескрипторы Фурье, модули которых используют как информативные признаки на входе нейронной сети прямого распространения (блоки 6 и 7 фиг.2).

На фиг.7 показаны модули дескрипторов Фурье, полученные для контура, показанного на фиг.6.

Для того чтобы система распознавания была адекватна, необходимо, чтобы частотный диапазон, соответствующий дескриптору Фурье с определенным номером и, не зависел от числа отсчетов в оконтуривающей фазовый портрет кривой. В общем случае в различных кривых, определяющих границы фазового портрета, содержится различное число отсчетов. В процессе формировании информативных признаков из спектральных отсчетов они должны соответствовать одним и тем же частотным диапазонам. При одинаковой частоте дискретизации и различных количествах отсчетов в контурах это требование нарушается.

Блок классификации 7 может работать в режиме обучения или в режиме классификации. Отличие входных данных в этих режимах состоит в том, что в режиме обучения данные на входе блока классификации представлены в виде матрицы, строки которой содержат информацию о дескрипторах Фурье соответствующей оконтуривающей кривой и классу, к которому принадлежит динамическая система с соответствующим фазовым портретом. В режиме классификации на входе блока классификации 7 присутствует только вектор с дескрипторами Фурье соответствующей оконтуривающей кривой.

На фиг.3в представлена схема алгоритма работы блока классификации 7 в режиме обучения. На первом этапе обучения классификатора задают общее число отсчетов в оконтуривающих кривых, которое должно быть одинаковым для всех контуров контрольных и обучающих выборок. Это число определяют по результатам статистических исследований. Для фазового портрета, отражающего динамику сердечно-сосудистой системы, число отсчетов (пикселей) в контурах колеблется от 500 до 30000. Для того чтобы иметь возможность сравнивать дискретные отсчеты частот, соответствующие разным контурам, необходимо, чтобы контуры имели одно и то же количество отсчетов (априорно полагается, что частота дискретизации у них одинакова и равна единице, то есть один пиксель). Чтобы выровнять число отсчетов в выборке анализируемых контуров, необходимо довести число отсчетов в каждом контуре до максимального в выборке Кmax.

С этой целью высокочастотную часть спектральной полосы заполняют нулями и тем самым доводят число отсчетов в спектре каждого контура границы сегмента до максимального, например 30000.

Таким образом, в процессе обучения классификатора осуществляют следующую цепочку преобразований: Kmax→ дополнение нулями спектральных отсчетов в области высоких частот до Кmax, которая осуществляется в блоке 19.

Характерной особенностью дескрипторов Фурье является то, что их амплитуда связана с частотой. Поэтому любые частотные морфизмы в реальном сигнале приводят к амплитудным изменениям спектральных составляющих. Критерием адекватности любых морфизмов в частотной области служат обратное преобразование Фурье и соответствующие различия между прямым и обратным преобразованием Фурье.

Дополнение нулями спектра соответствует интерполяции в пространстве сигналов, то есть появлению дополнительных отсчетов между исходными отсчетами. Так как кривая дискретизирована с предельной частотой дискретизации, то промежуточные отсчеты попадают в те же координаты, что и исходные. В том случае, если спектр определяется на контуре, то координаты отсчета определяют и величину отсчета. Тогда дополнительные отсчеты имеют значения, равные значениям в смежных узлах интерполяции. Это ведет к нарушению требований равенства Парсеваля. Чтобы сохранить энергетический эквивалент между пространством сигналов и пространством частот, необходимо увеличить амплитуду дескрипторов пропорционально числу промежуточных отсчетов, появившихся в пространстве сигналов в результате дополнения спектра нулями. Поэтому на втором этапе обучения классификатора все спектральные составляющие в спектрах i-й кривой умножают на величину Kmax/Ki, где Ki - количество отсчетов в i-й кривой (блок 20).

Третий этап - оптимизация числа используемых дескрипторов. Для оптимального выбора числа анализируемых дескрипторов (под оптимальностью здесь понимается минимизация их числа) необходимо осуществить обратные преобразования Фурье модифицированного спектра контура и сравнить его с исходным контуром.

Учитывая, что преобразование Фурье обратимо, по дескрипторам Фурье можем восстановить границы контура исследуемого фазового портрета. В любом случае для восстановления контура используется столько дескрипторов, сколько было получено отсчетов на контуре, то есть Кmax. Если часть дескрипторов приравнять к нулю, то, при использовании нейросетевой классификационной модели узлы входного слоя нейронной сети, соответствующие этим дескрипторам, можно исключить, что приводит к значительному упрощению модели классификатора.

Предположим, что вместо всех коэффициентов Фурье α(u) используются только первые М из них. Это значит, что при u>М-1 α(u)=0. Результатом восстановления окажется следующее приближение :

для

Так как при вычислении каждой компоненты используется лишь М членов, k по-прежнему пробегает весь диапазон от 0 до Кmax-1, т.е. в приближенной кривой будет то же самое число точек, но для восстановления их координат используется меньшее число дескрипторов. Из рассмотрения преобразования Фурье следует, что высокочастотные составляющие описывают мелкие детали, тогда как низкочастотные компоненты определяют общую форму границы. Поэтому, чем меньше М, тем больше деталей границы теряется.

На фиг.8 представлена граница произвольного контура, состоящая из К=130 точек, а также результаты ее восстановления с помощью уравнения (1) при разных значениях М. Следует отметить, что, начиная со значений М около 33, у восстановленной границы угловые точки начинают «выдаваться» из последовательности. При М=98 восстанавливается почти точная копия оригинала. Отсюда следует, что нескольких коэффициентов низшего порядка достаточно для описания общей формы границы, однако для точного восстановления резких деталей, например углов и прямолинейных участков, требуется значительно большее число членов высокого порядка.

Чтобы оценить информационные потери при приравнивании к нулю части дескрипторов, необходимо сравнить по определенному критерию исходный контур и контур, восстановленный по ограниченному набору дескрипторов. С этой целью представим контур двумя параметрическими кривыми:

xk=f1(k) (2)

yk=f2(k). (3)

После перехода от К дескрипторов к М дескрипторам (М<К) получают также параметрические кривые, отражающие геометрию границы фазового портрета в виде

и

Примеры исходных и восстановленных по М дескрипторам параметрических кривых (2), (3) и (4), (5) представлены на фиг.9.

Ошибка восстановления определяется из следующего выражения:

На фиг.10 представлены графики зависимости информационных потерь от числа дескрипторов, используемых при восстановлении границы контура сегмента, для двух контуров.

Для оптимизации числа дескрипторов Кэттель (Халафян, А.А. STATISTICA 6. Статистический анализ данных. [Текст] / А.А.Халафян. - М.: ООО Бином-Пресс, 2007. - 512 с.) предложил найти такое место на графиках типа фиг.9, где убывание критерия Λ слева направо максимально замедляется. Предполагается, что справа от этой точки находится только «информативная осыпь» - «осыпь» является геологическим термином, обозначающим обломки горных пород, скапливающиеся в нижней части скалистого склона. В соответствии с этим критерием можно оставить в примере фиг.10 для тестового контура 1-10 дескрипторов, а для тестового контура 2-40 дескрипторов.

Процесс определения оптимального К осуществляется в блоках 20-25.

Таким образом, перед обучением нейросетевого классификатора по обучающей выборке определяются максимальное число в обучающей выборки Кmax и число нейронов во входном слое классификатора К. Затем осуществляется настройка нейронной сети (блок 27), выполняемая по известным алгоритмам, например по алгоритму обратного распространения ошибки (Осовский С. Нейронные сети для обработки информации [Текст] // С.Осовский / Пер. с польского И.Д.Рудинского. - М.: Финансы и статистика, 2004. - 344 с).

Схема алгоритма работы блока 7 в режиме классификации оконтуривающей кривой представлена на фиг.3г.

Технико-экономический эффект предложенного способа заключается в расширении получаемой информации о сложных динамических системах за счет учета взаимодействия их подсистем. Применительно к живым системам это обеспечивает более качественное диагностирование заболеваний сердечно-сосудистой системы человека, что позволяет оказывать адекватные терапевтические воздействия на пациента, у которого выявлена возможность возникновения жизнеопасных аритмий.

Конкретные примеры

Пример 1. Пациентка Ф., 57 лет, обратилась в клинику с жалобами на повышение уровня АД (150/95 мм рт.ст.), сердцебиение, головные боли, иногда приливы жара, повышенную потливость, раздражительность, чувство беспокойства, сухость кожи, лишний вес.

Из анамнеза известно, что в течение последних двух лет отмечаются эпизоды повышения АД, в связи с чем обращалась к кардиологу, но практически не лечилась. В течение последнего года присоединились эпизоды сердцебиения, раздражительность, чувство беспокойства, сухость кожи. Менопауза с 56 лет. При обследовании по месту жительства однократно уровень глюкозы крови составлял 5,8 ммоль/л. Случаев раннего развития ССЗ у ближайших родственников не выявлено.

При физикальном обследовании: состояние удовлетворительное. Рост 166 см, вес 88 кг (ИМТ 33,09 кг/м2, индекс ОТ/ОБ 0,93). Кожные покровы чистые, отеков нет. Частота дыхания 18 в 1 мин. Аускультативная картина в легких и сердце - без особенностей. ЧСС 82 в мин, АД 130/80 мм рт.ст., живот при пальпации мягкий, безболезненный, печень не увеличена.

По результатам клинического анализа крови и общего анализа мочи патологических изменений не выявлено. ЭКГ: ритм синусовый с ЧСС 80 уд. в 1 мин. Отклонение электрической оси сердца влево.

По данным ЭхоКГ: существенных отклонений от нормы не выявлено.

Исследования фазового портрета кардиосигналов посредством нейронной сети, настроенной на четыре класса риска сердечно-сосудистых осложнений показали третий класс уровня риска сердечнососудистых осложнений.

Пациентке были даны подробные рекомендации по изменению образа жизни, диетические рекомендации, разъяснена важность контроля АД, уровня глюкозы крови.

После проведенного обследования пациентке был назначен моксонидин (Физиотенз, Solvay Pharma) в суточной дозе 0,4 мг, который она принимала в течение 12 недель.

При анализе полученных результатов можно отметить, что помимо достижения целевого уровня АД по данным СМАД уменьшилась выраженность вазомоторных и психоэмоциональных нарушений. Пациентка субъективно отметила улучшение общего состояния, снизился вес тела на 6 кг, уменьшились головные боли. Кроме того, снизился индекс ОТ/ОБ на 4,1%, а также ИМТ на 6,77% от исходного. Уровни общего холестерина и триглицеридов снизились на 5,92 и 11,4% соответственно. Уровень тощаковой глюкозы на фоне лечения моксонидином 0,4 мг/сут также снизился на 12,7% от исходных цифр, кроме того, улучшились показатели перорального глюкозотолерантного теста.

Пример 2. Пациент А., 67 лет. Диагноз: АГ, II стадии, третьей степени, кризовое течение. Обследование осуществляется с помощью выявления факторов риска и лабораторного исследования показателей холестерина, триглицеридов и β-липопротеидов.

Исследования фазового портрета кардиосигналов посредством нейросетевого классификатора, настроенного на диагностику артериальной гипертензии, показали высоком риске развития АГ (четвертый класс риска).

На момент обследования у пациента действительно был уже установлен диагноз АГ.

Данный способ является простым, экономичным для оценки показателя риска развития АГ на основе выбранных факторов риска. Он может использоваться при диспансеризации и профилактических осмотрах лиц от 20 до 76 лет в амбулаторных и стационарных условиях.

Полученные с помощью данного способа результаты позволяют помочь врачу общей практики терапевту, провести раннюю профилактику, направленную на предупреждение развития заболевания, тем самым способствуя снижению случаев первичной заболеваемости АГ.


СПОСОБ ФОРМИРОВАНИЯ ДВУМЕРНОГО ИЗОБРАЖЕНИЯ БИОСИГНАЛА И ЕГО АНАЛИЗА
СПОСОБ ФОРМИРОВАНИЯ ДВУМЕРНОГО ИЗОБРАЖЕНИЯ БИОСИГНАЛА И ЕГО АНАЛИЗА
СПОСОБ ФОРМИРОВАНИЯ ДВУМЕРНОГО ИЗОБРАЖЕНИЯ БИОСИГНАЛА И ЕГО АНАЛИЗА
СПОСОБ ФОРМИРОВАНИЯ ДВУМЕРНОГО ИЗОБРАЖЕНИЯ БИОСИГНАЛА И ЕГО АНАЛИЗА
СПОСОБ ФОРМИРОВАНИЯ ДВУМЕРНОГО ИЗОБРАЖЕНИЯ БИОСИГНАЛА И ЕГО АНАЛИЗА
СПОСОБ ФОРМИРОВАНИЯ ДВУМЕРНОГО ИЗОБРАЖЕНИЯ БИОСИГНАЛА И ЕГО АНАЛИЗА
СПОСОБ ФОРМИРОВАНИЯ ДВУМЕРНОГО ИЗОБРАЖЕНИЯ БИОСИГНАЛА И ЕГО АНАЛИЗА
СПОСОБ ФОРМИРОВАНИЯ ДВУМЕРНОГО ИЗОБРАЖЕНИЯ БИОСИГНАЛА И ЕГО АНАЛИЗА
СПОСОБ ФОРМИРОВАНИЯ ДВУМЕРНОГО ИЗОБРАЖЕНИЯ БИОСИГНАЛА И ЕГО АНАЛИЗА
СПОСОБ ФОРМИРОВАНИЯ ДВУМЕРНОГО ИЗОБРАЖЕНИЯ БИОСИГНАЛА И ЕГО АНАЛИЗА
СПОСОБ ФОРМИРОВАНИЯ ДВУМЕРНОГО ИЗОБРАЖЕНИЯ БИОСИГНАЛА И ЕГО АНАЛИЗА
СПОСОБ ФОРМИРОВАНИЯ ДВУМЕРНОГО ИЗОБРАЖЕНИЯ БИОСИГНАЛА И ЕГО АНАЛИЗА
СПОСОБ ФОРМИРОВАНИЯ ДВУМЕРНОГО ИЗОБРАЖЕНИЯ БИОСИГНАЛА И ЕГО АНАЛИЗА
Источник поступления информации: Роспатент

Showing 51-60 of 66 items.
10.04.2016
№216.015.2b95

Ротационная пульполовушка для очистки диффузионного сока

Изобретение относится к сахарной промышленности, а именно к очистке диффузионного сока от мезги. Предложена ротационная пульполовушка для очистки диффузионного сока, в состав которой входит корытообразный корпус с патрубком для подвода нефильтрованного диффузионного сока и бункер...
Тип: Изобретение
Номер охранного документа: 0002579218
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30c2

Способ автоматической сегментации полутоновых сложноструктурированных растровых изображений

Изобретение относится к способам цифровой обработки изображений. Техническим результатом является повышение помехоустойчивости сегментации, а также повышение степени автоматизации процесса анализа и классификации сегментов изображения. Для решения задач распознавания образов по результатам...
Тип: Изобретение
Номер охранного документа: 0002580074
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3274

Устройство для очистки и утилизации тепла дымовых газов группы теплогенераторов систем квартирного отопления

Изобретение относится к теплоэнергетике и может быть использовано для очистки дымовых газов от вредных примесей источников теплоснабжения систем квартирного отопления. Устройство для очистки и утилизации дымовых газов группы теплогенераторов систем квартирного отопления включает короб,...
Тип: Изобретение
Номер охранного документа: 0002581072
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3723

Передвижной уличный кондиционер

Изобретение относится к способу и устройству для очистки уличного воздуха от вредных примесей. Передвижной уличный кондиционер содержит корпус с крышей, поддон, снабженный питательным и дренажным штуцерами, фронтальную заборную решетку, тыльную крышку, в центре которой устроен вытяжной...
Тип: Изобретение
Номер охранного документа: 0002581818
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3735

Мостовой измеритель параметров двухполюсников

Изобретение относится к промышленной электронике, автоматике, информационно-измерительной технике. Заявленный мостовой измеритель параметров двухполюсников содержит генератор питающих импульсов, состоящий из формирователей импульсов с изменением напряжения в течение их длительности по закону...
Тип: Изобретение
Номер охранного документа: 0002581776
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.38d1

Демпфирующий резец

Резец содержит режущую пластину с узлом ее крепления в державке, имеющей выборку, и вставку из материала, обладающего свойством высокого демпфирования, выборка выполнена равномерно по периметру конца державки на длине от ее торца до выступающей части с режущей пластиной, конец державки с...
Тип: Изобретение
Номер охранного документа: 0002582403
Дата охранного документа: 27.04.2016
10.08.2016
№216.015.5491

Фильтр для очистки воздуха

Изобретение относится к очистке сжатого воздуха, в особенности от туманов, в различных отраслях народного хозяйства, преимущественно, на крупных компрессорных станциях со значительным суточным расходом сжатого воздуха. Фильтр для очистки воздуха содержит корпус с коническим днищем, выполненным...
Тип: Изобретение
Номер охранного документа: 0002593292
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.68a4

Мостовой измеритель параметров двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и управлению и может быть использовано для контроля и определения параметров объектов измерения и физических величин посредством параметрических датчиков. В измеритель введены три дополнительных резистора и изменено включение...
Тип: Изобретение
Номер охранного документа: 0002591877
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6cdf

Устройство управления подъемно-копающими механизмами

Изобретение относится к пневматическим системам управления экскаваторами и кранами, работающими в условиях отрицательных температур. Техническим результатом является поддержания эффективной работы при длительной эксплуатации устройства подъемно-копающими механизмами за счет обеспечения...
Тип: Изобретение
Номер охранного документа: 0002597334
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7022

Гелиосушилка

Изобретение относится к сушилкам, в частности к установкам для сушки растительной продукции, в частности винограда и фруктов. Гелиосушилка содержит вертикальную камеру с теплоизолирующими стенками, основанием и перфорированным дном, крышку с вытяжной трубой, солнечный нагреватель, связанный...
Тип: Изобретение
Номер охранного документа: 0002596676
Дата охранного документа: 10.09.2016
Showing 51-60 of 151 items.
20.01.2014
№216.012.96e5

Устройство для контроля анизотропии электрической проводимости биотканей

Изобретение относится к медицинской технике. Устройство для измерения импеданса биологических тканей содержит последовательно соединенные матрицу из N электродов, блок коммутации, инструментальный усилитель, блок детекторов, многоканальный АЦП, микроконтроллер и ЭВМ. В устройство введены первый...
Тип: Изобретение
Номер охранного документа: 0002504328
Дата охранного документа: 20.01.2014
20.02.2014
№216.012.a30b

Рециркуляционная воздушная завеса

Изобретение относится к промышленной вентиляции. Рециркуляционная воздушная завеса для перекрытия дверного проема в стене здания с тамбуром содержит вентиляционный блок, имеющий присоединенные к патрубкам вентилятора щелевые приемный и выпускной насадки, последний из которых размещен в тамбуре...
Тип: Изобретение
Номер охранного документа: 0002507454
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.aa4b

Мостовой измеритель параметров n-элементных двухполюсников

Изобретение относится к измерительной технике и может быть использовано для контроля и определения параметров объектов измерения. Мостовой измеритель содержит последовательно соединенные генератор питающего сигнала, мостовую цепь и нуль-индикатор. Генератор содержит формирователи прямоугольных,...
Тип: Изобретение
Номер охранного документа: 0002509310
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa4d

Измеритель параметров двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и промышленной электронике. Мостовой измеритель параметров двухполюсников содержит последовательно соединенные генератор импульсов, измерительную цепь, аналоговый сумматор и нуль-индикатор. В мостовой измеритель введены первая...
Тип: Изобретение
Номер охранного документа: 0002509312
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa94

Способ параллельного поиска и замены строки и однородная запоминающая матрица для его реализации

Изобретение относится к вычислительной технике. Технический результат заключается в расширении функциональных возможностей за счет совмещения шагов операций поиска по образцу и замены строки на основе однородной запоминающей матрицы и выполнении динамической реконфигурации структуры данных из...
Тип: Изобретение
Номер охранного документа: 0002509383
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ab8f

Способ обработки многогранного профильного вала чашечным долбяком

Способ включает вращение чашечного долбяка и профильного вала. Для упрощения формы режущей кромки чашечный долбяк устанавливают эксцентрично собственной оси так, чтобы численное значение эксцентриситета равнялось четвертой части разности диаметров описанной и вписанной окружности многогранного...
Тип: Изобретение
Номер охранного документа: 0002509634
Дата охранного документа: 20.03.2014
27.03.2014
№216.012.af38

Управляемый коммутатор элементов цепи

Изобретение относится к вычислительной технике, информационно-измерительной технике, автоматике и промышленной электронике и может быть использовано, в частности, для коммутации резисторов в цифроаналоговых преобразователях и в мостовых цепях для определения параметров двухполюсников и...
Тип: Изобретение
Номер охранного документа: 0002510571
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.b07e

Способ сегментации сложноструктурированных растровых полутоновых изображений на основе составных морфологических операторов

Изобретение относится к средствам обработки цифровых изображений. Техническим результатом является повышение точности выделения границ сложноструктурируемых изображений за счет формирования множества фильтрованных по направлению изображений из исходного полутонового изображения путем локальной...
Тип: Изобретение
Номер охранного документа: 0002510897
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b1a6

Универсальный демпфирующий резец с регулируемой жесткостью

Изобретение относится к машиностроению и может быть использовано в металлообрабатывающих инструментах. Технический результат - улучшение эксплуатационных характеристик резца и повышение его стойкости. Содержит режущую пластину и узел ее крепления, державку с выемкой. Снабжен двухступенчатой...
Тип: Изобретение
Номер охранного документа: 0002511193
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b385

Мостовой измеритель параметров двухполюсников

Изобретение относится к промышленной электронике, автоматике, информационно-измерительной технике и может быть использовано для контроля и определения параметров двухполюсников, а также физических величин посредством параметрических датчиков, включенных в электрический мост. Техническим...
Тип: Изобретение
Номер охранного документа: 0002511673
Дата охранного документа: 10.04.2014
+ добавить свой РИД