×
10.01.2015
216.013.1a9a

Результат интеллектуальной деятельности: ТЕРАПИЯ ПОД УПРАВЛЕНИЕМ МАГНИТНО-РЕЗОНАНСНОЙ ВИЗУАЛИЗАЦИИ

Вид РИД

Изобретение

№ охранного документа
0002538238
Дата охранного документа
10.01.2015
Аннотация: Группа изобретений относится к медицине, а именно к терапевтической системе и способу мониторинга теплового воздействия на ткань организма. Система содержит блок MR-визуализации, выполненный с возможностью сбора MR-сигналов из тела пациента, расположенного в зоне обследования. Также система содержит блок теплового воздействия для локализации тепловой энергии внутри ткани тела. Система реализует способ мониторинга, заключающийся в первоначальном тепловом воздействии путем нагрева ткани тела в местоположении фокуса в объеме обследования. Далее проводят избирательный сбор MR-сигналов из первой плоскости изображения, при этом фокус теплового воздействия расположен в первой плоскости изображения. После чего реконструируют термографическое MR-изображение из MR-сигналов, собранных из первой плоскости изображения. Затем вычисляют базовое термографическое MR-изображение из температурного распределения в пределах по меньшей мере одной второй плоскости изображения, отличной от первой плоскости изображения. Далее проводят перемещение фокуса теплового воздействия в новое местоположение в пределах объема обследования, изменяют местоположение и/или ориентацию первой плоскости изображения в соответствии с новым местоположением фокуса теплового воздействия. Использование изобретения обеспечивает непрерывный мониторинг температуры в процессе, основанном на MR-термометрии, даже в ситуации, при которой фокус теплового воздействия перемещается. 3 н. и 7 з.п. ф-лы, 6 ил.

ОБЛАСТЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Изобретение относится к области магнитно-резонансной (MR) томографии. Оно касается терапевтической системы, содержащей блок MR-томографии и блок теплового воздействия для сфокусированной воздействия тепловой энергии внутри ткани организма пациента. Кроме того, изобретение относится к компьютерной программе и способу мониторинга терапевтического теплового воздействия.

УРОВЕНЬ ТЕХНИКИ

Как будет подробнее показано ниже, воздействие тепловой энергии все шире используется в медицине в качестве средства для омертвения пораженной ткани. Настоящее изобретение будет раскрыто в контексте терапевтического теплового воздействия с помощью фокусированного ультразвука высокой интенсивности (HIFU). В HIFU-способе используются фазированные пьезоэлектрические преобразователи для генерирования сфокусированного ультразвукового луча. Однако следует отметить, что способ по изобретению равным образом может быть применена в сочетании с любым видом устройства для целенаправленного воздействия тепловой энергии. Примерами служат лазеры или радиочастотные антенны.

Терапевтическая система, содержащая ультразвуковой терапевтический блок и блок MR-визуализации, в общем, известна, например, из WO 2008/152542 A2. В данной известной системе блок MR-визуализации используется для контроля гипертермического воздействия, при помощи ультразвукового терапевтического блока.

Ультразвук становится все более и более желанным подходом для специальных терапевтических интервенционных процедур. В частности, фокусированный ультразвук высокой интенсивности в настоящее время используется в качестве подхода для проведения теплового терапевтического вмешательства применительно к фиброме матки, а также исследовался на возможность применения при лечении онкологических образований в печени, головном мозге, предстательной железе и других органах. Ультразвук также является объектом широких исследований в качестве средства для содействия лизису сгустков крови (сонотромболизис) и, как было показано, повышает эффективность существующих способов лечения, например, использования тканевого активатора плазминогена для больных с нарушением мозгового кровообращения. Еще одна область проведения активных исследований - доставка лекарственного вещества с участие ультразвука и генная терапия. Экспрессия протеинов в генной терапии и повышение доставляемости лекарственных препаратов при таргетной терапии имеют перспективы для лечения широкого круга заболеваний при минимальных побочных эффектах. Следующее практическое применение ультразвуковой терапии - неинвазивное лечение в косметологии, например удаление жировых отложений. Использование ультразвука во всех этих практических приложениях желательно, поскольку позволяет провести неинвазивное лечение глубоких тканей, оказывая малое влияние на расположенные над ними органы или не оказывая такого влияния вовсе.

В ультразвуковой терапии для абляции ткани целевая ткань облучается высокоинтенсивным ультразвуком, который поглощается и преобразуется в тепло, повышая температуру ткани. Когда температура превысит 55°С, происходит коагуляционный некроз ткани, приводящий к немедленному отмиранию клеток. Преобразователи, используемые при проведении терапии, могут находиться вне организма или могут вводиться в организм, например, через кровеносные сосуды, уретру, прямую кишку и т.д.

Магнитно-резонансная термометрия, основанная на сдвиге резонансной частоты протонов (PRFS) в воде, в настоящее время считается «золотым стандартом» для неинвазивного мониторинга абляционной термической терапии. Температурная зависимость резонансной частоты протона главным образом обусловлена вызванным температурой разрушением, растяжением или изгибом водородных связей в воде. Температурная зависимость для чистой воды составляет 0,0107 ppm на один градус по Цельсию, при этом температурная зависимость для тканей на водной основе близка к данной величине. Из-за того, что в устройстве MR-визуализации используется неоднородное магнитное поле, абсолютные измерения резонансной частоты протонов невозможны. Вместо этого изменения резонансной частоты протонов проводят путем первоначального получения MR-изображения перед поступлением тепла и вычитания этого базового термографического изображения из последующих измерений. Температурно-индуцированные изменения резонансной частоты протонов оцениваются путем замера изменений фазы MR-сигнала, или сдвига частоты, посредством по существу известных последовательностей MR-визуализации.

Проблемы возникают в тех случаях практического применения, когда ультразвуковой преобразователь перемещается для оказания терапевтического воздействия в различных точках. Перемещение преобразователя порождает изменения локального магнитного поля. Над фазовыми изображениями до и после перемещения нельзя выполнить операцию вычитания для расчета температурных значений. Один из способов избежать этой проблемы заключается в том, чтобы выжидать довольно продолжительное время после каждого перемещения ультразвукового преобразователя с целью позволить ткани охладиться до базового уровня (например, 37°C) перед следующим воздействием. Далее может быть получено новое базовое термографическое MR-изображение, перед тем как начнется обработка ультразвуком в новом местоположении и/или ориентации ультразвукового преобразователя. Недостаток данного способа заключается в том, что продолжительность воздействия существенно превышает необходимую в действительности.

Используемые в настоящее время последовательности действий при MR-термометрии не позволяют осуществить сбор температурных данных по объему в трехмерном пространстве для различных моментов времени. Вместо этого MR-термометрия в настоящее время ограничивается двумерными плоскостями изображений, тем самым обеспечивая разумные временные периоды корректировки для мониторинга воздействия. Расположение плоскостей изображений для MR-термометрии должно тщательно выбираться. Это вызвано требованием обеспечения безопасности, так чтобы ответственные анатомические структуры и здоровые ткани были защищены. Кроме того, необходимо убедиться, что намеченная область в достаточной степени нагрета, и ткань полностью подверглась абляции. В тех областях практического применения, в которых ультразвуковой преобразователь требуется перемещать, а терапевтическая процедура должна продолжаться без перерывов между обработками ультразвуком, как, например, в случае внутриполостных аппликаций, где имеет место вращательные перемещения преобразователя, плоскости изображений для MR-термометрии требуется постоянно перемещать и корректировать. Поскольку проведение терапии предполагает множество местоположений ультразвукового преобразователя и ориентаций, плоскости изображений, используемые для мониторинга температуры, невозможно выбрать для всех соответствующих местоположений и ориентаций преобразователя.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Из вышесказанного ясно, что существует потребность в усовершенствованной терапевтической системе для HIFU-воздействий под управлением MR-визуализации. Следовательно, задача изобретения заключается в обеспечении непрерывного мониторинга температуры в процессе термического воздействия на основе MR-термометрии даже в ситуациях, при которых положение и ориентация ультразвукового преобразователя изменяются.

Согласно изобретению раскрыта терапевтическая система. Система по изобретению содержит:

блок MR-визуализации, выполненный с возможностью сбора MR-сигналов из организма пациента, расположенного в зоне обследования, а также

блок теплового воздействия для воздействия тепловой энергии внутри ткани организма. Система по изобретению выполнена с возможностью реализации этапов:

a) начала теплового воздействия путем нагрева ткани организма в местоположении фокуса в зоне обследования,

b) избирательного сбора MR-сигналов из первой плоскости изображения, при этом фокус теплового воздействия расположен в первой плоскости изображения,

c) реконструкции термографического MR-изображения на основе MR-сигналов, собранных из первой плоскости изображения,

d) вычисление базового термографического MR-изображения на основе температурного распределения в пределах по меньшей мере одной второй плоскости изображения, отличной от первой плоскости изображения,

e) перемещение фокуса теплового воздействия в новое положение в пределах объема обследования,

f) изменения местоположения и/или ориентации первой плоскости изображения в соответствии с новым положением фокуса теплового воздействия,

g) повтора этапов b) и c), при этом базовое термографическое MR-изображение, вычисленное на этапе d), используется для реконструкции термографического изображения на последующем этапе c).

Изобретение обеспечивает возможность непрерывного получения данных MR-термометрии в областях, необходимых для мониторинга терапии. В изобретении используется разреженный набор температурных данных, собранных только в нескольких двумерных плоскостях изображений. Подход, предложенный в изобретении, позволяет, чтобы положение и ориентация плоскости изображения сопровождали преобразователь без необходимости в ожидании, пока ткань охладится до базового уровня. Кроме того, в изобретении решены проблемы, возникающие из-за изменений локального магнитного поля вследствие перемещения преобразователя.

Будучи рассчитанным главным образом на внутриполостные аппликации, изобретение также может использоваться в других областях применения, в которых аппликатор, используемый для теплового воздействия, перемещается в различные местоположения и ориентации и воздействие должно продолжаться без перерывов между этапами терапии в различных точках и при различных ориентация.

Обычно перед началом фактического воздействия осуществляется сбор набора MR-изображений для планирования терапии. По завершению этих этапов планирования инициируется тепловое воздействие и начинается нагрев ткани, подвергаемой воздействию. Согласно изобретению мониторинг температуры на основе MR-термометрии выполняется в процессе лечения от первой (динамической) области, т.е. первой плоскости изображения, которая перемещается в соответствии с движением ультразвукового преобразователя. Кроме того, определена вторая (статическая) область, т.е. по меньшей мере одна вторая плоскость изображения, которая остается неподвижной в течение всей терапии. В процессе воздействия в первой и второй областях организма получают температурную информацию по существу через равные промежутки времени. Когда ультразвуковой преобразователь перемещается, это приводит к соответствующему перемещению фокуса теплового воздействия в новое местоположение в пределах зоны обследования. Положение и/или ориентация первой области, т.е. первой плоскости изображения, из которой непрерывно осуществляется сбор и реконструкция MR-термографических изображений, изменяется в соответствии с новым местоположением фокуса теплового воздействия. Распределение температуры в статической второй области, отслеженное до изменения фокуса теплового воздействия, теперь используется для получения распределения температуры в измененной первой области, т.е. после перемещения фокуса теплового воздействия. Это осуществляется путем расчета базового термографического MR-изображения из распределения температуры, полученного во второй области, и путем использования этого базового термографического MR-изображения на последующих этапах реконструкции изображения. В результате могут быть построены карты температур и визуально представлены пользователю терапевтической системы для участков изображений, которые не были выбраны заранее посредством пользовательского интерфейса системы. Вся процедура может повторяться несколько раз для последовательных положений и/или ориентаций ультразвукового преобразователя, при этом первая область изображения постоянно корректируется.

Согласно предпочтительному варианту осуществления изобретения базовое термографическое MR-изображение, используемое для последующей реконструкции изображения после изменения фокуса теплового воздействия, вычисляются на основе MR-сигналов, которые избирательно собраны из ранее выбранной статической второй области изображения до перемещения фокуса теплового воздействия. Таким образом, разреженный набор температурных данных собран в процессе терапевтического воздействия, что позволяет осуществлять мониторинг температуры в областях, которые не были предварительно выбраны пользователем.

Согласно следующему предпочтительному варианту осуществления изобретения первая область изображения конгруэнтна со второй областью изображения после изменения положения и/или ориентации первой области изображения в соответствии с новым местоположением фокуса теплового воздействия. В данном варианте осуществления первая плоскость изображения расположена так, что фокус теплового воздействия расположен в первой плоскости, в то время как фокус последующего второго воздействия расположен во второй плоскости. MR-сигналы, собранные из второй плоскости во время первого воздействия, обеспечивают базовое термографическое MR-изображение в фокусе второго воздействия, тем самым создавая возможность непрерывного мониторинга температуры, после того как фокус переместился с участка первого воздействия на участок второго воздействия. Это предусматривает соответствующее планирование, причем несколько вторых плоскостей изображений выбираются в соответствии с последовательностью участков воздействия.

Согласно еще одному предпочтительному варианту осуществления изобретения используется набор из двух или более вторых плоскостей изображений, ориентированных по существу перпендикулярно первой плоскости изображения. Базовые термографические MR-изображения, используемые для этапов реконструкции изображения вслед за изменением местоположения и/или ориентации фокуса воздействия, в этом случае могут быть вычислены путем пространственной интерполяции термографических MR-изображений, реконструированных из MR-сигналов, собранных из набора вторых плоскостей изображений.

Посредством описанной системы по изобретению может быть реализован способ мониторинга теплового воздействия на ткань организма, при этом способ включает в себя:

избирательный сбор MR-сигналов из первой области организма,

реконструкцию термографического MR-изображения из MR-сигналов, собранных из первой области;

вычисление базового термографического MR-изображения из пространственного распределения температур во второй области организма;

изменение местоположения и/или ориентации первой области,

избирательный сбор MR-сигналов из измененной первой области,

реконструкцию термографического MR-изображения из MR-сигналов, собранных из измененной первой области, с использованием базового термографического MR-изображения, вычисленного из пространственного распределения температуры во второй области.

Способ по изобретению предпочтительно может быть реализован в большинстве имеющихся в настоящее время клинических HIFU-систем, работающих под управлением MR-визуализации. Для этой цели достаточно всего лишь использовать компьютерную программу, с помощью которой осуществляется управление системой, так чтобы она выполняла вышеописанные этапы способа по изобретению. Компьютерная программа может существовать либо на носителе информации (CD, DVD или USB-карта), либо может существовать в сети передачи данных, чтобы быть загруженной с целью инсталляции в соответствующем блоке управления терапевтической системы.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На приложенных чертежах раскрыты предпочтительные варианты осуществления настоящего изобретения. Однако следует понимать, что чертежи представлены лишь с целью иллюстрации и не определяют границы изобретения.

На Фигуре 1 схематично показана терапевтическая система по изобретению.

На Фигуре 2 представлено вращательное перемещение трансуретрального ультразвукового преобразователя.

На Фигуре 3 показана диаграмма, где значения температуры являются функцией времени в местоположении, представленном на Фигуре 2.

На Фигуре 4 схематично показано продольное термографическое MR-изображение предстательной железы.

На Фигуре 5 схематично показаны пространственные расположения плоскостей изображений согласно изобретению.

На Фигуре 6 показано изменение плоскости изображения после поворота ультразвукового преобразователя.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

На Фигуре 1 показана терапевтическая система 1. Система содержит сверхпроводящие или резистивные катушки 2 главного магнита, так что вдоль z-оси, проходящей через зону обследования, создается по существу однородное, постоянное во времени главное магнитное поле.

Система для генерирования и манипуляции магнитным резонансом прикладывает последовательность радиочастотных импульсов и переключаемые градиенты магнитного поля для инвертирования или возбуждения ядерно-магнитных спинов, индуцирования магнитного резонанса, рефокусировки магнитного резонанса, управления магнитным резонансом, пространственного и иного кодирования сигналов магнитного резонанса, насыщения спинов и т.п. для выполнения MR-визуализации.

Конкретнее, градиентный импульсный усилитель 3 прикладывает импульсы тока к выбранным из одних градиентным катушкам 4, 5 и 6 для всего тела вдоль осей x, y и z объема обследования. Цифровой передатчик 7 передает RF-импульсы или пакеты импульсов через переключатель 8 передачи/приема на RF-катушку 9 объема всего тела с целью передачи RF-импульсов в объем обследования. Обычная последовательность MR-визуализации состоит из пакета сегментов RF-импульсов малой продолжительности, которые будучи объединены друг с другом и любыми приложенными градиентами магнитного поля обеспечивают выбранное управление ядерным магнитным резонансом. Радиочастотные импульсы используются для насыщения, возбуждения резонанса, инвертирования вектора намагничивания, рефокусировки резонанса или управления резонансом, а также выбора участка организма 10, расположенного в зоне обследования. Магнитно-резонансные сигналы также принимаются RF-катушкой 9 объема всего тела.

Для генерирования MR-изображений ограниченных областей тела 10, например, с помощью параллельной визуализации, смежно с областью, выбранной для визуализации, помещен набор локальных матричных RF-катушек 11, 12, 13. Матричные катушки 11, 12, 13 могут быть использованы для приема MR-сигналов, индуцированных RF-передачей между телом и катушкой.

Результирующие MR-сигналы принимаются RF-катушкой 9 зоны расположения всего тела и/или матричными RF-катушками 11, 12, 13 и подвергаются демодуляции с помощью приемника 14, который предпочтительно включает в себя предусилитель (не показан). Приемник 14 связан с RF-катушками 9, 11, 12 и 13 посредством переключателя 8 передачи/приема.

Главный компьютер 15 управляет градиентным импульсным усилителем 3 и передатчиком 7 для создания любой из множества MR-визуализаций, например эхо-планарной визуализации (EPI), эхо-объемной визуализации, градиентной и спин-эховой визуализации, визуализации на основе быстрого спин-эха и т.п. Для выбранной последовательности приемник 14 принимает одну или множество линий MR-данных в быстром следовании вслед за каждым RF-импульсом возбуждения. Система 16 сбора данных выполняет аналого-цифровое преобразование принятых сигналов и переводит каждую линию MR-данных в цифровой формат, пригодный для дальнейшей обработки информации. В современных MR-устройствах система 16 сбора данных представляет собой отдельный компьютер, который специализирован на сбор первичных данных изображения. В конечном счете, цифровые первичные данные изображения реконструируются в изображение посредством процессором 17 реконструкции изображений, который применяет преобразование Фурье или иные соответствующие алгоритмы реконструкции. MR-изображение может представлять планарный срез пациента, массив параллельных планарных срезов, трехмерный объем и т.п. Изображение далее сохраняется в памяти изображений, где оно доступно для преобразования срезов, проекций и других составляющих изображения в соответствующий формат для визуального отображения, например с помощью видеомонитора 18, представляющего читаемое человеком отображение результирующего MR-изображения.

Система 1 дополнительно включает в себя блок теплового воздействия, содержащий трансуретральный аппликатор 19, соединенный с блоком 20 ультразвукового управления. Блок 20 ультразвукового управления включает в себя управляющую электронику, а также двигатели для перемещения преобразователя аппликатора 19. Блок 20 ультразвукового управления соединен с главным компьютером 15 системы. Главный компьютер 15 инициирует тепловое воздействие и управляет движением ультразвукового преобразователя аппликатора 19. Преобразователь помещен в уретру тела 10 в верхне-нижнем ориентационном направлении относительно пациента и излучает ультразвуковую энергию по направлению к периферии предстательной железы. Таким образом, обеспечивается нагрев в единственной продольной плоскости, параллельной корпусу преобразователя. Чтобы выполнить абляцию всей предстательной железы преобразователь совершает поворот с помощью блока 20 ультразвукового управления путем дискретных угловых перемещений.

Как показано на Фигуре 2, MR-термометрические изображения в одной плоскости изображения, ориентированной трансверсально относительно уретры 21, показаны для двух различных угловых ориентаций ультразвукового преобразователя. Профили 22 температуры и тепловых доз отражают различные ориентации преобразователя.

С учетом Фигуры 2 и как показано на Фигуре 3, на диаграмме, представленной на Фигуре 3, показана температура в точке 23 в различные моменты времени, обычно с интервалом около одной секунды или более. На протяжении фазы нагрева MR-термометрическая визуализация обеспечивает разность температур в каждый момент времени. Температурные значения Т0 - T8 вычисляются по измеренному сдвигу фазы между последовательными MR-изображениями. Для вычисления температурного значения T0 принимается соответствующее базовое температурное значение (например, 37°C).

Вскоре после получения температурного значения T5 преобразователь совершает поворот. Соответствующий момент времени указан стрелкой на Фигуре 3. С этого момента температура в точке 23 начинает понижаться, как показано падением последующих температурных значений T5, T6, T7, T8. Вследствие перемещения преобразователя основанное на MR-термометрии изменение температуры от температурного значения T5 до T6 будет неточным, поскольку магнитное поле меняется до точки, когда фазовые изменения MR-сигналов не характеризуют температурное изменение. Невозможность измерить температурное значение T6 представляет собой проблему, т.к. предполагает, что все температурные значения после T5 не могут быть измерены.

Различные ориентации преобразователя (определяемые устройством управления двигателем ультразвукового блока 20 управления) передаются в главный компьютер 15 системы 1 (см. Фигуру 1). Главный компьютер 15 учитывает профиль акустической интенсивности в плоскости в новой ориентации преобразователя. На основе распределения акустической интенсивности в новой ориентации и распределения температуры в момент времени, предшествующий повороту преобразователя, биотепловое моделирование с использованием метода конечных разностей может быть применено для вычисления распределения температуры непосредственно после поворота преобразователя. Более простой альтернативой может стать применение справочной таблицы для изменений температуры в точке 23, полученной посредством предшествующего моделирования био тепловой энергии или с помощью искусственных экспериментов. Данные способы позволяют продолжить процесс мониторинга температуры на основе использования магнитного резонанса сразу после поворота преобразователя согласно изобретению. Нет необходимости в том, чтобы ткань могла охладиться до базового температурного значения перед последующими ультразвуковыми воздействиями. Доза тепла зависит от всей истории изменения температуры, а значит изобретение позволяет точно вычислить тепловую дозу после момента, в который преобразователь совершил поворот.

Имитация биотепловой энергии широко применяется в HIFU-приложениях. Такое моделирование может быть проведено априори с использованием номинальных значений характеристик тканей, при этом результаты могут сохраняться в виде справочных таблиц для каждой точки пространства. С другой стороны, моделирование может быть проведено в день проведения терапии на основе сведений о повышении температуры в ткани пациента по результатам теста, выполненного до проведения самого лечения. Кроме того, моделирования могут основываться на повышении температуры в первой ориентации преобразователя до совершения первого поворота. По альтернативному варианту значения температуры могут быть получены посредством искусственных, проведенных вне организма или проведенных ранее в живом организме исследований. Акустические и тепловые характеристики ткани для использования при моделировании могут быть оценены in situ с использованием неинвазивных подходов для оценки тепловых и акустических параметров на основе MR-термометрии (см. Cheng et al., «Tissue thermal conductivity by magnetic resonance thermometry and focused ultrasound heating», Journal of Magnetic Resonance Imaging, 2002, vol. 16(5), pages 598-609). Таким образом, распределение температуры в подвергаемой воздействию области ткани может быть получено согласно изобретению. Учитывая сказанное, положение и/или ориентация плоскости изображения могут изменяться в соответствии с изменением фокуса теплового воздействия, не прерывая процедуру воздействия и мониторинга.

На Фигурах 4-6 будет показано, как температурные данные, соответствующие пространственному распределению, становятся доступны посредством использования статической и динамической плоскостей изображения для мониторинга температуры согласно изобретению. Возможная конфигурация плоскостей визуализации температуры показана на Фигуре 4. На Фигуре 4 показаны пять плоскостей 24, 25, 26, 27, 28 изображения, расположенных вокруг зоны нагрева преобразователя 29, представленного в виде наложения продольной плоскости 24 изображения. Показан профиль 22 температуры в плоскости 24 изображения. Продольная плоскость 24 образует первую плоскость изображения в смысловом значении, принятом в изобретении. Она проходит через преобразователь 29 вдоль уретры и покрывает плоскость, в которой акустическая энергия максимальна для соответствующей ориентации преобразователя. Когда преобразователь 29 совершает поворот, продольная плоскость 24 будет непрерывно корректироваться, чтобы оставаться ориентированной вдоль максимальных значений акустической энергии. Три плоскости 25, 26, 27 изображения образуют вторые плоскости изображения в смысловом значении, принятом в изобретении. Трансверсальные плоскости 25, 26, 27 изображения являются статическими. Их положение и ориентация не изменяются в процессе проведения терапии. Пятая плоскость 28 изображения используется для оценки безопасности. MR-термометрия в плоскости 28 гарантирует, что ближняя зона ультразвукового луча чрезмерно не нагревается, приводя к нежелательным эффектам, таким как образование полостей, закипание и повышенное затухание, которое может помешать ультразвуковому лучу распространиться до дальнего участка области. Другие возможные местоположения для оценки безопасности включают в себя стенку прямой кишки и нейроваскулярные узлы, которые должны быть защищены от теплового повреждения.

Данные температуры в разреженном множестве вторых плоскостей 25, 26, 27 изображения подвергается пространственной интерполяции для получения оценок температуры в дополнительных плоскостях изображения, в которых непосредственные измерения не проводятся. Таким образом, базовое MR-термометрическое изображение в положении и при пространственной ориентации откорректированной первой плоскости 24 изображения может быть вычислено перед началом нагрева при новом пространственном положении ультразвукового преобразователя 29. Такой подход проиллюстрирован на Фигуре 5, где показан коронарный срез предстательной железы 30. Сплошные линии представляют первую и вторую плоскости 24, 25, 26, 27 изображения, в то время как пунктирная линия 31 представляет интерполированное базовое MR-термометрическое изображение в откорректированном положении. Интерполированное базовое MR-термометрическое изображение получено из подвергнутых измерениям вторых плоскостей 25, 26, 27 изображения. Интерполяция может быть выполнена посредством любого соответствующего способа, такого как линейная интерполяция или интерполяция на основе сплайн-функции. Это позволяет продольной плоскости визуализации температуры сохранять параллельное положение с плоскостью обработки ультразвуком, не прерывая тепловую терапию и мониторинг температуры.

На Фигуре 6 показан поворот первой плоскости изображения. Ориентация первой плоскости изображения перед поворотом преобразователя 29 обозначена позицией 24. Ориентация после поворота преобразователя 29 обозначена позицией 24'. Карту температур в совершившей поворот первой плоскости 24' изображения получают согласно изобретению из непрерывных замеров температуры в статических трансверсальных плоскостях 25, 26, 27 изображения, как показано на Фигуре 5. Таким образом, плоскость 24 постоянно корректируется, чтобы сопровождать ориентацию преобразователя 29.

В другом (не показанном) варианте осуществления две различные продольные плоскости выбраны в качестве первой и второй плоскостей изображения в смысловом значении, принятом в изобретении. Плоскости изображения выстроены так, что первая плоскость изображения всегда расположена на месте фокуса теплового воздействия, в то время как другая (вторая) плоскость изображения расположена на месте следующего воздействия. Измерение температуры во второй плоскости изображения обеспечивает базовые значения температуры, которые могут быть использованы для непрерывного мониторинга температуры, когда фокус теплового воздействия перемещается с первого участка на второй участок.


ТЕРАПИЯ ПОД УПРАВЛЕНИЕМ МАГНИТНО-РЕЗОНАНСНОЙ ВИЗУАЛИЗАЦИИ
ТЕРАПИЯ ПОД УПРАВЛЕНИЕМ МАГНИТНО-РЕЗОНАНСНОЙ ВИЗУАЛИЗАЦИИ
ТЕРАПИЯ ПОД УПРАВЛЕНИЕМ МАГНИТНО-РЕЗОНАНСНОЙ ВИЗУАЛИЗАЦИИ
ТЕРАПИЯ ПОД УПРАВЛЕНИЕМ МАГНИТНО-РЕЗОНАНСНОЙ ВИЗУАЛИЗАЦИИ
ТЕРАПИЯ ПОД УПРАВЛЕНИЕМ МАГНИТНО-РЕЗОНАНСНОЙ ВИЗУАЛИЗАЦИИ
ТЕРАПИЯ ПОД УПРАВЛЕНИЕМ МАГНИТНО-РЕЗОНАНСНОЙ ВИЗУАЛИЗАЦИИ
Источник поступления информации: Роспатент

Showing 51-60 of 255 items.
10.03.2014
№216.012.aad8

Временная синхронизация множества различных беспроводных сетей

Изобретение относится к технике беспроводной связи и может быть использовано для временной синхронизации беспроводных сетей нательных датчиков. Технический результат - предоставление возможности временной синхронизации различных сетей легким, эффективным и надежным образом. Способ временной...
Тип: Изобретение
Номер охранного документа: 0002509451
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ab1e

Пылесос

Изобретение относится к пылесосу. Пылесос (1), содержащий корпус (2), который разделен на, по меньшей мере, пылевой отсек (4) и моторный отсек (6). Пылесос (1) также содержит двигатель (7), расположенный в моторном отсеке (6), и направляющую (8) для воздуха, расположенную между пылевым отсеком...
Тип: Изобретение
Номер охранного документа: 0002509521
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b7e1

Водонепроницаемый экг-монитор и пользовательский интерфейс

Изобретение относится к медицинской технике. ЭКГ-монитор системы кардиомониторинга для амбулаторных пациентов содержит расположенные в непроводящем водонепроницаемом корпусе аккумуляторную батарею, процессор для обработки сигналов ЭКГ пациента, память для хранения обработанной информации...
Тип: Изобретение
Номер охранного документа: 0002512800
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b93b

Цоколь лампы и способ его производства

Изобретение относится к электротехнике, в частности, к цоколю электролампы. Технический результат - повышение точности позиционирования лампы с упрощением способа изготовления. Предложен цоколь (100) лампы, содержащий основную часть (101), имеющую полость (102) для размещения патрона (203)...
Тип: Изобретение
Номер охранного документа: 0002513147
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.b986

Система лучевой терапии с контролем в реальном времени методом магнитного ядерного резонанса

Изобретение относится к медицинской технике, а именно к способам и системам лучевой терапии. Способ лучевой терапии заключается в подведении импульсного пучка ионизирующего излучения в область объекта в течение импульсных интервалов, получении набора данных выборок данных магнитно-резонансной...
Тип: Изобретение
Номер охранного документа: 0002513222
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c1b5

Формирование спектральных изображений

Изобретение относится к формированию спектральных изображений и находит конкретное применение в спектральной компьютерной томографии (CT). Спектральный процессор, который обрабатывает сигнал детектора, показывающий полихроматическое излучение, детектированное системой формирования изображений,...
Тип: Изобретение
Номер охранного документа: 0002515338
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c2ba

Способы и устройство для кодирования информации на сетевом напряжении переменного тока

Изобретение относится к электротехнике, в частности, к системам управления светильниками путем кодирования сигнала питания переменного тока. Технический результат - получение возможности управлять несколькими параметрами света осветительного устройства. Сетевое напряжение переменного тока...
Тип: Изобретение
Номер охранного документа: 0002515609
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c5db

Устройство блендера, содержащее емкость

Изобретение относится к блендеру, содержащему емкость и может использоваться для перемешивания и измельчения пищевых продуктов. Устройство (1) блендера содержит емкость (3) для вмещения материала для смешивания. Емкость (3) имеет первую часть (2) с узлами (6, 8) ножей. Узлы (6, 8) способны...
Тип: Изобретение
Номер охранного документа: 0002516410
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c5f4

Возбуждение светодиода

Изобретение относится к устройству для возбуждения светодиода, к прибору, содержащему устройство, и к способу для возбуждения светодиода. Технический результат заключается в осуществлении устройства для возбуждения светодиода с повышенной эффективностью. Для этого по первому объекту -...
Тип: Изобретение
Номер охранного документа: 0002516435
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c79f

Фильтровальное устройство для приготовления напитков

Изобретение относится к устройствам для приготовления напитков, в частности, но не исключительно, для приготовления кофе. Устройство (1) для приготовления напитков посредством перколяционного фильтрования содержит: несущую конструкцию (3); полость (9) для емкости (11) в виде графина; емкость...
Тип: Изобретение
Номер охранного документа: 0002516862
Дата охранного документа: 20.05.2014
Showing 51-60 of 1,335 items.
27.04.2013
№216.012.3907

Способ и устройство для регистрирования сосудистой структуры во время медицинского воздействия

Изобретение относится к медицине. При осуществлении способа выявляют введение контрастного вещества, поступающего в зону вблизи опознавательной точки устройства. Анализируют в течение заданного времени зону вблизи опознавательной точки устройства. Формируют кривые зависимости...
Тип: Изобретение
Номер охранного документа: 0002480160
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3b67

Способы и системы для обнаружения

Группа изобретений относится к аналитической химии и касается биосенсорного устройства для детектирования наличия аналита в образцовой текучей среде. Биосенсорное устройство содержит область детектирования, которая ограничена несущей поверхностью и сенсорной поверхностью, являющейся отличной от...
Тип: Изобретение
Номер охранного документа: 0002480768
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3b88

Осветительная система, светильник и устройство подсветки

Осветительная система (17) содержит источник света (20), рассеивающий элемент (30, 32) и зеркальный задний отражатель (40). Форма зеркального заднего отражателя (40) обеспечивает однородное распределение по рассеивающему элементу (30, 32) светового потока, падающего на рассеивающий элемент (30,...
Тип: Изобретение
Номер охранного документа: 0002480801
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3bdf

Схема управления коэффициентом мощности и сетевой источник электропитания

Изобретение относится к области электротехники и может быть использовано в схеме управления коэффициентом мощности и к универсальному сетевому источнику электропитания. Техническим результатом является повышение надежности. Схема (10) управления коэффициентом мощности содержит входные узлы (n1,...
Тип: Изобретение
Номер охранного документа: 0002480888
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3c2e

Скрытые органические оптоэлектронные устройства со светорассеивающим слоем

Изобретение относится к оптоэлектронному устройству (100), содержащему, по крайней мере, одну оптоэлектронную активную область (101), которая содержит, по крайней мере, задний электрод (102) и передний электрод (103), между которыми помещен органический оптоэлектронный материал (104), причем...
Тип: Изобретение
Номер охранного документа: 0002480967
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3e83

Способ воздействия на магнитные частицы и/или детектирования магнитных частиц в зоне действия, магнитные частицы и применение магнитных частиц

Предложены способ воздействия на магнитные частицы, магнитная частица и применение магнитных частиц. Магнитная частица содержит зону сердцевины и зону оболочки. Зона сердцевины содержит магнитный материал. Магнитный материал зоны сердцевины обеспечивается главным образом как металлический...
Тип: Изобретение
Номер охранного документа: 0002481570
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e99

Системы и способы контроля безопасности для магнитного резонанса

Использование: для получения изображений с использованием магнитного резонанса, а также для спектроскопии. Сущность: заключается в том, что способ с использованием магнитного резонанса содержит приложение радиочастотного возбуждения в области (14) исследования, измерение сигнала магнитного...
Тип: Изобретение
Номер охранного документа: 0002481592
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3ec0

Система и способ объединения анализа серийных экг и назначения экг

Изобретение относится к системам и способам улучшения процесса назначения и оценки серийных электрокардиограмм. Техническим результатом является повышение точности и эффективности анализа ЭКГ посредством автоматического предоставления большей информации специалистам по ЭКГ и расшифровщикам ЭКГ....
Тип: Изобретение
Номер охранного документа: 0002481631
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3ee4

Коллектор рассеянных электронов

Коллектор рассеянных электронов содержит теплопоглощающий элемент, имеющий первый конец, второй конец, внешнюю периферию и центральное отверстие (14, 16), при этом центральное отверстие выполнено в продольном направлении через теплопоглощающий элемент от первого конца ко второму концу....
Тип: Изобретение
Номер охранного документа: 0002481667
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3ee7

Устройство бокового свечения с гибридным верхним отражателем

Предложено светоизлучающее устройство бокового свечения (100), включающее, по крайней мере, один светоизлучающий диод (101), расположенный на подложке (102) и обращенный к рассеивающему отражателю (103, 109), расположенному на расстоянии от указанной подложки и продолжающемуся вдоль...
Тип: Изобретение
Номер охранного документа: 0002481670
Дата охранного документа: 10.05.2013
+ добавить свой РИД