×
10.01.2015
216.013.1b3a

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПА СТРОНЦИЙ-82

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения радиоизотопов для ядерной медицины на ускорителях заряженных частиц. Способ включает облучение мишени на ускорителе протонов и выделение Sr без носителя из облученной мишени. В качестве мишени берут изотоп Sr, мишень облучают пучком протонов, в процессе облучения в результате пороговой ядерной реакции Sr(р,3n)Y в мишени нарабатывают и одновременно радиохимическим методом из мишени непрерывно извлекают Y, продукт распада которого, целевой радиоизотоп Sr (без носителя), далее выделяют радиохимическим методом. Техническим результатом является возможность производить Sr без носителя в области энергий протонов Е≤30÷40 МэВ, возможность применения для производства Sr стандартных циклотронов с Е≤30÷40 МэВ, возможность повысить интегральный выход Sr в схеме производства по реакции Rb(p,xn)Sr на ускорителях с Е=70÷100 МэВ для наработки Sr. 1 з.п. ф-лы, 1 ил.

Изобретение относится к технологии получения радиоизотопов для ядерной медицины на ускорителях заряженных частиц.

В настоящее время одним из наиболее перспективных и динамично развивающихся направлений ядерной медицины является кардиодиагностика на основе метода позитронно-эмиссионной томографии (ПЭТ).

В последнее время, главным образом в США, получила развитие ПЭТ технология, основанная на применении 82Sr-82Rb изотопных генераторов.

В нашей стране в связи с планируемым строительством ПЭТ центров указанный изотопный генератор должен также найти широкое применение.

Получаемый в изотопном генераторе рубидий, являясь физиологическим аналогом калия, при введении в организм пациента преимущественно локализуется в миокарде.

Указанный генератор - компактен, может быть легко доставлен в любую клинику, в том числе на большие расстояния, и эксплуатироваться достаточно длительное время. При этом нет необходимости иметь и эксплуатировать в клинике циклотрон (громоздкое и дорогостоящее оборудование, требующее специального помещения и обслуживающего персонала).

Настоящее изобретение может быть использовано для производства радиоизотопа 82Sr в практически значимых количествах на стандартных, относительно дешевых в эксплуатации и достаточно широко распространенных в мире ускорителях протонов средних энергий (Ер≤30÷40 МэВ). (В настоящее время 82Sr производят на ускорителях высоких энергий (Ep≈100÷800 МэВ), предназначенных для фундаментальных исследований.)

Традиционные методы получения циклотронных радиоизотопов предполагают в каждом цикле производства использование последовательности технологических операций, осуществляемых, как правило, в ручном режиме: изготовление и монтаж одноразовой мишени на ионопроводе ускорителя, демонтаж облученной мишени, механическое вскрытие мишени, растворение активного вещества. Все эти операции достаточно трудоемки, дорогостоящи и должны проводиться в специальных условиях. В отличие от традиционных методов предлагаемый способ получения 82Sr позволяет достаточно просто автоматизировать процедуру извлечения 82Sr из мишени в непрерывном режиме во время наработки, исключив из процедуры выделения стронция из мишени трудоемкие и дорогостоящие операции радиохимического передела, свойственные другим методам.

Предшествующий уровень техники

В настоящее время 82Sr получают облучением протонами (Ep≈100÷800 МэВ) твердотельных мишеней из молибдена, металлического рубидия или его соединений на ускорителях высоких энергий.

Известен способ получения 82Sr по реакции Mo(p,spallation) (Thomas K.E. Strontium-82 Production at Los Alamos National Laboratory. - Applied Radiation and Isotopes, 1987, v.38, №3, p.p.175-180). Мишени из металлического молибдена диаметром 1.9-6.4 см, толщиной 1.25÷1.9 см облучали пучками протонов энергией 800 МэВ. В результате реакции скалывания образовывался 82Sr. Длительность облучения различных мишеней составляла от 2 до 30 суток. Номинальный ток пучка протонов - 500 мкА. Затем мишени растворяли в смеси азотной и фосфорной кислоты в присутствии перекиси водорода. После чего многоступенчатым химическим переделом выделяли 82Sr.

Этот способ имеет существенные недостатки, заключающиеся в следующем:

- для получения 82Sr используется уникальная дорогостоящая установка, в основном предназначенная для фундаментальных исследований: мезонная фабрика Лос-Аламосской национальной лаборатории США;

- технология основана на использовании одноразовой мишени;

- наряду со 82Sr в мишени образуется большое количество радиоактивных примесей;

- выделение 82Sr сопряжено с необходимостью проведения многоступенчатого радиохимического передела мишени и утилизацией большого количества радиоактивных отходов;

- высокое содержание в целевом продукте основной мешающей примеси 85Sr, активность которой сопоставима с активностью целевого продукта.

Известно, что одним из существенных факторов, определяющих качество 82Sr, является его радионуклидная чистота. Основные радионуклидные примеси - 83Sr и 85Sr. Активность 83Sr может быть в значительной степени снижена выдержкой облученной мишени (T1|2=32.4 часа для 83Sr). Что же касается долгоживущего 85Sr (T1|2=64.73 дня), то его присутствие в 82Sr значительно увеличивает дозовую нагрузку на пациента и медперсонал и осложняет проведение исследований ПЭТ методом (при частичном «проскоке» стронция в разделительной колонке 82Sr-82Rb изотопного генератора), так как 85Sr имеет интенсивную линию Eγ=514 кэВ, близкую к аннигиляционной линии 82Rb (Eγ=511 кэВ). Кроме того, присутствие 85Sr существенно повышает требования к радиационной защите 82Sr-82Rb изотопного генератора и уменьшает срок его службы до перезарядки.

Известен способ получения 82Sr по реакции Rb(p,xn) на мишени из металлического рубидия (Жуйков Б.Л., Коханюк В.М., Глушенко В.Н. и др. Получение стронция-82 из мишени металлического рубидия на пучке протонов с энергией 100 МэВ. - Радиохимия, 1994, том 36, стр.494-498). Мишени из металлического рубидия представляли собой диски диаметром 30 мм и толщиной 11 мм, заключенные в герметичные оболочки из нержавеющей стали. Толщина входного окна оболочки составляла 0.13-0.2 мм. Оболочки заряжались металлическим рубидием в боксе в инертной атмосфере. Для этого рубидий в ампуле разогревали электропечью до 80-90°С, отбирая жидкий рубидий с помощью медицинского шприца, вводили жидкий металл через штуцер в оболочку. Облучение мишеней проводили на линейном ускорителе пучком протонов с энергией 100 МэВ при токах пучка 6-10 мкА. Длительность облучения достигала 10 суток. Технология переработки мишени включала механическое вскрытие кассеты и растворение мишени в изобутаноле, разрушение образующегося при растворении мишени изобутонолята рубидия и отделение органической фазы путем отгонки, отделение изотопов стронция от рубидия на ионообменной колонке.

К недостаткам данного способа, как и в предыдущем примере, можно отнести:

- использование для получения 82Sr дорогостоящего ускорителя высоких энергий (линейный ускоритель ИЯИ РАН, г. Троицк);

- достаточно сложна процедура изготовления мишени;

- технология основана на использовании одноразовой мишени;

- выделение 82Sr сопряжено с необходимостью проведения многоступенчатого радиохимического передела мишени;

- высокое содержание в целевом продукте основной мешающей примеси 85Sr, активность которой сопоставима с активностью целевого продукта.

Кроме того, существенным недостатком данного способа следует считать высокую потенциальную взрывоопасность, обусловленную использованием металлического рубидия.

Известен способ получения 82Sr в реакциях Kr(α,xn) и Kr(3Не,xn) при облучении ускоренными пучками α-частиц или 3Не мишени из природного криптона (Tarkanyi F., Qaim S.M., Stocklin G. Excitation Functions of 3He- and α-Particle Induced Nuclear Reactions on Natural Krypton: Production of 82Sr at a Compact Cyclotron. - Applied Radiation and Isotopes, 1988, v.39, №2, p.p.135-143). При использовании в качестве мишени природного криптона и ускоренных α-частиц или 3Не с начальной энергией 60÷80 МэВ наработка 82Sr возможна на всех изотопах Kr за исключением 78Kr. Однако наработка 82Sr на каждом из изотопов при использовании природного криптона не оптимальна, так как величины сечений ядерных реакций, приводящих к образованию 82Sr на каждом из изотопов криптона, изменяются в широком диапазоне (от 0 до σmax) в энергетическом интервале торможения в мишени заряженных частиц.

К недостаткам данного способа можно отнести:

- относительно низкий выход 82Sr в мишени из природного криптона;

- высокое содержание в целевом продукте основной мешающей примеси 85Sr, активность которой сопоставима с активностью целевого продукта.

Известен способ получения радиоизотопа 82Sr по реакциям 80,82,83,84,86Kr(α,xn)82Sr либо 80,82,83,84,86Kr(3Не,xn)82Sr (Загрядский В.А., Латушкин С.Т., Новиков В.И., Оглоблин А.А., Унежев В.Н., Чувилин Д.Ю., Шатров А.В., Ярцев Д.И.; Патент №2441290 от 27.01.2012 г. "Способ получения радиоизотопа стронций-82"). Способ включает облучение на циклотроне или линейном ускорителе пучком α-частиц или ядер 3Не каскадной мишени, состоящей из модулей с изотопами криптона, расположенными последовательно, в порядке убывания их атомных масс по направлению пучка ускоренных частиц, и накопление в ней в процессе одной или нескольких пороговых ядерных реакций 80,82,83,84,86Kr(α,xn)82Sr или, соответственно, одной или нескольких пороговых ядерных реакций 80,82,83,84,86Kr(3Не,xn)82Sr целевого радиоизотопа 82Sr.

К недостаткам данного способа можно отнести эксплуатационные ограничения оптимальной по выходу 82Sr каскадной мишени, состоящие в необходимости жесткого согласования длины модулей с изотопами криптона с током пучка и давлением газа в них. Необходимость указанного согласования связана с появлением градиента плотности газа в мишени под действием пучка заряженных частиц и, как результат, изменением оптимальных длин пробега в модулях каскадной мишени.

В качестве прототипа выбран способ получения 82Sr по реакции Rb(p,xn) на мишени из хлорида рубидия (Mausner L.F., Prach Т., Srivastava S.C. Production of 82Sr by Proton Irradiation of RbCl. - Applied Radiation and Isotopes, 1987, v.38, №3, p.p.181-184). С целью дегидратации хлорид рубидия выдерживали в вакууме в течение 48 часов, затем прессовали с усилием 75 тонн в 35 г. таблетку 0.81 см толщиной и 4.44 см диаметром. Таблетка из хлоридом рубидия помещалась в капсулу из нержавеющей стали и заваривалась в вакууме электронным лучом. Затем капсула с хлоридом рубидия облучалась протонами на ускорителе Брукхевенской национальной лаборатории, позволяющем ускорять протоны до энергии 200 МэВ. Ток пучка протонов составлял 45 мкА. После облучения капсулу транспортировали в защитном контейнере в горячую лабораторию и через 6 дней выдержки вскрывали. Затем хлорид рубидия растворяли в 100 мл 0.1 М NH4OH:0.1 M NH4Cl и после многоступенчатого радиохимического передела выделяли 82Sr.

К недостаткам данного способа можно отнести:

- использование для получения 82Sr дорогостоящего ускорителя высоких энергий;

- достаточно сложна процедура изготовления мишени;

- технология основана на использовании одноразовой мишени;

- из-за плохой теплопроводности хлорида рубидия при токах выше нескольких мкА возможен перегрев в центре мишени и сублимация хлорида рубидия, что приводит к уменьшению эффективной толщины мишени и, соответственно, выхода целевого продукта;

- выделение 82Sr сопряжено с необходимостью проведения многоступенчатого радиохимического передела мишени;

- высокое содержание в целевом продукте основной мешающей примеси 85Sr, активность которой сопоставима с активностью целевого продукта.

Раскрытие изобретения

Техническими результатами являются:

1) Возможность производить 82Sr в принципиально иной (отличной от традиционной) области энергий протонов (Ер≤30÷40 МэВ), что позволяет применять для производства 82Sr принципиально иной класс установок: стандартные, относительно дешевые в эксплуатации и достаточно широко распространенные в мире циклотроны с Ер≤30÷40 МэВ.

2) Возможность значительно повысить интегральный выход 82Sr при использовании известной схемы наработки по реакции Rb(p,xn)82Sr на ускорителях с Ер=70÷100 МэВ за счет дополнительного использования протонов с Ер<40 МэВ (порога реакции Rb(p,xn)82Sr) для наработки 82Sr по реакции 84Sr(р,3n)82Y→82Sr (каскадная мишень).

3) Использование многоразовой мишени, позволяющей исключить затраты на изготовление новых мишеней для каждого нового цикла облучения.

4) Возможность относительно просто автоматизировать выделение 82Sr, отказавшись от классических технологических операций, реализуемых при радиохимическом переделе мишени, и осуществляемых, как правило, в ручном режиме.

5) Значительное снижение по сравнению с прототипом основной мешающей активности 85Sr.

Для достижения указанных результатов предложен способ получения радиоизотопа 82Sr, включающий облучение мишени протонами и выделение 82Sr из облученной мишени, при этом в качестве мишени берут изотоп 84Sr, в процессе облучения которого в результате пороговой ядерной реакции 84Sr(p,3n)82Y в мишени нарабатывают и одновременно радиохимическим методом из мишени непрерывно извлекают 82Y, продукт распада которого, целевой радиоизотоп 82Sr без носителя, затем выделяют радиохимическим методом.

При этом изотоп 84Sr входит в состав химического соединения, водный раствор которого в замкнутом контуре циркулирует через зону облучения протонами и через центробежный экстрактор, в котором экстракционным методом нарабатываемый 82Y отделяют от стронция мишени.

Фигура иллюстрирует принципиальную схему реализации способа наработки и выделения 82Sr.

1. Мишень.

2. Экстрактор.

3. Реэкстрактор.

4. Контур водной фазы.

5. Контур органической фазы.

6. Контур водной фазы.

7. Насос.

р - Пучок протонов с Ер≤30÷40 МэВ.

Способ осуществляют следующим образом.

Берут водный раствор соединения стронция, обогащенного по изотопу 84Sr, и помещают в замкнутый контур, в котором осуществляют принудительную циркуляцию раствора через зону облучения протонами 1 (см. чертеж) и центробежный экстрактор 2. В зоне облучения 1 по реакции 84Sr(р,3n)82Y нарабатывают 82Y, имеющий период полураспада 10 мин. 82Y по контуру 4 направляют в центробежный экстрактор 2, где экстрагируют в органическую фазу, принудительно циркулирующую в контуре 5. При этом стронций мишени остается в контуре 4. Затем 82Y по контуру 5 направляют в центробежный реэкстрактор 3, где реэкстрагируют в водную фазу принудительно циркулирующую в контуре 6. В контуре 6 в течение времени облучения мишени протонами накапливают 82Y и продукт его распада 82Sr. Суммарное время движения 82Y по контуру 4 от зоны облучения 1 до экстрактора 2, экстракции из водной фазы в органическую фазу, движения по контуру 5 от экстрактора 2 до реэкстрактора 3 и реэкстракции из органической фазы контура 5 в водную фазу контура 6 составляет около 1 минуты. Через несколько часов выдержки после облучения (распада 82Y) 82Sr без носителя из контура 6 направляют на доочистку сорбционным методом (на фигуре не показано).

Предложенный способ получения радиоизотопа 82Sr обладает существенными достоинствами по сравнению с описанными в литературе аналогами и прототипом:

- Способ может быть реализован на относительно дешевых в эксплуатации и широко распространенных в мире ускорителях средних энергий (Ер≤30÷40 МэВ).

- Мишенное устройство может использоваться многократно.

- Выход 82Sr приемлем для практического использования.

- Выделение 82Sr из мишени легко поддается автоматизации и не сопряжено с необходимостью ее разрушения и проведения многоступенчатого радиохимического передела.

- Активность основной мешающей примеси 85Sr при использовании стронция, обогащенного по изотопу 84Sr, может быть снижена на порядок по сравнению с прототипом.

Пример осуществления изобретения

Мишенное устройство, представляющее собой компактный медный цилиндр с внутренней цилиндрической полостью h×d=10×15 (мм) с торцевым окном из Мо фольги толщиной 50 мкм, устанавливали на пучок протонов с Ер=32 МэВ циклотрона У-150 НИЦ «Курчатовский институт». Через мишенное устройство 1 (см. чертеж) и через центробежный экстрактор 2 по замкнутому контуру 4 с помощью насоса прокачивали водный раствор SrCl2 (Sr естественного изотопного состава) в 0,1 М HCl (водная фаза). Одновременно в контуре 5 с помощью насоса обеспечивали циркуляцию 50% раствора D2-этилгексилфосфорной кислоты в толуоле, а в контуре 6 - циркуляцию водного раствора 3 М HCl.

Под действием пучка протонов в мишенном устройстве в результате реакции 84Sr(p,3n)82Y нарабатывали 82Y. Затем 82Y потоком водной фазы по контуру 4 транспортировали в центробежный экстрактор, где экстрагировали его 50% раствором D2-этилгексилфосфорной кислоты в толуоле (органическая фаза). После этого потоком органической фазы 82Y транспортировали по контуру 5 в центробежный реэкстрактор 3, где реэкстрагировали 82Y раствором 3 М HCl в водную фазу контура 6. В контуре 6 накапливали 82Y и продукт его распада 82Sr (без носителя). После окончания облучения и выдержки (для распада 82Y) в течение 2 часов 82Sr направляли на доочистку сорбционным методом. Суммарное время движения 82Y по контуру 4 от зоны облучения 1 до экстрактора 2, экстракции из водной фазы в органическую фазу, движения по контуру 5 от экстрактора 2 до реэкстрактора 3 и реэкстракции из органической фазы контура 5 в водную фазу контура 6 составляло около 1 минуты.

Коэффициент разделения иттрия и стронция центробежным экстрактором 2 составил величину 106. Выход 82Sr при концентрации SrCl2 в растворе 0.6 г/мл (с учетом приведения к обогащению по изотопу 84Sr до 100%) составил величину 112 мкКи/мкА час.


СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПА СТРОНЦИЙ-82
Источник поступления информации: Роспатент

Showing 161-170 of 259 items.
19.08.2018
№218.016.7d1b

Способ получения биоразлагаемого композита на основе алифатических сложных полиэфиров и гидроксиапатита

Изобретение относится к медицинской химии, а именно к биоразлагаемым фосфатсодержащим полимерным материалам, использующимся в качестве аналогов костной ткани, и раскрывает способ получения биоразлагаемого композита. Способ характеризуется тем, что синтез композита, который включает в себя...
Тип: Изобретение
Номер охранного документа: 0002664432
Дата охранного документа: 17.08.2018
07.09.2018
№218.016.8477

Способ формирования синаптического мемристора на основе нанокомпозита металл-нестехиометрический оксид

Изобретение относится к области микро- и наноэлектроники, а именно к технологии изготовления синаптического мемристора на основе нанокомпозита металл-нестехиометрический оксид, который обладает адаптивными (нейроморфными) свойствами. Техническим результатом является создание мемристивных...
Тип: Изобретение
Номер охранного документа: 0002666165
Дата охранного документа: 06.09.2018
12.09.2018
№218.016.867e

Способ изготовления наноструктурированной мишени для производства молибден-99

Изобретение относится к технологии получения радионуклидов и может быть использовано для производства радионуклида молибден-99 высокой удельной активности (без носителя), являющегося основой для создания радионуклидных генераторов технеция-99, нашедших широкое применение в ядерной медицине для...
Тип: Изобретение
Номер охранного документа: 0002666552
Дата охранного документа: 11.09.2018
03.10.2018
№218.016.8cf6

Система управления неустойчивостью внутреннего срыва плазмы в режиме реального времени в установках типа токамак

Изобретение относится к cистеме управления неустойчивостью внутреннего срыва плазмы в режиме реального времени в установках типа Токамак. Система содержит автоматизированное рабочее место АРМ оператора 13, соединенное с комплексом СВЧ-нагрева плазмы 6, вакуумную камеру 1 с установленными в ней...
Тип: Изобретение
Номер охранного документа: 0002668231
Дата охранного документа: 27.09.2018
03.10.2018
№218.016.8d27

Ядерный реактор на быстрых нейтронах с жидкометаллическим теплоносителем

Изобретение относится к области атомной энергии и может быть использовано в реакторах на быстрых нейтронах с жидкометаллическим теплоносителем. Ядерный реактор на быстрых нейтронах с жидкометаллическим теплоносителем содержит вертикально установленные тепловыделяющие сборки активной зоны и...
Тип: Изобретение
Номер охранного документа: 0002668230
Дата охранного документа: 27.09.2018
08.11.2018
№218.016.9acc

Способ оценки риска хронических аутоиммунных воспалительных процессов

Изобретение относится к биофизике, биологии и медицине, а именно к диагностике обменных нарушений, интоксикации организма при различных заболеваниях, в том числе наследственных, генетических, экологических, аутоиммунных. Изобретение представляет собой способ оценки риска хронических...
Тип: Изобретение
Номер охранного документа: 0002671641
Дата охранного документа: 06.11.2018
30.11.2018
№218.016.a220

Способ пуска ядерного реактора космического назначения

Изобретение относится к атомной энергетике и может быть использовано при эксплуатации ядерных реакторов космических установок. Способ пуска ядерного реактора космического назначения содержит этапы, на которых определяют зависимость эффективного коэффициента размножения от температуры при...
Тип: Изобретение
Номер охранного документа: 0002673564
Дата охранного документа: 28.11.2018
05.12.2018
№218.016.a3b7

Способ получения комплексного соединения состава 2xefxmnf

Изобретение относится к способу получения комплексного соединения гексафторида ксенона с тетрафторидом марганца состава 2XeF×MnF и может применяться для синтеза кислородных соединений ксенона как основа средств для дезинфекции, стерилизации и детоксикации в области санитарии и медицины. Способ...
Тип: Изобретение
Номер охранного документа: 0002673844
Дата охранного документа: 30.11.2018
06.12.2018
№218.016.a40f

Способ перевода сверхпроводника в элементах логики наноразмерных электронных устройств из сверхпроводящего состояния в нормальное

Использование: для создания функциональных переключаемых электронных устройств различного назначения. Сущность изобретения заключается в том, что способ перевода сверхпроводника в электронных функциональных наноразмерных устройствах из сверхпроводящего состояния в нормальное осуществляют путем...
Тип: Изобретение
Номер охранного документа: 0002674063
Дата охранного документа: 04.12.2018
26.12.2018
№218.016.ab98

Полимерный комплекс для молекулярно-прицельной терапии и способ его получения

Группа изобретений относится к фармацевтике и медицине и раскрывает полимерный комплекс для молекулярно-прицельной терапии и способ получения указанного комплекса. Полимерный комплекс характеризуется тем, что представлен в виде лиофилизата для приготовления суспензии, содержит частицы с...
Тип: Изобретение
Номер охранного документа: 0002675810
Дата охранного документа: 25.12.2018
Showing 141-150 of 150 items.
19.01.2018
№218.015.ff8f

Электролизер и каскад электролизеров

Изобретение относится к электролизеру, содержащему корпус с электролитом с размещенными в нем электролизной ячейкой с анодом, катодом и мембраной, разделяющей объем электролизной ячейки на анодное и катодное пространства, анодный контур циркуляции электролита, включающий емкость с электролитом...
Тип: Изобретение
Номер охранного документа: 0002629561
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.028f

Способ переработки углеродсодержащего сырья в реакторе с расплавом металла

Изобретение относится к технологии комплексной переработки различных видов углеводородсодержащего сырья в расплаве металлов с получением в качестве промежуточного продукта смеси водорода и монооксида углерода (синтез-газа). Способ заключается в процессе газификации, где получают поток...
Тип: Изобретение
Номер охранного документа: 0002630118
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.0e65

Бланкет термоядерного реактора

Изобретение конструкции бланкета термоядерного реактора. Заявленный бланкет состоит из по крайней мере из одного вертикального металлического модуля, нижняя часть которого заполнена кипящим раствором сырьевого материала и соединена патрубком с устройством для извлечения из раствора целевых...
Тип: Изобретение
Номер охранного документа: 0002633373
Дата охранного документа: 12.10.2017
19.01.2018
№218.016.0ebe

Устройство крепления

Изобретение относится к области механики и может быть использовано для крепления объектов. Техническим результатом заявленного изобретения является повышение надежности удержания объектов на штатных местах при приложении к ним сил без использования крепежных устройств в виде резьбовых...
Тип: Изобретение
Номер охранного документа: 0002633229
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0ee2

Структура полупроводник-на-изоляторе и способ ее изготовления

Изобретение относится к твердотельной электронике. Структура полупроводник-на-изоляторе содержит изолятор, расположенный на нем поверхностный слой полупроводника и сформированный в изоляторе имплантацией ионов легкого газа и последующего высокотемпературного отжига дефектный термостабильный...
Тип: Изобретение
Номер охранного документа: 0002633437
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f90

Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке

Изобретение относится к устройству для измерения спектральных характеристик плазмы реактора-токамака. Устройство содержит измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с...
Тип: Изобретение
Номер охранного документа: 0002633517
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.0ffd

Бланкет термоядерного реактора с естественной циркуляцией

Изобретение относится к конструкции бланкета термоядерного реактора. В заявленном устройстве предусмотрено наличие по крайней мере одного вертикального металлического модуля с раствором сырьевого материала, соединенного патрубками, расположенными в верхней и нижней части, с контуром...
Тип: Изобретение
Номер охранного документа: 0002633419
Дата охранного документа: 16.10.2017
13.02.2018
№218.016.264e

Тепловой узел установки для выращивания галоидных кристаллов методом горизонтальной направленной кристаллизации

Изобретение относится к области техники, связанной с выращиванием кристаллов из расплавов методом горизонтально направленной кристаллизации (ГНК), которые широко используются в качестве сцинтилляторов для детекторов ионизирующего излучения, лазерных кристаллов и элементов оптических приборов,...
Тип: Изобретение
Номер охранного документа: 0002643980
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3482

Способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей для проведения реакции переэтерификации

Изобретение относится к области биохимии. Предложен способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей. Способ включает наращивание биомассы дрожжей Yarrowia lipolytica ВКПМ Y-3600, отделение биомассы, лиофильную сушку биомассы, приготовление суспензии...
Тип: Изобретение
Номер охранного документа: 0002646104
Дата охранного документа: 01.03.2018
+ добавить свой РИД