×
10.01.2015
216.013.1a9a

Результат интеллектуальной деятельности: ТЕРАПИЯ ПОД УПРАВЛЕНИЕМ МАГНИТНО-РЕЗОНАНСНОЙ ВИЗУАЛИЗАЦИИ

Вид РИД

Изобретение

№ охранного документа
0002538238
Дата охранного документа
10.01.2015
Аннотация: Группа изобретений относится к медицине, а именно к терапевтической системе и способу мониторинга теплового воздействия на ткань организма. Система содержит блок MR-визуализации, выполненный с возможностью сбора MR-сигналов из тела пациента, расположенного в зоне обследования. Также система содержит блок теплового воздействия для локализации тепловой энергии внутри ткани тела. Система реализует способ мониторинга, заключающийся в первоначальном тепловом воздействии путем нагрева ткани тела в местоположении фокуса в объеме обследования. Далее проводят избирательный сбор MR-сигналов из первой плоскости изображения, при этом фокус теплового воздействия расположен в первой плоскости изображения. После чего реконструируют термографическое MR-изображение из MR-сигналов, собранных из первой плоскости изображения. Затем вычисляют базовое термографическое MR-изображение из температурного распределения в пределах по меньшей мере одной второй плоскости изображения, отличной от первой плоскости изображения. Далее проводят перемещение фокуса теплового воздействия в новое местоположение в пределах объема обследования, изменяют местоположение и/или ориентацию первой плоскости изображения в соответствии с новым местоположением фокуса теплового воздействия. Использование изобретения обеспечивает непрерывный мониторинг температуры в процессе, основанном на MR-термометрии, даже в ситуации, при которой фокус теплового воздействия перемещается. 3 н. и 7 з.п. ф-лы, 6 ил.

ОБЛАСТЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Изобретение относится к области магнитно-резонансной (MR) томографии. Оно касается терапевтической системы, содержащей блок MR-томографии и блок теплового воздействия для сфокусированной воздействия тепловой энергии внутри ткани организма пациента. Кроме того, изобретение относится к компьютерной программе и способу мониторинга терапевтического теплового воздействия.

УРОВЕНЬ ТЕХНИКИ

Как будет подробнее показано ниже, воздействие тепловой энергии все шире используется в медицине в качестве средства для омертвения пораженной ткани. Настоящее изобретение будет раскрыто в контексте терапевтического теплового воздействия с помощью фокусированного ультразвука высокой интенсивности (HIFU). В HIFU-способе используются фазированные пьезоэлектрические преобразователи для генерирования сфокусированного ультразвукового луча. Однако следует отметить, что способ по изобретению равным образом может быть применена в сочетании с любым видом устройства для целенаправленного воздействия тепловой энергии. Примерами служат лазеры или радиочастотные антенны.

Терапевтическая система, содержащая ультразвуковой терапевтический блок и блок MR-визуализации, в общем, известна, например, из WO 2008/152542 A2. В данной известной системе блок MR-визуализации используется для контроля гипертермического воздействия, при помощи ультразвукового терапевтического блока.

Ультразвук становится все более и более желанным подходом для специальных терапевтических интервенционных процедур. В частности, фокусированный ультразвук высокой интенсивности в настоящее время используется в качестве подхода для проведения теплового терапевтического вмешательства применительно к фиброме матки, а также исследовался на возможность применения при лечении онкологических образований в печени, головном мозге, предстательной железе и других органах. Ультразвук также является объектом широких исследований в качестве средства для содействия лизису сгустков крови (сонотромболизис) и, как было показано, повышает эффективность существующих способов лечения, например, использования тканевого активатора плазминогена для больных с нарушением мозгового кровообращения. Еще одна область проведения активных исследований - доставка лекарственного вещества с участие ультразвука и генная терапия. Экспрессия протеинов в генной терапии и повышение доставляемости лекарственных препаратов при таргетной терапии имеют перспективы для лечения широкого круга заболеваний при минимальных побочных эффектах. Следующее практическое применение ультразвуковой терапии - неинвазивное лечение в косметологии, например удаление жировых отложений. Использование ультразвука во всех этих практических приложениях желательно, поскольку позволяет провести неинвазивное лечение глубоких тканей, оказывая малое влияние на расположенные над ними органы или не оказывая такого влияния вовсе.

В ультразвуковой терапии для абляции ткани целевая ткань облучается высокоинтенсивным ультразвуком, который поглощается и преобразуется в тепло, повышая температуру ткани. Когда температура превысит 55°С, происходит коагуляционный некроз ткани, приводящий к немедленному отмиранию клеток. Преобразователи, используемые при проведении терапии, могут находиться вне организма или могут вводиться в организм, например, через кровеносные сосуды, уретру, прямую кишку и т.д.

Магнитно-резонансная термометрия, основанная на сдвиге резонансной частоты протонов (PRFS) в воде, в настоящее время считается «золотым стандартом» для неинвазивного мониторинга абляционной термической терапии. Температурная зависимость резонансной частоты протона главным образом обусловлена вызванным температурой разрушением, растяжением или изгибом водородных связей в воде. Температурная зависимость для чистой воды составляет 0,0107 ppm на один градус по Цельсию, при этом температурная зависимость для тканей на водной основе близка к данной величине. Из-за того, что в устройстве MR-визуализации используется неоднородное магнитное поле, абсолютные измерения резонансной частоты протонов невозможны. Вместо этого изменения резонансной частоты протонов проводят путем первоначального получения MR-изображения перед поступлением тепла и вычитания этого базового термографического изображения из последующих измерений. Температурно-индуцированные изменения резонансной частоты протонов оцениваются путем замера изменений фазы MR-сигнала, или сдвига частоты, посредством по существу известных последовательностей MR-визуализации.

Проблемы возникают в тех случаях практического применения, когда ультразвуковой преобразователь перемещается для оказания терапевтического воздействия в различных точках. Перемещение преобразователя порождает изменения локального магнитного поля. Над фазовыми изображениями до и после перемещения нельзя выполнить операцию вычитания для расчета температурных значений. Один из способов избежать этой проблемы заключается в том, чтобы выжидать довольно продолжительное время после каждого перемещения ультразвукового преобразователя с целью позволить ткани охладиться до базового уровня (например, 37°C) перед следующим воздействием. Далее может быть получено новое базовое термографическое MR-изображение, перед тем как начнется обработка ультразвуком в новом местоположении и/или ориентации ультразвукового преобразователя. Недостаток данного способа заключается в том, что продолжительность воздействия существенно превышает необходимую в действительности.

Используемые в настоящее время последовательности действий при MR-термометрии не позволяют осуществить сбор температурных данных по объему в трехмерном пространстве для различных моментов времени. Вместо этого MR-термометрия в настоящее время ограничивается двумерными плоскостями изображений, тем самым обеспечивая разумные временные периоды корректировки для мониторинга воздействия. Расположение плоскостей изображений для MR-термометрии должно тщательно выбираться. Это вызвано требованием обеспечения безопасности, так чтобы ответственные анатомические структуры и здоровые ткани были защищены. Кроме того, необходимо убедиться, что намеченная область в достаточной степени нагрета, и ткань полностью подверглась абляции. В тех областях практического применения, в которых ультразвуковой преобразователь требуется перемещать, а терапевтическая процедура должна продолжаться без перерывов между обработками ультразвуком, как, например, в случае внутриполостных аппликаций, где имеет место вращательные перемещения преобразователя, плоскости изображений для MR-термометрии требуется постоянно перемещать и корректировать. Поскольку проведение терапии предполагает множество местоположений ультразвукового преобразователя и ориентаций, плоскости изображений, используемые для мониторинга температуры, невозможно выбрать для всех соответствующих местоположений и ориентаций преобразователя.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Из вышесказанного ясно, что существует потребность в усовершенствованной терапевтической системе для HIFU-воздействий под управлением MR-визуализации. Следовательно, задача изобретения заключается в обеспечении непрерывного мониторинга температуры в процессе термического воздействия на основе MR-термометрии даже в ситуациях, при которых положение и ориентация ультразвукового преобразователя изменяются.

Согласно изобретению раскрыта терапевтическая система. Система по изобретению содержит:

блок MR-визуализации, выполненный с возможностью сбора MR-сигналов из организма пациента, расположенного в зоне обследования, а также

блок теплового воздействия для воздействия тепловой энергии внутри ткани организма. Система по изобретению выполнена с возможностью реализации этапов:

a) начала теплового воздействия путем нагрева ткани организма в местоположении фокуса в зоне обследования,

b) избирательного сбора MR-сигналов из первой плоскости изображения, при этом фокус теплового воздействия расположен в первой плоскости изображения,

c) реконструкции термографического MR-изображения на основе MR-сигналов, собранных из первой плоскости изображения,

d) вычисление базового термографического MR-изображения на основе температурного распределения в пределах по меньшей мере одной второй плоскости изображения, отличной от первой плоскости изображения,

e) перемещение фокуса теплового воздействия в новое положение в пределах объема обследования,

f) изменения местоположения и/или ориентации первой плоскости изображения в соответствии с новым положением фокуса теплового воздействия,

g) повтора этапов b) и c), при этом базовое термографическое MR-изображение, вычисленное на этапе d), используется для реконструкции термографического изображения на последующем этапе c).

Изобретение обеспечивает возможность непрерывного получения данных MR-термометрии в областях, необходимых для мониторинга терапии. В изобретении используется разреженный набор температурных данных, собранных только в нескольких двумерных плоскостях изображений. Подход, предложенный в изобретении, позволяет, чтобы положение и ориентация плоскости изображения сопровождали преобразователь без необходимости в ожидании, пока ткань охладится до базового уровня. Кроме того, в изобретении решены проблемы, возникающие из-за изменений локального магнитного поля вследствие перемещения преобразователя.

Будучи рассчитанным главным образом на внутриполостные аппликации, изобретение также может использоваться в других областях применения, в которых аппликатор, используемый для теплового воздействия, перемещается в различные местоположения и ориентации и воздействие должно продолжаться без перерывов между этапами терапии в различных точках и при различных ориентация.

Обычно перед началом фактического воздействия осуществляется сбор набора MR-изображений для планирования терапии. По завершению этих этапов планирования инициируется тепловое воздействие и начинается нагрев ткани, подвергаемой воздействию. Согласно изобретению мониторинг температуры на основе MR-термометрии выполняется в процессе лечения от первой (динамической) области, т.е. первой плоскости изображения, которая перемещается в соответствии с движением ультразвукового преобразователя. Кроме того, определена вторая (статическая) область, т.е. по меньшей мере одна вторая плоскость изображения, которая остается неподвижной в течение всей терапии. В процессе воздействия в первой и второй областях организма получают температурную информацию по существу через равные промежутки времени. Когда ультразвуковой преобразователь перемещается, это приводит к соответствующему перемещению фокуса теплового воздействия в новое местоположение в пределах зоны обследования. Положение и/или ориентация первой области, т.е. первой плоскости изображения, из которой непрерывно осуществляется сбор и реконструкция MR-термографических изображений, изменяется в соответствии с новым местоположением фокуса теплового воздействия. Распределение температуры в статической второй области, отслеженное до изменения фокуса теплового воздействия, теперь используется для получения распределения температуры в измененной первой области, т.е. после перемещения фокуса теплового воздействия. Это осуществляется путем расчета базового термографического MR-изображения из распределения температуры, полученного во второй области, и путем использования этого базового термографического MR-изображения на последующих этапах реконструкции изображения. В результате могут быть построены карты температур и визуально представлены пользователю терапевтической системы для участков изображений, которые не были выбраны заранее посредством пользовательского интерфейса системы. Вся процедура может повторяться несколько раз для последовательных положений и/или ориентаций ультразвукового преобразователя, при этом первая область изображения постоянно корректируется.

Согласно предпочтительному варианту осуществления изобретения базовое термографическое MR-изображение, используемое для последующей реконструкции изображения после изменения фокуса теплового воздействия, вычисляются на основе MR-сигналов, которые избирательно собраны из ранее выбранной статической второй области изображения до перемещения фокуса теплового воздействия. Таким образом, разреженный набор температурных данных собран в процессе терапевтического воздействия, что позволяет осуществлять мониторинг температуры в областях, которые не были предварительно выбраны пользователем.

Согласно следующему предпочтительному варианту осуществления изобретения первая область изображения конгруэнтна со второй областью изображения после изменения положения и/или ориентации первой области изображения в соответствии с новым местоположением фокуса теплового воздействия. В данном варианте осуществления первая плоскость изображения расположена так, что фокус теплового воздействия расположен в первой плоскости, в то время как фокус последующего второго воздействия расположен во второй плоскости. MR-сигналы, собранные из второй плоскости во время первого воздействия, обеспечивают базовое термографическое MR-изображение в фокусе второго воздействия, тем самым создавая возможность непрерывного мониторинга температуры, после того как фокус переместился с участка первого воздействия на участок второго воздействия. Это предусматривает соответствующее планирование, причем несколько вторых плоскостей изображений выбираются в соответствии с последовательностью участков воздействия.

Согласно еще одному предпочтительному варианту осуществления изобретения используется набор из двух или более вторых плоскостей изображений, ориентированных по существу перпендикулярно первой плоскости изображения. Базовые термографические MR-изображения, используемые для этапов реконструкции изображения вслед за изменением местоположения и/или ориентации фокуса воздействия, в этом случае могут быть вычислены путем пространственной интерполяции термографических MR-изображений, реконструированных из MR-сигналов, собранных из набора вторых плоскостей изображений.

Посредством описанной системы по изобретению может быть реализован способ мониторинга теплового воздействия на ткань организма, при этом способ включает в себя:

избирательный сбор MR-сигналов из первой области организма,

реконструкцию термографического MR-изображения из MR-сигналов, собранных из первой области;

вычисление базового термографического MR-изображения из пространственного распределения температур во второй области организма;

изменение местоположения и/или ориентации первой области,

избирательный сбор MR-сигналов из измененной первой области,

реконструкцию термографического MR-изображения из MR-сигналов, собранных из измененной первой области, с использованием базового термографического MR-изображения, вычисленного из пространственного распределения температуры во второй области.

Способ по изобретению предпочтительно может быть реализован в большинстве имеющихся в настоящее время клинических HIFU-систем, работающих под управлением MR-визуализации. Для этой цели достаточно всего лишь использовать компьютерную программу, с помощью которой осуществляется управление системой, так чтобы она выполняла вышеописанные этапы способа по изобретению. Компьютерная программа может существовать либо на носителе информации (CD, DVD или USB-карта), либо может существовать в сети передачи данных, чтобы быть загруженной с целью инсталляции в соответствующем блоке управления терапевтической системы.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На приложенных чертежах раскрыты предпочтительные варианты осуществления настоящего изобретения. Однако следует понимать, что чертежи представлены лишь с целью иллюстрации и не определяют границы изобретения.

На Фигуре 1 схематично показана терапевтическая система по изобретению.

На Фигуре 2 представлено вращательное перемещение трансуретрального ультразвукового преобразователя.

На Фигуре 3 показана диаграмма, где значения температуры являются функцией времени в местоположении, представленном на Фигуре 2.

На Фигуре 4 схематично показано продольное термографическое MR-изображение предстательной железы.

На Фигуре 5 схематично показаны пространственные расположения плоскостей изображений согласно изобретению.

На Фигуре 6 показано изменение плоскости изображения после поворота ультразвукового преобразователя.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

На Фигуре 1 показана терапевтическая система 1. Система содержит сверхпроводящие или резистивные катушки 2 главного магнита, так что вдоль z-оси, проходящей через зону обследования, создается по существу однородное, постоянное во времени главное магнитное поле.

Система для генерирования и манипуляции магнитным резонансом прикладывает последовательность радиочастотных импульсов и переключаемые градиенты магнитного поля для инвертирования или возбуждения ядерно-магнитных спинов, индуцирования магнитного резонанса, рефокусировки магнитного резонанса, управления магнитным резонансом, пространственного и иного кодирования сигналов магнитного резонанса, насыщения спинов и т.п. для выполнения MR-визуализации.

Конкретнее, градиентный импульсный усилитель 3 прикладывает импульсы тока к выбранным из одних градиентным катушкам 4, 5 и 6 для всего тела вдоль осей x, y и z объема обследования. Цифровой передатчик 7 передает RF-импульсы или пакеты импульсов через переключатель 8 передачи/приема на RF-катушку 9 объема всего тела с целью передачи RF-импульсов в объем обследования. Обычная последовательность MR-визуализации состоит из пакета сегментов RF-импульсов малой продолжительности, которые будучи объединены друг с другом и любыми приложенными градиентами магнитного поля обеспечивают выбранное управление ядерным магнитным резонансом. Радиочастотные импульсы используются для насыщения, возбуждения резонанса, инвертирования вектора намагничивания, рефокусировки резонанса или управления резонансом, а также выбора участка организма 10, расположенного в зоне обследования. Магнитно-резонансные сигналы также принимаются RF-катушкой 9 объема всего тела.

Для генерирования MR-изображений ограниченных областей тела 10, например, с помощью параллельной визуализации, смежно с областью, выбранной для визуализации, помещен набор локальных матричных RF-катушек 11, 12, 13. Матричные катушки 11, 12, 13 могут быть использованы для приема MR-сигналов, индуцированных RF-передачей между телом и катушкой.

Результирующие MR-сигналы принимаются RF-катушкой 9 зоны расположения всего тела и/или матричными RF-катушками 11, 12, 13 и подвергаются демодуляции с помощью приемника 14, который предпочтительно включает в себя предусилитель (не показан). Приемник 14 связан с RF-катушками 9, 11, 12 и 13 посредством переключателя 8 передачи/приема.

Главный компьютер 15 управляет градиентным импульсным усилителем 3 и передатчиком 7 для создания любой из множества MR-визуализаций, например эхо-планарной визуализации (EPI), эхо-объемной визуализации, градиентной и спин-эховой визуализации, визуализации на основе быстрого спин-эха и т.п. Для выбранной последовательности приемник 14 принимает одну или множество линий MR-данных в быстром следовании вслед за каждым RF-импульсом возбуждения. Система 16 сбора данных выполняет аналого-цифровое преобразование принятых сигналов и переводит каждую линию MR-данных в цифровой формат, пригодный для дальнейшей обработки информации. В современных MR-устройствах система 16 сбора данных представляет собой отдельный компьютер, который специализирован на сбор первичных данных изображения. В конечном счете, цифровые первичные данные изображения реконструируются в изображение посредством процессором 17 реконструкции изображений, который применяет преобразование Фурье или иные соответствующие алгоритмы реконструкции. MR-изображение может представлять планарный срез пациента, массив параллельных планарных срезов, трехмерный объем и т.п. Изображение далее сохраняется в памяти изображений, где оно доступно для преобразования срезов, проекций и других составляющих изображения в соответствующий формат для визуального отображения, например с помощью видеомонитора 18, представляющего читаемое человеком отображение результирующего MR-изображения.

Система 1 дополнительно включает в себя блок теплового воздействия, содержащий трансуретральный аппликатор 19, соединенный с блоком 20 ультразвукового управления. Блок 20 ультразвукового управления включает в себя управляющую электронику, а также двигатели для перемещения преобразователя аппликатора 19. Блок 20 ультразвукового управления соединен с главным компьютером 15 системы. Главный компьютер 15 инициирует тепловое воздействие и управляет движением ультразвукового преобразователя аппликатора 19. Преобразователь помещен в уретру тела 10 в верхне-нижнем ориентационном направлении относительно пациента и излучает ультразвуковую энергию по направлению к периферии предстательной железы. Таким образом, обеспечивается нагрев в единственной продольной плоскости, параллельной корпусу преобразователя. Чтобы выполнить абляцию всей предстательной железы преобразователь совершает поворот с помощью блока 20 ультразвукового управления путем дискретных угловых перемещений.

Как показано на Фигуре 2, MR-термометрические изображения в одной плоскости изображения, ориентированной трансверсально относительно уретры 21, показаны для двух различных угловых ориентаций ультразвукового преобразователя. Профили 22 температуры и тепловых доз отражают различные ориентации преобразователя.

С учетом Фигуры 2 и как показано на Фигуре 3, на диаграмме, представленной на Фигуре 3, показана температура в точке 23 в различные моменты времени, обычно с интервалом около одной секунды или более. На протяжении фазы нагрева MR-термометрическая визуализация обеспечивает разность температур в каждый момент времени. Температурные значения Т0 - T8 вычисляются по измеренному сдвигу фазы между последовательными MR-изображениями. Для вычисления температурного значения T0 принимается соответствующее базовое температурное значение (например, 37°C).

Вскоре после получения температурного значения T5 преобразователь совершает поворот. Соответствующий момент времени указан стрелкой на Фигуре 3. С этого момента температура в точке 23 начинает понижаться, как показано падением последующих температурных значений T5, T6, T7, T8. Вследствие перемещения преобразователя основанное на MR-термометрии изменение температуры от температурного значения T5 до T6 будет неточным, поскольку магнитное поле меняется до точки, когда фазовые изменения MR-сигналов не характеризуют температурное изменение. Невозможность измерить температурное значение T6 представляет собой проблему, т.к. предполагает, что все температурные значения после T5 не могут быть измерены.

Различные ориентации преобразователя (определяемые устройством управления двигателем ультразвукового блока 20 управления) передаются в главный компьютер 15 системы 1 (см. Фигуру 1). Главный компьютер 15 учитывает профиль акустической интенсивности в плоскости в новой ориентации преобразователя. На основе распределения акустической интенсивности в новой ориентации и распределения температуры в момент времени, предшествующий повороту преобразователя, биотепловое моделирование с использованием метода конечных разностей может быть применено для вычисления распределения температуры непосредственно после поворота преобразователя. Более простой альтернативой может стать применение справочной таблицы для изменений температуры в точке 23, полученной посредством предшествующего моделирования био тепловой энергии или с помощью искусственных экспериментов. Данные способы позволяют продолжить процесс мониторинга температуры на основе использования магнитного резонанса сразу после поворота преобразователя согласно изобретению. Нет необходимости в том, чтобы ткань могла охладиться до базового температурного значения перед последующими ультразвуковыми воздействиями. Доза тепла зависит от всей истории изменения температуры, а значит изобретение позволяет точно вычислить тепловую дозу после момента, в который преобразователь совершил поворот.

Имитация биотепловой энергии широко применяется в HIFU-приложениях. Такое моделирование может быть проведено априори с использованием номинальных значений характеристик тканей, при этом результаты могут сохраняться в виде справочных таблиц для каждой точки пространства. С другой стороны, моделирование может быть проведено в день проведения терапии на основе сведений о повышении температуры в ткани пациента по результатам теста, выполненного до проведения самого лечения. Кроме того, моделирования могут основываться на повышении температуры в первой ориентации преобразователя до совершения первого поворота. По альтернативному варианту значения температуры могут быть получены посредством искусственных, проведенных вне организма или проведенных ранее в живом организме исследований. Акустические и тепловые характеристики ткани для использования при моделировании могут быть оценены in situ с использованием неинвазивных подходов для оценки тепловых и акустических параметров на основе MR-термометрии (см. Cheng et al., «Tissue thermal conductivity by magnetic resonance thermometry and focused ultrasound heating», Journal of Magnetic Resonance Imaging, 2002, vol. 16(5), pages 598-609). Таким образом, распределение температуры в подвергаемой воздействию области ткани может быть получено согласно изобретению. Учитывая сказанное, положение и/или ориентация плоскости изображения могут изменяться в соответствии с изменением фокуса теплового воздействия, не прерывая процедуру воздействия и мониторинга.

На Фигурах 4-6 будет показано, как температурные данные, соответствующие пространственному распределению, становятся доступны посредством использования статической и динамической плоскостей изображения для мониторинга температуры согласно изобретению. Возможная конфигурация плоскостей визуализации температуры показана на Фигуре 4. На Фигуре 4 показаны пять плоскостей 24, 25, 26, 27, 28 изображения, расположенных вокруг зоны нагрева преобразователя 29, представленного в виде наложения продольной плоскости 24 изображения. Показан профиль 22 температуры в плоскости 24 изображения. Продольная плоскость 24 образует первую плоскость изображения в смысловом значении, принятом в изобретении. Она проходит через преобразователь 29 вдоль уретры и покрывает плоскость, в которой акустическая энергия максимальна для соответствующей ориентации преобразователя. Когда преобразователь 29 совершает поворот, продольная плоскость 24 будет непрерывно корректироваться, чтобы оставаться ориентированной вдоль максимальных значений акустической энергии. Три плоскости 25, 26, 27 изображения образуют вторые плоскости изображения в смысловом значении, принятом в изобретении. Трансверсальные плоскости 25, 26, 27 изображения являются статическими. Их положение и ориентация не изменяются в процессе проведения терапии. Пятая плоскость 28 изображения используется для оценки безопасности. MR-термометрия в плоскости 28 гарантирует, что ближняя зона ультразвукового луча чрезмерно не нагревается, приводя к нежелательным эффектам, таким как образование полостей, закипание и повышенное затухание, которое может помешать ультразвуковому лучу распространиться до дальнего участка области. Другие возможные местоположения для оценки безопасности включают в себя стенку прямой кишки и нейроваскулярные узлы, которые должны быть защищены от теплового повреждения.

Данные температуры в разреженном множестве вторых плоскостей 25, 26, 27 изображения подвергается пространственной интерполяции для получения оценок температуры в дополнительных плоскостях изображения, в которых непосредственные измерения не проводятся. Таким образом, базовое MR-термометрическое изображение в положении и при пространственной ориентации откорректированной первой плоскости 24 изображения может быть вычислено перед началом нагрева при новом пространственном положении ультразвукового преобразователя 29. Такой подход проиллюстрирован на Фигуре 5, где показан коронарный срез предстательной железы 30. Сплошные линии представляют первую и вторую плоскости 24, 25, 26, 27 изображения, в то время как пунктирная линия 31 представляет интерполированное базовое MR-термометрическое изображение в откорректированном положении. Интерполированное базовое MR-термометрическое изображение получено из подвергнутых измерениям вторых плоскостей 25, 26, 27 изображения. Интерполяция может быть выполнена посредством любого соответствующего способа, такого как линейная интерполяция или интерполяция на основе сплайн-функции. Это позволяет продольной плоскости визуализации температуры сохранять параллельное положение с плоскостью обработки ультразвуком, не прерывая тепловую терапию и мониторинг температуры.

На Фигуре 6 показан поворот первой плоскости изображения. Ориентация первой плоскости изображения перед поворотом преобразователя 29 обозначена позицией 24. Ориентация после поворота преобразователя 29 обозначена позицией 24'. Карту температур в совершившей поворот первой плоскости 24' изображения получают согласно изобретению из непрерывных замеров температуры в статических трансверсальных плоскостях 25, 26, 27 изображения, как показано на Фигуре 5. Таким образом, плоскость 24 постоянно корректируется, чтобы сопровождать ориентацию преобразователя 29.

В другом (не показанном) варианте осуществления две различные продольные плоскости выбраны в качестве первой и второй плоскостей изображения в смысловом значении, принятом в изобретении. Плоскости изображения выстроены так, что первая плоскость изображения всегда расположена на месте фокуса теплового воздействия, в то время как другая (вторая) плоскость изображения расположена на месте следующего воздействия. Измерение температуры во второй плоскости изображения обеспечивает базовые значения температуры, которые могут быть использованы для непрерывного мониторинга температуры, когда фокус теплового воздействия перемещается с первого участка на второй участок.


ТЕРАПИЯ ПОД УПРАВЛЕНИЕМ МАГНИТНО-РЕЗОНАНСНОЙ ВИЗУАЛИЗАЦИИ
ТЕРАПИЯ ПОД УПРАВЛЕНИЕМ МАГНИТНО-РЕЗОНАНСНОЙ ВИЗУАЛИЗАЦИИ
ТЕРАПИЯ ПОД УПРАВЛЕНИЕМ МАГНИТНО-РЕЗОНАНСНОЙ ВИЗУАЛИЗАЦИИ
ТЕРАПИЯ ПОД УПРАВЛЕНИЕМ МАГНИТНО-РЕЗОНАНСНОЙ ВИЗУАЛИЗАЦИИ
ТЕРАПИЯ ПОД УПРАВЛЕНИЕМ МАГНИТНО-РЕЗОНАНСНОЙ ВИЗУАЛИЗАЦИИ
ТЕРАПИЯ ПОД УПРАВЛЕНИЕМ МАГНИТНО-РЕЗОНАНСНОЙ ВИЗУАЛИЗАЦИИ
Источник поступления информации: Роспатент

Showing 101-110 of 255 items.
20.10.2014
№216.012.ff05

Спинодержатель для автоматизированной системы cpr

Изобретение относится к медицине и может быть использовано для стабилизации и поддержания пациента. Спинодержатель для автоматизированной системы сердечно-легочной реанимации содержит, по меньшей мере, один набор стабилизирующих элементов, набор соединителей и элемент спинки, который определяет...
Тип: Изобретение
Номер охранного документа: 0002531141
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.014c

Управление затеняющим устройством посредством распознавания изображений

Изобретение описывает систему для управления затеняющим устройством с множеством управляемых затеняющих элементов. Система содержит по меньшей мере один детекторный блок для предоставления сигнала изображения области затенения и блок управления (5), сконфигурированный для приема упомянутого...
Тип: Изобретение
Номер охранного документа: 0002531730
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.057c

Венчик для взбивания и смесительное устройство с венчиком для взбивания

Настоящее изобретение относится к венчикам для взбивания. Венчик для взбивания, выполненный с возможностью прикрепления к приводному двигателю для сообщения вращения и содержащий: головку венчика; ведущий вал, имеющий первый конец, выполненный с возможностью присоединения к приводному...
Тип: Изобретение
Номер охранного документа: 0002532802
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0615

Устройство управления абляцией для мониторинга в реальном времени смещения ткани в ответ на приложенную силу

Изобретение относится к медицинской технике, а именно к управлению абляцией. Устройство (110) управления абляцией содержит секцию (115) мониторинга и секцию (120) управления для регистрации (S820) с помощью характеристической кривой (515) одного или более значений смещения, полученных при...
Тип: Изобретение
Номер охранного документа: 0002532958
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.06a7

Бутылочка, обеспечивающая безопасную температуру

Создана бутылочка (1) для кормления ребенка, содержащая конструкционный элемент (4) стенки, имеющий внутреннюю поверхность (6), нижнюю часть (2) и верхнюю часть (7). Кроме того, создан индикатор (11) температуры. Внутренняя поверхность (6) конструкционного элемента (4) стенки определяет...
Тип: Изобретение
Номер охранного документа: 0002533104
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0a0a

Направляющая система для биопсии с ультразвуковым преобразователем и способ ее использования

Изобретение относится к медицинской технике, а именно к направляющим системам для биопсии. Многопозиционная направляющая система для биопсии содержит двумерный матричный ультразвуковой преобразователь, элементы которого расположены в направлении возвышения и в азимутальном направлении, и...
Тип: Изобретение
Номер охранного документа: 0002533978
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0a69

Система, способ и аппарат для инструктирования устройству входить в активный режим

Изобретение относится к области средств инструктирования устройству входить в активный режим. Техническим результатом является снижение потребления энергии устройством. Система содержит первый датчик (3) для определения того, удовлетворено ли первое условие, относящееся к грубому уровню...
Тип: Изобретение
Номер охранного документа: 0002534073
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0b6c

Оконные жалюзи для сбора солнечной энергии с регулируемым положением

В настоящем изобретении предложены оконные жалюзи для сбора солнечной энергии с регулируемым положением. В оконных жалюзи используются солнечный датчик и амперметр для определения зависимости между углом падения солнечного света и оптимальным расположением солнечного датчика. Эта зависимость...
Тип: Изобретение
Номер охранного документа: 0002534332
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0c84

Система визуализации с массивом из множества детекторов

Изобретение относится у системам и способам визуализации. Система визуализации содержит источник излучения, который испускает излучение, которое проходит через область исследования, и систему обнаружения, которая обнаруживает излучение, которое проходит через область исследования, и генерирует...
Тип: Изобретение
Номер охранного документа: 0002534612
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ceb

Ускоренное отображение поля b

Изобретение относится к измерительной технике, представляет собой способ магнитно-резонансного формирования изображений и систему для его осуществления. При реализации способа с использованием набора радиочастотных передающих катушек выполняют некоторое число, меньше числа катушек в наборе,...
Тип: Изобретение
Номер охранного документа: 0002534724
Дата охранного документа: 10.12.2014
Showing 101-110 of 1,335 items.
10.08.2013
№216.012.5e39

Осветительное устройство

Осветительное устройство содержит множество источников света, обеспечивающих свет на разных длинах волн и средство коллимации. Средство коллимации имеет приемный конец и выходной конец, в котором источники света размещены на приемном конце. Средство коллимации содержит первый набор фильтров,...
Тип: Изобретение
Номер охранного документа: 0002489742
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5e4d

Детектор рентгеновского излучения для формирования фазово-контрастных изображений

Изобретение относится к детектору рентгеновского излучения. Заявленное изобретение содержит матрицу чувствительных элементов и по меньшей мере две решетки анализатора, расположенные с разной фазой и/или периодичностью перед двумя разными чувствительными элементами. Предпочтительно,...
Тип: Изобретение
Номер охранного документа: 0002489762
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5e5a

Светоизлучающее устройство бокового действия с преобразованием длины волны

Светоизлучающее устройство бокового действия, содержащее подложку (101), отражатель (102), пространственно удаленный от упомянутой подложки (101) и проходящий вдоль длины упомянутой подложки, и, по меньшей мере, один светоизлучающий диод (103), установленный на упомянутой подложке и обращенный...
Тип: Изобретение
Номер охранного документа: 0002489775
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.5f00

Эпилятор, имеющий приводимый массажирующий элемент

Изобретение относится к эпилятору. Задачей изобретения является обеспечение эпилятора, имеющего снижающий боль элемент, который является приводимым очень компактным приводным механизмом. Эпилятор содержит эпиляционную головку, имеющую по меньшей мере один вращающийся дискообразный элемент;...
Тип: Изобретение
Номер охранного документа: 0002489952
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.5f04

Набор изделий, которые являются пригодными для использования в процессе приготовления напитка

Изобретение относится к набору изделий, которые являются пригодными для использования в процессе приготовления напитка путем пропускания текучей среды через экстракт для напитка. Набор изделий содержит устройство для приготовления напитка, имеющее варочное пространство для по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002489956
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.624f

Беспроводное наблюдение за пациентом с использованием потоковой передачи медицинских данных с помощью связанного с телом соединения

Изобретение относится к области беспроводного наблюдения за пациентом, а именно к беспроводному наблюдению за пациентом с помощью медицинского датчика сверхмалой мощности, прикрепленного к телу пациента. Техническим результатом является безопасность и надежность беспроводного наблюдения за...
Тип: Изобретение
Номер охранного документа: 0002490799
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.6260

Модульное осветительное устройство

Изобретение относится к осветительным системам для систем отображения проекционного типа и, в частности, к модульному осветительному устройству, содержащему источник света, который излучает свет первого цвета, и пикселированный оптический элемент, который предназначен для приема излучаемого...
Тип: Изобретение
Номер охранного документа: 0002490816
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.6261

Устройство вывода автостереоскопического изображения

Изобретение относится к устройствам отображения стереоскопического изображения. Техническим результатом является возможность использовать устройство трехмерных изображений как в горизонтальном, так и в вертикальном режимах при сохранении хорошего распределения представлений и структуры пикселей...
Тип: Изобретение
Номер охранного документа: 0002490817
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.6271

Безопасное стартерное устройство

Изобретение относится к области электротехники. Стартерное устройство для газоразрядной лампы содержит последовательную цепь из: пускового переключателя (5) с тлеющим разрядом; по меньшей мере, одного резистивного элемента (9); термически управляемого переключающего элемента (8). Термически...
Тип: Изобретение
Номер охранного документа: 0002490833
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.6326

Квазистатическая установка с распределенными источниками для рентгеновской визуализации с высокой разрешающей способностью

Изобретение относится к медицинской технике, а именно к рентгеновским устройствам и способам получения рентгеновских изображений. Способ заключается в использовании детектора и распределенной структуры источников рентгеновского излучения, равномерно распределенных с общим шагом относительно...
Тип: Изобретение
Номер охранного документа: 0002491019
Дата охранного документа: 27.08.2013
+ добавить свой РИД