×
10.01.2015
216.013.1b15

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ ЖЕСТКОСТИ ОДНОПРОЛЕТНЫХ БАЛОК ИЗ ФИЗИЧЕСКИ НЕЛИНЕЙНОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области строительства и предназначено для контроля жесткости балок, изготовленных из материала, обладающего физически нелинейными свойствами (в частности, железобетонных балок), и нагруженных равномерно распределенной нагрузкой. Согласно заявленному способу изготавливают для определенного типа балок из физически нелинейного материала эталонную конструкцию с соблюдением всех технологических требований по качеству. Определяют в указанной конструкции основную или первую резонансную частоту колебаний ω. Нагружают конструкцию ступенчато возрастающей равномерно распределенной нагрузкой, измеряют максимальный прогиб w на каждом этапе нагружения и по результатам испытаний эталонной балки строят аппроксимирующую функцию По этой зависимости при контроле жесткости серийно выпускаемых балок определенного типа определяют значение параметра К, соответствующего заданной контрольной нагрузке q. Технический результат − расширение технологических возможностей неразрушающего способа контроля жесткости балок, изготовленных из материала, обладающего физически нелинейными свойствами. 1 табл., 3 ил.
Основные результаты: Способ контроля жесткости однопролетных балок из физически нелинейного материала, заключающийся в установке и закреплении балки на опорах испытательного стенда, возбуждении в ней свободных колебаний или вынужденных колебаний на резонансной частоте, измерении этой частоты колебаний и определении максимального прогиба от действия заданной контрольной равномерно распределенной нагрузки по частоте колебаний, отличающийся тем, что для определенного типа балок из физически нелинейного материала изготавливают эталонную конструкцию с соблюдением всех технологических требований по качеству, определяют в ней основную или первую резонансную частоту колебаний ω, нагружают ее ступенчато возрастающей равномерно распределенной нагрузкой, измеряют максимальный прогиб w на каждом этапе нагружения и по результатам испытаний эталонной балки строят аппроксимирующую функцию по которой при контроле жесткости серийно выпускаемых балок данного типа определяют значение параметра К, соответствующего заданной контрольной нагрузке q.

Изобретение относится к области строительства и предназначено для контроля жесткости балок, изготовленных из материала, обладающего физически нелинейными свойствами (в частности, железобетонных балок), и нагруженных равномерно распределенной нагрузкой.

Известен способ контроля качества изготовления железобетонных балок [1], суть которого заключается в определении их жесткости, трещиностойкости и прочности при действии статической ступенчато возрастающей равномерно распределенной нагрузки (см. 1 ГОСТ 8829-94. Конструкции и изделия бетонные и железобетонные сборные. Методы испытания нагружением и оценка прочности, жесткости и трещиностойкости. - М.: Изд-во стандартов, 1994. - 26 с.).

Недостаток этого способа заключается в том, что он является разрушающим, поскольку при определении прочности конструкций они доводятся до разрушения. Кроме того, этот способ используется для выборочного контроля качества железобетонных балок, когда из определенной партии конструкций испытываются несколько штук, и поэтому он не может гарантировать качество всех конструкций из контролируемой партии.

Наиболее близким решением к заявляемому изобретению является вибрационный способ определения жесткости балок, изготовленных из материала, обладающего физически линейными свойствами (подчиняющегося закону Гука), принятый в качестве прототипа, который заключается в определении максимального прогиба балок w0 по основной частоте колебаний в ненагруженном состоянии ω по формуле

где q - интенсивность равномерно распределенной нагрузки; m - погонная масса балки постоянного сечения (см. 2 Коробко В.И., Коробко А.В. Контроль качества строительных конструкций: Виброакустические технологии. - М.: Изд-во АСВ, 2003. - 288 с.; с. 184-188).

Недостаток этого способа заключается в том, что он не может применяться для контроля жесткости балок, изготовленных из материала, обладающего физически нелинейными свойствами, поскольку коэффициент пропорциональности в формуле (1) для таких материалов становится функциональным, зависящим от интенсивности нагрузки, вида материала и его диаграммы деформирования σ-ε (напряжения - относительные деформации) при растяжении (сжатии).

Задача, на решение которой направлено изобретение, состоит в расширении технологических возможностей способа, позволяющем контролировать жесткость балок, изготовленных из материала, обладающего физически нелинейными свойствами.

Это достигается тем, что в способе определения жесткости однопролетных балок из физически нелинейного материала, заключающемся в установке и закреплении балки на опорах испытательного стенда, возбуждении в ней свободных колебаний или вынужденных колебаний на резонансной частоте, измерении этой частоты колебаний и определении максимального прогиба от действия заданной контрольной равномерно распределенной нагрузки по этой частоте колебаний, для определенного типа балок из физически нелинейного материала изготавливают эталонную конструкцию с соблюдением всех технологических требований по качеству, определяют в ней основную или первую резонансную частоту колебаний ω0, нагружают ее ступенчато возрастающей равномерно распределенной нагрузкой, измеряют максимальный прогиб w0 на каждом этапе нагружения и по результатам испытаний эталонной балки строят аппроксимирующую функцию по которой при контроле жесткости серийно выпускаемых балок данного типа определяют значение параметра К, соответствующего заданной контрольной нагрузке q0.

Технический результат - расширение технологических возможностей способа и распространение его на балки, материал которых обладает физически нелинейными свойствами, достигается за счет построения экспериментальной кривой K(q) по результатам динамических и статических испытаний эталонной конструкции.

Осуществление заявляемого способа поясняется следующими чертежами. На фиг.1 приведена диаграмма σ-ε для физически нелинейного материала. Тангенс угла наклона касательной, проведенной в начало координат, с горизонталью α0 равен начальному модулю упругости Е0 материала; тангенс угла наклона касательной, проведенной к любой точке диаграммы, с горизонталью α равен текущему модулю упругости Е материала.

На фиг.2 представлена зависимость К-q, где (кривая 1), построенная по результатам динамических и статических испытаний железобетонной перемычки типа 2ПБ-26-4 ступенчато возрастающей равномерно распределенной нагрузкой. Прямая 2 соответствует балкам из материала, подчиняющегося закону Гука.

На фиг.3 приведена схема стенда для проведения испытаний, где 1 - массивные опоры стенда, 2 и 3 металлические подкладки под опоры, 4 - шарнирно неподвижная опора балки, 5 - шарнирно подвижная опора балки, 6 нагрузка в виде кирпичей, 7 вибродатчик прибора «Вибран-2.0», 8 - прогибомер часового типа 6ПА0.

Физическую сущность предлагаемого способа можно пояснить следующими рассуждениями.

Максимальный прогиб балки, изготовленной из материала, обладающего физически нелинейными свойствами и нагруженной по всему пролету равномерно распределенной нагрузкой q, определяется по формуле

w0=φqℓ4/EI, (2)

где φ - коэффициент пропорциональности, зависящий от граничных условий по концам балки; ℓ - пролет балки; Е - модуль упругости материала, являющийся в данном случае переменной величиной, зависящей от интенсивности действующей нагрузки (от напряженного состояния в сечениях балки) (фиг.1); I - момент инерции поперечного сечения балки.

Основная частота колебаний такой балки в ненагруженном состоянии ω0 определяется по формуле

где β2 - коэффициент пропорциональности, зависящий от вида граничных условий по концам балки; Е0 - начальный модуль упругости материала; m - погонная масса балки. С учетом выражений (1)…(3)

В отличие от формулы (1), справедливой для балок из материала, подчиняющегося закону Гука, в формуле (4) появилось отношение начального модуля упругости Е0 к текущему Е. Объединим это отношение с коэффициентом пропорциональности φβ4, тогда

где K=αβ2×E0/E. Если текущий модуль упругости Е равен начальному Е0, что соответствует материалу, подчиняющемуся закону Гука, то коэффициент K=4π, и выражение (5) приводится к виду (1).

Для физически нелинейного материала К является сложной функцией, зависящей от напряженного состояния в сечениях балки, то есть в первую очередь от действующей нагрузки q.

Преобразуем зависимость (5) к следующему виду:

На фиг.2 кривой 1 представлен график К-q, построенной по экспериментальным данным испытания железобетонной перемычки типа 2ПБ-26-4. Прямая 2 на этой фигуре соответствует балкам из материала, подчиняющегося закону Гука.

Функция K(q) для любого материла, обладающего физически нелинейными свойствами, может быть построена для балки определенного типа, аппроксимируя результаты испытаний эталонного изделия, отвечающего всем требованиям технологических норм по качеству. С помощью этой аппроксимирующей функции по величине контрольной нагрузке q0 находят значение параметра К, а затем при контроле максимального прогиба балки серийного изготовления определяют ее основную (или первую резонансную частоту колебаний) в ненагруженном состоянии и по формуле (5) находят величину максимального прогиба.

Способ осуществляется следующим образом.

Для определенного типа балок изготавливается эталонная конструкция при строгом соблюдении всех технологических норм по обеспечению качества. Эту конструкцию подвергают динамическим испытаниям без нагружения, определяя основную частоту свободных колебаний ω0 (или первую резонансную частоту). Затем эталонную балку нагружают ступенчато возрастающей равномерно распределенной нагрузкой и на каждой ступени нагружения определяют величину максимального прогиба w0. По полученным результатам строят аппроксимирующую кривую К-q (фиг.2) в виде аналитической зависимости.

При контроле качества серийно выпускаемых конструкций назначают контрольную нагрузку q0, по которой с помощью аппроксимирующей функции вычисляют коэффициент K(q). В ненагруженном состоянии возбуждают в конструкции собственные колебания (например, с помощью механического удара), измеряют основную частоту колебаний с помощью частотомера (например, прибора «Вибран-2.0»), и по формуле

определяют величину максимального прогиба балки, соответствующего заданной контрольной нагрузке.

Пример реализации способа

Для апробации предложенного способа определения жесткости балок из физически нелинейного материала была изготовлена железобетонная балка в опалубке перемычек типа 2ПБ-26-4 (1=2590 мм; b=120 мм; h=140 мм, масса балки m≈109,0 кг). Арматурный каркас состоял из рабочей арматуры нижней зоны (арматура класса А400 диаметром ds=12 мм), конструктивной арматуры верхней зоны (проволочной арматуры В500 ds=5 мм) и поперечных связей из арматуры В500 ds=4 мм. Для замоноличивания использовался бетон с начальным модулем упругости Еb=27,5 103МПа. Балка изготавливалась в заводских условиях под строгим контролем всех технологических операций согласно ГОСТ Р 53231-2008 (подбор состава бетона и его укладка в опалубку, контроль режимов формования и термообработки, соблюдение геометрических размеров, армирования и др.).

Испытания железобетонных балок проводились на специальном стенде, который включал в себя набор стандартного оборудования, приборов и средств измерений (фиг.3).

Балка 1 устанавливалась и закреплялась на шарнирных опорах. Одна из них шарнирно неподвижная 3 в виде стального уголка, другая шарнирно подвижная 2 в виде металлического круглого стержня. Шарнирные опоры 2 и 3 установлены на силовых опорах 6. В средней части балки закреплялся вибродатчик 5 прибора «Вибран-2.0» и прогибомер часового типа 6ПАО 6 с ценой деления 0,01 мм. Под балкой в середине пролета размещался возбудитель колебаний ударного типа 4 на основе контактора КТ6042-УЗ с емкостным накопителем мощностью до 600 Дж, работу которого обеспечивали вспомогательные устройства: генератор сигнала типа Г6-26 и усилитель мощности типа LV-103 (MMF).

В контролируемой балке сначала измерялась основная частота колебаний в ненагруженном состоянии, а затем осуществлялось статическое нагружение ступенчато возрастающей равномерно распределенной нагрузкой в виде силикатного кирпича с размерами 250×120×88 мм и массой ≈5,2 кг. Каждая ступень нагрузки согласно требованиям ГОСТ 8829-94 [1] не превышала 10% от контрольной разрушающей нагрузки. Схема нагружения балок показана на фиг.4.

На каждом этапе загружения балки определялся ее максимальный прогиб.

При динамическом испытании балки в ненагруженном состоянии в режиме свободных колебаний была получена основная частота колебаний f=29,9 Гц (ω=2πf=187,87 с-1). Результаты статических испытаний балки приведены в следующей таблице (колонки 2 и 3).

Таблица
Результаты статических испытаний железобетонной балки
№ исп. q, кН/м w0, мм K К по (7) Разница, %
1 2 3 4 5 6
1 0,488 0,251 0,764 0,762 0,26
2 0,600 0,389 0,929 0,889 4,31
3 0,732 0,500 1,014 1,022 0,79
4 0,976 0,810 1,233 1,238 0,41
5 1,098 1,010 1,366 1,337 2,12
6 1,220 1,163 1,416 1,430 0,99
7 1,342 1,368 1,514 1,520 0,40
8 1,466 1,590 1,611 1,607 0,25
9 2,152 2,901 2,002 2,038 1,80
10 3,228 5,608 2,580 2,587 0,27
11 4,304 8,752 3,020 3,009 0,36
12 4,842 10,33 3,168 3,174 0,19
13 5,380 11,979 3,307 3,307 0,00

Результаты определения коэффициента пропорциональности К по формуле (6) по экспериментальным данным после их статистической обработки приведены в колонке 4. По этим значениям К построена аппроксимирующая кривая К-q:

где а=-0,2496, b=1,5591, с=0.3130, d=-0,04021. Результаты расчета по этой формуле приведены в колонке 5, а в колонке 6 - их отклонения от результатов, приведенных в колонке 4. Графическое представление этой зависимости приведено на фиг.2 (кривая 1). Графический анализ этой кривой 1 показал, что она является монотонно возрастающей без каких-либо заметных переломов в момент перехода работы балки из упругой стадии в упругопластическую и пластическую.

Совместно с испытанной эталонной железобетонной балкой была изготовлена и испытана вторая балка, отличающаяся от первой тем, что приготовленная бетонная смесь была жестче за счет снижения объема воды в ней на 5%. После ее укладки в опалубку смесь вибрировалась дольше, чем в первой балке.

В этой балке в ненагруженном состоянии была определена основная частота колебаний f=32,47 Гц (ω=204,015 с-1). Далее балка была испытана тремя ступенями статически приложенной равномерно распределенной нагрузки: q1=0,488 кН/м, q2=1,466 кН/м и q3=3,228 кН/м. Первая нагрузка соответствовала упругой работе балки, вторая - приблизительно моменту появления трещин, третья - работе балки в упругопластической стадии. Для этих нагрузок экспериментально были определены прогибы: (w0)1=0,22 мм, (w0)2=1,28 мм, (w0)3=4,60 мм.

По формуле (5) для заданных нагрузок и найденной экспериментально основной частоте колебаний были подсчитаны значения максимальных прогибов (w0)1=0,212 мм, (w0)2=1,345 мм, (w0)3=4,768 мм. Эти результаты отличаются от полученных экспериментально соответственно на 3,64%, 5,07% и 3,65%.

Способ контроля жесткости однопролетных балок из физически нелинейного материала, заключающийся в установке и закреплении балки на опорах испытательного стенда, возбуждении в ней свободных колебаний или вынужденных колебаний на резонансной частоте, измерении этой частоты колебаний и определении максимального прогиба от действия заданной контрольной равномерно распределенной нагрузки по частоте колебаний, отличающийся тем, что для определенного типа балок из физически нелинейного материала изготавливают эталонную конструкцию с соблюдением всех технологических требований по качеству, определяют в ней основную или первую резонансную частоту колебаний ω, нагружают ее ступенчато возрастающей равномерно распределенной нагрузкой, измеряют максимальный прогиб w на каждом этапе нагружения и по результатам испытаний эталонной балки строят аппроксимирующую функцию по которой при контроле жесткости серийно выпускаемых балок данного типа определяют значение параметра К, соответствующего заданной контрольной нагрузке q.
СПОСОБ КОНТРОЛЯ ЖЕСТКОСТИ ОДНОПРОЛЕТНЫХ БАЛОК ИЗ ФИЗИЧЕСКИ НЕЛИНЕЙНОГО МАТЕРИАЛА
СПОСОБ КОНТРОЛЯ ЖЕСТКОСТИ ОДНОПРОЛЕТНЫХ БАЛОК ИЗ ФИЗИЧЕСКИ НЕЛИНЕЙНОГО МАТЕРИАЛА
СПОСОБ КОНТРОЛЯ ЖЕСТКОСТИ ОДНОПРОЛЕТНЫХ БАЛОК ИЗ ФИЗИЧЕСКИ НЕЛИНЕЙНОГО МАТЕРИАЛА
СПОСОБ КОНТРОЛЯ ЖЕСТКОСТИ ОДНОПРОЛЕТНЫХ БАЛОК ИЗ ФИЗИЧЕСКИ НЕЛИНЕЙНОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Showing 21-30 of 49 items.
27.05.2015
№216.013.4f07

Устройство для упрочнения металлических втулок

Устройство относится к упрочнению металлических втулок. Устройство содержит оправку и роликовую матрицу, установленную с возможностью вращения и относительного осевого возвратно-поступательного перемещения вдоль оси оправки. Роликовая матрица содержит по меньшей мере два ролика, установленных с...
Тип: Изобретение
Номер охранного документа: 0002551749
Дата охранного документа: 27.05.2015
10.07.2015
№216.013.608f

Форма для производства стеклянной тары и способ ее изготовления

Изобретение относится к области литейного производства. Форма выполнена тонкостенной из чугуна ферритного класса и получена литьем в песчано-бентонитовые формы. Чугун содержит, вес.%: углерод 3,0-3,6, кремний 2,0-2,7, марганец 0,1-0,4, молибден 0,2-0,8, ванадий 0,07-0,2, никель 0,3-1,0, медь...
Тип: Изобретение
Номер охранного документа: 0002556260
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.61d4

Устройство ударного действия для образования скважин в грунте

Изобретение относится к строительству и может быть использовано при прокладке труб, кабелей высокого напряжения и телефонных, а также водоспусковых и дренажных коммуникаций. Устройство ударного действия для образования скважин в грунте включает корпус, гидромолот с наковальней, полый наконечник...
Тип: Изобретение
Номер охранного документа: 0002556586
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.629a

Способ диагностирования эндопротезов суставов с металлической парой трения

Изобретение относится к области испытаний изделий медицинской техники, а именно к вопросу производственных испытаний эндопротезов суставов с металлической парой трения, состояние которой в процессе испытаний оценивается с применением электрических (электрорезистивных) методов диагностирования....
Тип: Изобретение
Номер охранного документа: 0002556789
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.62b3

Способ диагностирования величины осевого зазора в шаровом шарнире автомобиля

Изобретение относится к области измерительной техники, к диагностированию автомобилей. Способ диагностирования величины осевого зазора в шаровом шарнире автомобиля достигается за счет использования двух вибродатчиков. Первый вибродатчик фиксирует вибрации, возникающие непосредственно в...
Тип: Изобретение
Номер охранного документа: 0002556814
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6304

Состав для производства хлебобулочных изделий

Изобретение относится к пищевой промышленности и может быть использовано при производстве ржано-пшеничных хлебобулочных изделий повышенной биологической ценности. Состав для производства хлебобулочных изделий включает ржаную обдирную и пшеничную муку второго сорта и дополнительное сырье к общей...
Тип: Изобретение
Номер охранного документа: 0002556895
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.67f0

Комбинированная опора

Изобретение относится к области машиностроения и может быть использовано в роторных машинах, к которым предъявляются повышенные требования по быстроходности и возможности многократных пусков (остановов) машины. Комбинированная опора содержит внешнее кольцо (1), внутреннее кольцо (2) и тела...
Тип: Изобретение
Номер охранного документа: 0002558161
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.682f

Способ получения экструдированных пищевых волокон

Изобретение предназначено для использования в пищевой промышленности при изготовлении продуктов с добавками и относится к процессам получения пищевых волокон (ПВ) из растительного сырья. Способ получения экструдированных пищевых волокон предусматривает прессование свекловичного жома, обработку...
Тип: Изобретение
Номер охранного документа: 0002558224
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6dd2

Муфта зубчатая сцепная

Изобретение относится к области машиностроения и может быть использовано для передачи вращения между двумя соосными валами, в частности, при регулировке резьбонакатного ролика в многороликовых резьбонакатных станках. Муфта содержит две полумуфты с зубьями, одна из которых установлена с...
Тип: Изобретение
Номер охранного документа: 0002559672
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.73b8

Комбинировання опора

Изобретение относится к области машиностроения и может быть использовано в роторных машинах, к которым предъявляются повышенные требования по быстроходности и возможности многократных пусков (остановов) машины. Комбинированная опора содержит корпус, размещенные в нем подшипник качения и...
Тип: Изобретение
Номер охранного документа: 0002561199
Дата охранного документа: 27.08.2015
Showing 21-30 of 61 items.
10.02.2015
№216.013.2627

Раскатка для дорожки качения кольца упорного шарикоподшипника

Изобретение относится к раскатке дорожки качения кольца упорного шарикоподшипника. Раскатка содержит оправку с деформирующими элементами, выполненными в виде шариков, и опорный фланец. Оправка выполнена полой с центральным продольным отверстием и с возможностью приложения к ней периодической...
Тип: Изобретение
Номер охранного документа: 0002541220
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2673

Пресс для дублирования деталей швейных изделий

Изобретение относится к оборудованию, применяемому в швейной промышленности, в частности к устройствам для дублирования деталей швейных изделий. Задачей изобретения является: сокращение энергозатрат на процесс обработки швейных изделий; улучшение условий труда; повышение производительности...
Тип: Изобретение
Номер охранного документа: 0002541296
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2932

Наружная многослойная монолитная стена многоэтажного здания

Изобретение относится к строительству и может быть использовано при возведении наружных многослойных стен монолитных многоэтажных зданий. Технический результат: повышение эксплуатационной надежности. Наружная многослойная монолитная стена многоэтажного здания содержит монолитные бетонные слои,...
Тип: Изобретение
Номер охранного документа: 0002542003
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a01

Устройство для деформационного упрочнения внутренней поверхности полых осесимметричных заготовок

Изобретение относится к упрочнению внутренней поверхности полых осесимметричных заготовок. Устройство содержит опору и два или более деформирующих элемента в виде конических роликов, прилегающих к опоре и удерживаемых от выпадения сепаратором. По меньшей мере один ролик выполнен с кольцевым...
Тип: Изобретение
Номер охранного документа: 0002542210
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.400f

Способ экспериментального определения динамических догружений в железобетонных рамно-стержневых системах от внезапного выключения линейной связи

Изобретение относится к испытательной технике, в частности к испытаниям плоских и пространственных железобетонных рамно-стержневых конструктивных систем. Способ реализуется следующим образом. На испытательном стенде собирают конструктивную схему в виде рамно-стрежневой системы, закрепляют...
Тип: Изобретение
Номер охранного документа: 0002547887
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.475c

Способ изготовления концентрата зернового

Изобретение относится к области обработки зерна или муки, а также к мучным полуфабрикатам и готовым мучным изделиям. Для изготовления концентрата зернового используют очищенное от посторонних примесей нешелушенное зерно пшеницы, ржи, тритикале, овса и ячменя влажностью 11-13%, которое...
Тип: Изобретение
Номер охранного документа: 0002549772
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.475d

Желейный мармелад и способ его получения

Изобретение относится к пищевой промышленности, в частности к кондитерской. Предложен желейный мармелад, содержащий студнеобразователь, вкусовые и пищевые добавки, при этом он дополнительно содержит сахарозаменители - фруктозу, сорбит, экстракт солодовых ростков, в качестве вкусовых и пищевых...
Тип: Изобретение
Номер охранного документа: 0002549773
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.477e

Устройство для подачи смазочно-охлаждающей жидкости (сож) при плоском шлифовании периферией круга

Изобретение относится к обработке металлов резанием и может быть использовано в шлифовальных станках с горизонтальным расположением оси инструмента и с применением смазочно-охлаждающей жидкости (СОЖ). Устройство содержит кожух и сопла для подачи СОЖ. Кожух выполнен с передней крышкой и с...
Тип: Изобретение
Номер охранного документа: 0002549806
Дата охранного документа: 27.04.2015
27.05.2015
№216.013.4f03

Устройство для упрочнения металлических трубных изделий

Изобретение относится к обработке металлов давлением, в частности к устройствам для упрочнения металлических трубных изделий. Устройство содержит оправку и роликовую матрицу. Роликовая матрица установлена с возможностью вращения и линейного возвратно-поступательного перемещения относительно оси...
Тип: Изобретение
Номер охранного документа: 0002551745
Дата охранного документа: 27.05.2015
27.05.2015
№216.013.4f07

Устройство для упрочнения металлических втулок

Устройство относится к упрочнению металлических втулок. Устройство содержит оправку и роликовую матрицу, установленную с возможностью вращения и относительного осевого возвратно-поступательного перемещения вдоль оси оправки. Роликовая матрица содержит по меньшей мере два ролика, установленных с...
Тип: Изобретение
Номер охранного документа: 0002551749
Дата охранного документа: 27.05.2015
+ добавить свой РИД