×
10.01.2015
216.013.1ab2

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ КОЛЛОИДНЫХ КВАНТОВЫХ ТОЧЕК СУЛЬФИДА СЕРЕБРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к коллоидной химии и может быть использовано в люминесцентных метках, а также при изготовлении материалов для лазеров, светодиодов, солнечных батарей, фотокатализаторов. Сначала раздельно готовят растворы сульфида натрия и азотнокислого серебра. Для этого по 0,01-0,5 г сульфида натрия и азотнокислого серебра растворяют в 40-200 мл холодной дистиллированной воды. 0,5-20 г желатина набухает в реакторе в течение 30 мин в 100-500 мл дистиллированной воды с температурой от 20-30°C. Полученный желатиновый раствор нагревают до 40-90°C при перемешивании, в него сливают 5 мл 96%-этанола. Затем осуществляют двуструйное сливание приготовленных растворов сульфида натрия и азотнокислого серебра, нагревают 10-20 мин с получением золя коллоидных квантовых точек сульфида серебра и охлаждают его до 4- 10°C в течение 10 часов. Полученный студень измельчают до размера гранул 5-10 мм, промывают дистиллированной водой при температуре 7-13°C, лишнюю воду сцеживают и гранулы нагревают до температуры свыше 40°C. Изобретение позволяет получить квантовые точки сульфида серебра размером 1-5 нм в матрице из желатина, люминесцирующие в области 800-1100 нм. 1 з.п. ф-лы, 4 ил., 2 пр.

Изобретение относится к коллоидной химии, а именно к получению полупроводниковых коллоидных квантовых точек Ag2S в диэлектрической матрице.

Квантовые точки Ag2S могут быть использованы в качестве люминесцентных меток, а так же как материал для лазеров, светодиодов и солнечных батарей. Кроме того, они представляют большой интерес с точки зрения фотокатализа, фотовольтаики, биомедицинских приложений и др. ввиду низкой токсичности сульфида серебра и малой ширины запрещенной зоны квантовых точек Ag2S.

Известен способ получения квантовых точек Ag2S, диспергированных в полиакриламиде (J.-F. Zhu et al., J. Phys. Chem. C, 2007, 111, 3920-3926). Получение квантовых точек осуществляется с помощью микроволнового нагрева этиленгликоля, содержащего AgNO3, серу и акриламид при температуре ~125°C. В результате чего происходит образование наночастиц Ag2S и полимеризация акриламида, в результате получаются наночастицы сульфида серебра, которые равномерно распределены в матрице полиакриламида. Размер получаемых частиц 36-54 нм, средний диаметр 43.8 нм.

Недостатками такого способа синтеза являются: крупный размер частиц, большая продолжительность синтеза (около 60 мин), кроме того, отсутствуют данные о сопряжении с биологически активными молекулами.

Известен способ получения коллоидных квантовых точек Ag2S (Yaping Du et al., J. Am. Chem. Soc.,2010.V. 132, №5, 1470-1471) с использованием Ag(DDTC) в качестве прекурсора. Его водный раствор, олеиновую кислоту, октадециламин и октадекан нагревали до 100°C в одной емкости для удаления воды и оксидов. В результате формировался гомогенный раствор коричневого цвета. Затем смесь нагревалась до 200°C в атмосфере N2 и выдерживалась 30 минут. После чего охлаждалась, перемешивалась и высушивалась на воздухе при температуре 60°C. Размер получаемых таким образом наночастиц составлял 10.2 нм.

Главными недостаткам такого способа являются сложность и трудоемкость процесса, токсичность компонентов синтеза (октадециламин), как следствие, отсутствие биосовместимости, а также отсутствие данных о сопряжении с биологически активными молекулами.

Также в литературе (Q. Tang et al., Langmuir, 2006. Vol.22, 2802-2805) имеется описание способа синтеза квантовых точек Ag2S с помощью высокотемпературного впрыска однокомпонентного прекурсора Ag(SCOPh), растворенного в триоктилфосфине. Синтез осуществлялся следующим образом: дегазированный прекурсор (монотиобензоат серебра) инжектировался в специальную колбу, содержащую триоктилфосфин комнатной определенной температуры в атмосфере азота, далее температура увеличивалась со скоростью 1°C/сек. По достижении 160°C увеличение температуры останавливалось и смесь выдерживалась в течении 10 минут. Размер полученных квантовых точек составлял 20-30 нм.

Существенным недостатком такого синтеза является высокая токсичность используемого растворителя - триоктилфосфина, тщательный эмпирический подход к отработке условий контроля параметров синтеза (начальная температура смеси, скорость нагревания, дегазация прекурсора), отсутствие биосовместимости, отсутствие данных о возможности сопряжения с биологически активными молекулами.

Известен способ получения самоорганизующихся периодических структур нанокристаллов в мицеллярных растворах поверхностно-активных веществ (ПАВ) по патенту RU 2317941 (МПК B82B 3/00, от 27.02.2008), который заключается в получении наночастиц сульфида серебра с помощью обменной реакции между микроэмульсиями нитрата серебра и сульфида натрия в изооктане с последующим добавлением s-додецилизотиурония хлорида (ДТХ) в качестве эктрагента. Данная методика позволяет получать наночастицы Ag2S со средним размером ~5 нм.

Недостатками данного метода являются использование высокотоксичных соединений ДТХ, трудоемкость, отсутствие биосовместимости полученных наночастиц ввиду наличия токсичных компонентов синтеза, отсутствие данных о сопряжении с биологически активными молекулами.

Прототипом настоящего изобретения является способ по патенту RU 2292573 (МПК G03C 1/12 от 27.01.2007), позволяющий получать особомелкозернистые галогенсеребряные фотографические эмульсии со средним размером микрокристаллов галогенида серебра 5-10 нм, который заключается в одноструйной эмульсификации при избытке ионов серебра - введение водного раствора бромида и иодида калия в водный раствор азотнокислого серебра и желатина в течение 1-2 минут при интенсивном перемешивании, концентрирование методом замораживания с последующей промывкой. Стадии эмульсификации и созревания совмещены в данном способе синтеза.

Данный способ позволяет получать кристаллы AgBr, но т.к. они обладают высокой светочувствительностью, вследствие которой происходит фотодиссоциация, это создает трудности при хранении и использовании. Также кристаллы бромида серебра не обладают способностью к люминисценции.

Задачей данного изобретения является разработка способа синтеза нанокристаллов сульфида серебра, способных к сопряжению с биологически активными молекулами, без использования токсичных соединений

Технический результат настоящего изобретения заключается в низкотемпературном синтезе золь-гель методом нанокристаллов сульфида серебра размером от 1 до 5 нм в полимерной матрице, обладающих люминесценцией в области 800-1100 нм.

Технический результат достигается тем, что в способе получения полупроводниковых коллоидных квантовых точек сульфида серебра, включающем двуструйное сливание в реактор растворов реагента и азотнокислого серебра, нагревание и перемешивание с желатином, охлаждение, промывку, согласно изобретению в качестве раствора реагента используется 0,01-0,5 г сульфида натрия в 40-200 мл холодной дистиллированной воды, раствор азотнокислого серебра включает 0,01-0,5 г самого вещества и 40-200 мл холодной дистиллированной воды; до сливания растворов реагента и азотнокислого серебра 0,5-20 г желатина набухает в реакторе в течение 30 мин в 100-500 мл дистиллированной воды температурой от 20 до 30°C, затем желатиновый раствор при перемешивании нагревается до 40-90°C и в него сливается 5 мл 96%-этанола, а затем растворы реагента и азотнокислого серебра; перемешивание при заданной температуре продолжают 10-20 мин; охлаждение происходит до температуры от 4 до 10°C, при которой раствор выдерживается на протяжении 10 часов, после чего замерзший раствор измельчают до размера гранул 5-10 мм, промывку проводят дистиллированной водой при температуре от 7 до 13°C, затем лишняя вода сцеживается, гранулы нагреваются до температуры свыше 40°C.

В качестве стабилизатора в желатин добавляют ста-соль в количестве от 0,1 до 4% масс. желатина.

На фиг.1 приведена (а) электронная фотография КТ Ag2S и (б) гистограмма распределения по размеру КТ Ag2S, диспергированных в желатин без использования дополнительных стабилизаторов.

На фиг.2 представлена дифрактограмма диспергированных в желатин коллоидных КТ Ag2S.

На фиг.3 представлены спектры поглощения (а) ансамблей коллоидных КТ Ag2S различного размера и ассоциатов «КТ Ag2S - метиленовый голубой» и (б) КТ Ag2S в присутствии ста-соли.

На фиг.4 приведены спектры люминесценции коллоидных КТ Ag2S, (а) чистых и (б) в присутствии ста-соли.

Пример 1

В реактор заливается 300 мл холодной дистиллированной воды 25±5°C и загружается 7,5 г желатина, который в течение 30 минут набухает. Далее в реактор помещают мешалку, подключенную к мотору и блоку питания мотора, ртутный термометр и электроды, подключенные к pH-метру.

Затем 0.262 г азотнокислого серебра растворяют в 100 мл холодной дистиллированной воды и 0.18 г сульфида натрия в 100 мл холодной дистиллированной воды 25±5°C в стеклянных стаканах. Силиконовые трубки подключают к перистальтическому насосу и погружают в стаканы с растворами азотнокислого серебра и сульфида натрия, после чего включают насос для удаления воздуха из силиконовых трубок. Далее включается жидкостный термостат для нагрева реактора до заданной температуры 70°C и включается мешалка, скорость вращения которой около 200 об/мин. При достижении в реакторе требуемой температуры, контролируемой по ртутному термометру, в реактор заливается 5 мл этанола 96% для предотвращения пенообразования в результате перемешивания желатинового раствора, после чего в реактор помещаются силиконовые трубки, подключенные к перистальтическому насосу и стаканам с растворами азотнокислого серебра и сульфида натрия. Включается перистальтический насос. Сливающиеся растворы солей вступают в химическую реакцию, в результате которой осуществляется образование квантовых точек сульфида серебра. После того как растворы солей азотнокислого серебра и сульфида натрия полностью слились в реактор, выключается перистальтический насос и осуществляется перемешивание в течение 10 мин для достижения максимальной однородности по размеру получаемых коллоидных квантовых точек. По завершении перемешивания готовый золь коллоидных квантовых точек переливается в стеклянный стакан и помещается в холодильник при температуре 7±3°C на время около 10 часов для застывания желатинового раствора. По истечении указанного времени желатиновый гель, содержащий квантовые точки сульфида серебра, измельчается до размеров гранул от 5 до 10 мм и загружается в 5 литров холодной дистиллированной воды 10±3°C на 30 минут для удаления растворимых продуктов химической реакции. После гранулы желатинового геля, содержащего коллоидные квантовые точки сульфида серебра, выбрасывают на марлю для удаления лишней воды и оставляют стекать на 30 минут. Далее желатиновые гранулы загружают в стеклянный стакан и расплавляют путем нагрева до T≥40°C.

По электронной фотографии и гистограмме распределения по размерам коллоидных КТ Ag2S (фиг.1) видно, что использованная методика позволяет получить КТ Ag2S в желатине, размер которых не превышал 5 нм, что в 3 раза превосходит боровский радиус экситона в массивном кристалле Ag2S (1.5 нм). Результаты измерений, проведенных с помощью просвечивающей электронной микроскопии, показали, что синтезированные описанным выше способом КТ Ag2S в желатиновой матрице являются изолированными средним диаметром около 2.5 нм с дисперсией порядка 30%. Получаемые данным способом коллоидные квантовые точки обладают люминесценцией с максимумов 925 нм.

Используемая методика дает возможность сопряжения квантовых точек Ag2S с молекулами биологически активных веществ (аминокислоты, красители и др.) по завершении синтеза. Сопряжение квантовых точек сульфида серебра с молекулами метиленового голубого (МГ) производилось введением в расплав желатина, содержащего КТ Ag2S, красителя в концентрациях 10-1 и 10-2 молярных долей до перемешивания.

Получение желатиновых пленок осуществляется нанесением желатинового раствора, содержащего коллоидные квантовые точки Ag2S, после нагревания и перемешивания на стеклянную пластину-основу в количестве от 1 до 10 мл на 20 см2 стеклянной пластины, сушкой при температуре от 20 до 80°C в течение 2-24 часов.

Пример 2

Синтез квантовых точек Ag2S с использованием ста-соли (4-гидрокси-6-метил-1,3,3a,7-тетраазаиндена) в качестве дополнительного стабилизатора проводился аналогично способу по примеру 1, но вместе с желатином в реактор вводился стабилизатор (ста-соль) в количестве 0.02 г.

Рентгеновская дифракция (фиг.2) КТ, полученных описанным в примере 1 способом, исследовалась на дифрактометре ARL X'TRA (Швейцария) для Kα1 меди. Образец, представляющий собой насыпку из нанокристаллов сульфида серебра, помещался на подложку из кристаллического кварца. Рефлексы соответствуют плоскостям моноклинной кристаллической решетки. Анализ показывает, что полученное распределение пиков четко соответствует моноклинной модификации сульфида серебра. Все рефлексы уширены, что указывает на проявление квантового размерного эффекта. Для кубической кристаллической модификации Ag2S характерны наиболее интенсивные рефлексы 25.9051°, 36.9617°, 45.6886°, что не соответствует нашим распределениям, в которых наибольшей интенсивностью обладают пики 28.87°, 31.3611°, 34.4664°, 36.6492°, 37.7673° и 43.2531°.

Спектры поглощения образцов КТ Ag1S (фиг.3) получены сразу по завершении синтеза (кривая 1) по примеру 1 и после выдерживания 3 часа при 90°C (кривая 2), а также получены спектры поглощения ассоциатов «КТ Ag2S - метиленовый голубой» с концентрацией 10-1 мол. д. (кривая 3) и 10-1 мол. д. (кривая 4). Для синтезированных коллоидных КТ значения эффективной ширины запрещенной зоны всех рассматриваемых образцов значительно превышали ширину запрещенной зоны монокристалла Ag2S, составляющую 0.9 эВ, что соответствует проявлению квантово-размерного эффекта.

Для КТ, полученных в отсутствие биологически активных молекул, при выдержке золя при температуре 90°C в течение 3 часов наблюдается четкий максимум в области 2.9 эВ (кривая 2). Данный максимум соответствует поглощению в области первого наиболее вероятного оптического перехода. Для КТ, не подвергнутых длительной выдержке при высокой температуре, четкого максимума не наблюдается (кривая 1). Более того, трудно выделить особенность в спектре, что связано с широким разбросом КТ по размеру. Для таких ансамблей КТ спектр поглощения представляет сумму спектров поглощения КТ разного размера. Полученные данные свидетельствуют о том, что в спектрах поглощения, полученных данным методом КТ Ag2S, имеет место проявление квантово-размерного эффекта, следствием которого является увеличение значений эффективной ширины запрещенной зоны нанокристаллов. При сопряжении с БАМ (краситель метиленовый голубой) в спектре поглощения появляются максимумы в районе 1.7-2.0 эВ, характерные для полос поглощения молекул красителя.

Спектры поглощения КТ Ag2S в присутствии ста-соли сразу после сливания и через 3 часа после сливания представлены кривыми 5 и 6.


СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ КОЛЛОИДНЫХ КВАНТОВЫХ ТОЧЕК СУЛЬФИДА СЕРЕБРА
СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ КОЛЛОИДНЫХ КВАНТОВЫХ ТОЧЕК СУЛЬФИДА СЕРЕБРА
СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ КОЛЛОИДНЫХ КВАНТОВЫХ ТОЧЕК СУЛЬФИДА СЕРЕБРА
СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ КОЛЛОИДНЫХ КВАНТОВЫХ ТОЧЕК СУЛЬФИДА СЕРЕБРА
Источник поступления информации: Роспатент

Showing 61-65 of 65 items.
25.08.2017
№217.015.cf2a

Способ получения липосом

Изобретение относится к области биотехнологии и позволяет получать наноконтейнеры для различного рода веществ в косметологии, фармакологии, медицине. Изобретение представляет собой способ получения липосом и характеризуется тем, что 1%-ный раствор лецитина в этиловом спирте испаряли в роторном...
Тип: Изобретение
Номер охранного документа: 0002621145
Дата охранного документа: 31.05.2017
26.08.2017
№217.015.e6a2

Аккумулятор тепловой энергии

Изобретение относится к хранению тепловой энергии и может быть использовано в устройствах для аккумулирования тепла или холода, используемых для отопления, горячего водоснабжения, кондиционирования, получения электроэнергии. Аккумулятор тепловой энергии содержит резервуар, являющийся полостью в...
Тип: Изобретение
Номер охранного документа: 0002626922
Дата охранного документа: 02.08.2017
19.01.2018
№218.016.0897

Способ разделения минеральной соли и нейтральной аминокислоты в растворе их смеси

Изобретение относится к способам получения очистки аминокислот. Способ выделения нейтральной аминокислоты из водного раствора смеси с минеральной солью нейтрализационным диализом, включающий пропускание смешанного раствора в среднюю камеру трехсекционного диализатора и подачу растворов кислоты...
Тип: Изобретение
Номер охранного документа: 0002631798
Дата охранного документа: 26.09.2017
18.05.2018
№218.016.5132

Способ оценки биотропного проявления электромагнитного излучения сверхвысокой частоты, интегрированного под контроль гена dps

Изобретение относится к области биохимии. Описан способ оценки биотропного проявления электромагнитного излучения сверхвысокой частоты, интегрированного под контроль гена dps, согласно которому регуляторная область гена dps интегрируется в плазмиду рЕТ28b-EGFP перед геном репортерного белка...
Тип: Изобретение
Номер охранного документа: 0002653445
Дата охранного документа: 08.05.2018
20.06.2018
№218.016.6411

Способ оптимизации работы нейрокомпьютерного интерфейса

Изобретение относится к нейрофизиологии, а именно к нейрокомпьютерным интерфейсам. Способ оптимизации работы нейрокомпьютерного интерфейса включает регистрацию активности головного мозга, как по отдельности, так и совместно в любой комбинации любым из следующих методов на основе использования...
Тип: Изобретение
Номер охранного документа: 0002657858
Дата охранного документа: 15.06.2018
Showing 61-70 of 71 items.
25.08.2017
№217.015.cb41

Способ лазерного разделения изотопов фтора

Изобретение относится к способу разделения изотопов фтора. Способ включает облучение фтористого водорода резонансным инфракрасным излучением, с длиной волны 2,419 мкм, последующее воздействие лазерным излучением оптического или инфракрасного диапазона и интенсивностью, превышающей 3×10 Вт/см,...
Тип: Изобретение
Номер охранного документа: 0002620051
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cd7d

Способ количественного определения производных имидазола, незамещенного в 5-положении

Изобретение относится к фармацевтике, а именно к количественному определению производных имидазола, незамещенного в 5-положении, а именно гистидина гидрохлорида, гистамина дигидрохлорида, клотримазола, тиамазола, озагреля, бифоназола в субстанциях лекарственных препаратов. Для приготовления...
Тип: Изобретение
Номер охранного документа: 0002619857
Дата охранного документа: 18.05.2017
25.08.2017
№217.015.cf2a

Способ получения липосом

Изобретение относится к области биотехнологии и позволяет получать наноконтейнеры для различного рода веществ в косметологии, фармакологии, медицине. Изобретение представляет собой способ получения липосом и характеризуется тем, что 1%-ный раствор лецитина в этиловом спирте испаряли в роторном...
Тип: Изобретение
Номер охранного документа: 0002621145
Дата охранного документа: 31.05.2017
26.08.2017
№217.015.e6a2

Аккумулятор тепловой энергии

Изобретение относится к хранению тепловой энергии и может быть использовано в устройствах для аккумулирования тепла или холода, используемых для отопления, горячего водоснабжения, кондиционирования, получения электроэнергии. Аккумулятор тепловой энергии содержит резервуар, являющийся полостью в...
Тип: Изобретение
Номер охранного документа: 0002626922
Дата охранного документа: 02.08.2017
19.01.2018
№218.016.0897

Способ разделения минеральной соли и нейтральной аминокислоты в растворе их смеси

Изобретение относится к способам получения очистки аминокислот. Способ выделения нейтральной аминокислоты из водного раствора смеси с минеральной солью нейтрализационным диализом, включающий пропускание смешанного раствора в среднюю камеру трехсекционного диализатора и подачу растворов кислоты...
Тип: Изобретение
Номер охранного документа: 0002631798
Дата охранного документа: 26.09.2017
10.02.2019
№219.016.b936

Способ регулируемой закачки жидкости по пластам и устройство для его реализации

Группа изобретений относится к нефтедобывающей промышленности, в частности к оборудованию для эксплуатации нагнетательных скважин, вскрывших два пласта. В скважину на колонне насосно-компрессорных труб (НКТ) спускают компоновку подземного оборудования, включающую нижний пакер, разъединитель,...
Тип: Изобретение
Номер охранного документа: 0002679406
Дата охранного документа: 08.02.2019
27.04.2019
№219.017.3d6d

Подогреватель газообразных сред

Изобретение относится к устройствам для подогрева газов, а именно к устройствам для высокотемпературного нагрева, и может быть использовано в нефтехимической, газоперерабатывающей, энергетической и других отраслях промышленности. Подогреватель газообразных сред содержит теплообменный модуль,...
Тип: Изобретение
Номер охранного документа: 0002686357
Дата охранного документа: 25.04.2019
08.12.2019
№219.017.ea69

Воздухоподогреватель

Изобретение относится к устройствам для высокотемпературного нагрева воздуха и может быть использовано в энергетической, нефтехимической, газоперерабатывающей и других отраслях промышленности, а также для обогрева производственных и бытовых помещений. Воздухоподогреватель содержит обечайку с...
Тип: Изобретение
Номер охранного документа: 0002708175
Дата охранного документа: 04.12.2019
09.02.2020
№220.018.0121

Газотурбинная установка для переработки попутного нефтяного и различных низконапорных газов в электроэнергию

Изобретение относится к области энергетики и может быть использовано в нефтедобывающих, газодобывающих и перерабатывающих отраслях, где имеют место выбросы низконапорного газа любого состава. Газотурбинная установка для переработки попутного нефтяного и различных низконапорных газов в...
Тип: Изобретение
Номер охранного документа: 0002713785
Дата охранного документа: 07.02.2020
21.06.2020
№220.018.2957

Многоканальный конфокальный спектроанализатор изображений

Изобретение относится к области спектроскопических исследований и касается многоканального конфокального спектроанализатора изображений. Спектроанализатор включает в себя диодный лазер, цилиндрическую оптику, конфокальную диафрагму, объектив, видеокамеру, систему сканирования и систему...
Тип: Изобретение
Номер охранного документа: 0002723890
Дата охранного документа: 18.06.2020
+ добавить свой РИД