×
10.01.2015
216.013.1899

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ПРОЧНОСТИ НАРУШЕННОЙ СТРУКТУРЫ МАТЕРИАЛЬНОЙ СРЕДЫ

Вид РИД

Изобретение

№ охранного документа
0002537725
Дата охранного документа
10.01.2015
Аннотация: Изобретение относится к области физики материального (контактного) взаимодействия, а именно к способу определения угла φ внутреннего трения и удельного сцепления - с материальной связной среды нарушенной структуры, воспринимающей давление свыше гравитационного. Способ определения физических параметров прочности нарушенной структуры материальной среды заключается в определении при лабораторном сдвиге образцов среды ненарушенной структуры в условиях компрессии угла φ=φ внутреннего трения и удельного сцепления с=с среды ненарушенной структуры при построении графика Кулона-Мора τ=p·tgφ+с предельного состояния среды под давлением p, где τ - напряжение сдвига среды под давлением сжатия pДля определения угла внутреннего трения среды с нарушенной структурой, образующейся при достижении под штампом давления, равного бытовому давлению р=р=(γ·h-с)ctgφ на отметке h массива ее естественного сложения, определяют угол θ=φ+φ=arcsin[2sinφ/(1+sinφ)]. Определяют угол внутреннего трения среды с нарушенной структурой по выражению φ=θ-φ, а удельное сцепление материальной среды с нарушенной структурой определяют по зависимости . Технический результат - получение связи физических параметров прочности φ и с нагруженной материальной среды сверх природного гравитационного (бытового) давления с параметрами структурной прочности среды φ и с.2 ил.
Основные результаты: Способ определения физических параметров прочности нарушенной структуры материальной среды, заключающийся в том, что определяют при лабораторном сдвиге образцов среды ненарушенной структуры в условиях компрессии угол φ=φ внутреннего трения и удельное сцепление с=с среды ненарушенной структуры при построении графика Кулона-Мора τ=p·tgφ+с предельного состояния среды под давлением p, где τ - напряжение сдвига среды под давлением сжатия pотличающийся тем, что для определения угла внутреннего трения среды с нарушенной структурой, образующейся при достижении под штампом давления, равного бытовому давлению р=р=(γ·h-с)ctgφ на отметке h массива ее естественного сложения, определяют угол θ=φ+φ=arcsin[2sinφ/(1+sinφ)], и по полученным значениям определяют угол внутреннего трения среды с нарушенной структурой по выражению φ=θ-φ, а удельное сцепление материальной среды с нарушенной структурой определяют по зависимости .

Изобретение относится к физике материального контактного взаимодействия, конкретно к способу определения угла внутреннего трения и удельного сцепления нарушенной структуры материальной среды.

Известен способ определения механических параметров - угла φ=φстр внутреннего трения и удельного сцепления с=сстр грунтовой материальной среды с ненарушенной структурой, заключающийся в том, что отбирают образцы грунта с ненарушенной структурой, выдерживают их под гравитационной бытовой нагрузкой рб=γh, где γ - удельный вес грунта, h - глубина отбора образца из массива грунта, поочередно образцы грунта заряжают в кольцевую обойму сдвигового прибора, производят обжатие каждого из них возрастающей ступенью нагрузки pi и плоскостной срез обжатого образца грунта с замером сопротивления сдвига τ, отличающийся тем, что строят график зависимости Кулона-Мора τi=pi·tgφстрстр и при нулевом давлении р=0 в условиях компрессии определяют удельное сцепление сстр и угол φстр внутреннего трения грунта ненарушенной структуры [1].

Недостатком известного способа является определение параметров φстр и сстр грунта ненарушенной структуры при гидростатическом бытовом давлении рб=γh, когда связные грунты обладают в массиве бытовым давлением рб=(γ·h-сстр)tgφстр. Проектировщиков интересуют давления пригрузок р>рб от действующих сооружений, когда требуется значение углов φ=φн и удельного сцепления с=сн грунта с нарушенной структурой. С другой стороны, испытания ненарушенных образцов грунта на сдвиг в лабораториях производят в условиях компрессии, а не с поверхности полупространства массива, в связи с чем параметры φстр и сстр получают искаженными, отличными от действительных.

Наиболее близким по технической сущности к предлагаемому является способ определения механических параметров прочности ненарушенной структуры грунтовой среды в массиве методом поступательного среза лопастным сдвигомером-прессиометром Л.С. Амаряна, заключающийся в том, что бурят вертикальную скважину в массиве грунта, в скважину задавливают на заданную глубину h двутавровый рабочий наконечник сдвигомера-прессиометра с обрезанием ее грунтовых стенок боковыми плоскими полками, из боковых полок двутаврового наконечника выдвигают поочередно возрастающими ступенями давления pi жесткие штампы с поперечными грунтозацепами, далее производят сдвиг грунта на глубине h на каждой ступени давления piб, выше бытового давления рб=γh, в момент стабилизации осадок грунта под ступенями давления путем поступательного среза под напряжением τi обжатого грунта в скважине, по полученным данным pi и τi строят график Кулона-Мора τi=pi·tgφ+с и определяют параметры прочности грунта φ=φстр и с=сстр [2, 3].

Получаемые лопастными прессиометрами-сдвигомерами параметры прочности φ и с не совпадают с лабораторными данными исследований образцов грунта φ=φстр и с=сстр ненарушенной структуры в условиях компрессионного сжатия, поэтому метод поступательного среза грунтов лопастными прессиометрами-сдвигомерами не получает распространения. В действительности срез грунта, обжатого давлением штампов лопастных сдвигомеров-прессиометров, производится уже в нарушенном состоянии его структуры обжимающим давлением р>рб и параметры прочности получают по графику Кулона-Мора именно в виде φ=φн и с=сн, интересующем проектировщиков.

Технический результат по способу определения физических параметров прочности нарушенной структуры материальной среды под запроектированной нагрузкой р>рб, превышающей ее структурную прочность, заключающемуся в том, что на образцах в лаборатории определяют угол φ=φстр внутреннего трения и удельного сцепления с=сстр среды ненарушенной структуры при построении графика Кулона-Мора τi=pi·tgφстрстр предельного состояния среды под давлением pi, где τi - напряжение сдвига среды под давлением сжатия pi, достигается тем, что моментом нарушения структурной прочности связной материальной среды считают достижение под штампом давления, равного бытовому давлению рстр.бб=(γ·h-сстр)ctgφстр на отметке h массива ее естественного сложения, при этом угол внутреннего трения среды с нарушенной структурой определяют из выражения φн=θ-φстр, где угол φстр - угол внутреннего трения среды ненарушенной структуры, угол θ=φстрн=arcsin[2sinφстр/(1+sin2φстр)]. Причем удельное сцепление среды нарушенной структуры определяют как .

Предлагаемый способ позволяет перевести данные φстр и сстр, полученные в лабораториях на ненарушенных образцах исследуемой среды, в параметры прочности среды в нарушенном под нагрузкой р>рб состоянии и наоборот. Аналитические расчетные зависимости несущей способности материальной среды под нагрузкой получают более точные решения при достоверном определении φн и сн.

Изобретение поясняется графическими материалами, где на фиг.1 представлен график Кулона-Мора предельного состояния материальной среды в структурно устойчивом и нарушенном состоянии; на фиг.2 - эпюры контактных напряжений под и за краями штампа (на поверхности воронки сжатия).

Согласно известной методике определения максимальной контактной прочности материальной связной среды в условиях плоской деформации [4] график поверхности полупространства выглядит в виде трех кругов Мора (фиг.1): круга 1 предельного состояния грунта под подошвой штампа, круга 2 предельного состояния грунта за краями штампа и охватывающего их круга 3 Мора, суммирующего предельное напряженное состояние грунта в целом (под и за пределами контакта штампа со средой в воронке сжатия). Предельное состояние среды в воронке растяжения-сжатия под и за краями штампа представлено в виде эпюр контактных напряжений с зонами сдвиговых деформаций под краями штампа (эпюра 4) и с зонами растяжения-сжатия за краями штампа (эпюра 5) в деформационной воронке 6.

Из тригонометрических соотношений графика Кулона-Мора (фиг.1) определяем, что ∠θ=∠φстр+∠φн, a sinθ=2sinφстр/(1+sin2φстр), откуда угол внутреннего трения нарушенной структуры деформируемой среды φн=θ-φстр.

При φстр=25° получаем sinθ=2sinφстр/(1+sin2φстр)=2sin25°/(1+sin225°)=0,6676 и угол θ=46,536°, тогда угол φн=θ-φстр=46,536°-25°=21,536°.

Из тригонометрических соотношений графика Кулона-Мора (фиг.1) находим, что удельное сцепление среды в нарушенном состоянии равно ,

что нашло свое подтверждение при испытаниях суглинков лопастными сдвигомерами-прессиометрами ЛПМ-12С и на сдвиговых лабораторных приборах ПНИИИС Госстоя СССР в 1981 году: показания прессиометров-сдвигомеров сн=0,23 кг/см2, φн=25°, показания лабораторных приборов сстр=0,2 кг/см2, φстр=22°.

Источники информации, принятые во внимание при составлении заявочных материалов

1. Цитович Н.А. Механика грунтов (краткий курс): Учебник для ВУЗов. - 3-е изд., доп. - М.: Высшая школа, 1979. - с.41-48.

2. Амарян Л.С. Свойства слабых грунтов и методы их изучения. - М.: «Недра», 1990. - с.57-59.

3. ГОСТ 21719-80. Грунты. Методы полевых испытаний на срез в скважинах и в массиве. - М.: Госстандарт СССР. - С.16-17, 20.

4. Патент РФ №2265824, G01N 8/24. БИ №34 от 10.12.2005.

Способ определения физических параметров прочности нарушенной структуры материальной среды, заключающийся в том, что определяют при лабораторном сдвиге образцов среды ненарушенной структуры в условиях компрессии угол φ=φ внутреннего трения и удельное сцепление с=с среды ненарушенной структуры при построении графика Кулона-Мора τ=p·tgφ+с предельного состояния среды под давлением p, где τ - напряжение сдвига среды под давлением сжатия pотличающийся тем, что для определения угла внутреннего трения среды с нарушенной структурой, образующейся при достижении под штампом давления, равного бытовому давлению р=р=(γ·h-с)ctgφ на отметке h массива ее естественного сложения, определяют угол θ=φ+φ=arcsin[2sinφ/(1+sinφ)], и по полученным значениям определяют угол внутреннего трения среды с нарушенной структурой по выражению φ=θ-φ, а удельное сцепление материальной среды с нарушенной структурой определяют по зависимости .
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ПРОЧНОСТИ НАРУШЕННОЙ СТРУКТУРЫ МАТЕРИАЛЬНОЙ СРЕДЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ПРОЧНОСТИ НАРУШЕННОЙ СТРУКТУРЫ МАТЕРИАЛЬНОЙ СРЕДЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ПРОЧНОСТИ НАРУШЕННОЙ СТРУКТУРЫ МАТЕРИАЛЬНОЙ СРЕДЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ПРОЧНОСТИ НАРУШЕННОЙ СТРУКТУРЫ МАТЕРИАЛЬНОЙ СРЕДЫ
Источник поступления информации: Роспатент

Showing 11-20 of 27 items.
10.09.2015
№216.013.7991

Способ определения прочностных параметров материальной среды методом ее вращательного среза и устройство для его осуществления

Изобретение относится к области «Физики материального контактного взаимодействия» четырехлопастного жесткого штампа рабочего наконечника для испытания материальной среды в скважине или массиве методом вращательного среза. Устройство лопастного наконечника снабжено регистратором непрерывной...
Тип: Изобретение
Номер охранного документа: 0002562710
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7cce

Способ хрусталёва е.н. определения среднего начального (первого) критического давления для сжимаемой плоским жестким штампом материальной среды.

Изобретение относится к области «Физики контактного взаимодействия материальной среды», конкретно к способу определения несущей способности и устойчивости дисперсной среды под нагрузкой от плоского жесткого штампа. Сущность: определяют физические характеристики структурированной материальной...
Тип: Изобретение
Номер охранного документа: 0002563547
Дата охранного документа: 20.09.2015
20.10.2015
№216.013.83fb

Способ определения гравитационного давления и коэффициентов общего бокового давления и общей относительной поперечной деформации грунтовой и торфяной среды

Изобретение относится к области «Физики материального контактного взаимодействия» весомой среды в ее массиве и на краях откосов в естественном и нарушенном состоянии. На глубине h весомого материального массива определяют на отобранных образцах среды в лабораторных условиях параметры ее угла φ...
Тип: Изобретение
Номер охранного документа: 0002565390
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87ed

Способ определения модуля деформации материальной среды

Изобретение относится к «физике материального взаимодействия», конкретно к способу определения модуля E общей деформации и модуля E упругости материальной среды в условиях гравитационного взаимодействия p и влияния атмосферного давления . По образцам среды, отобранным на глубине h (см) ее...
Тип: Изобретение
Номер охранного документа: 0002566400
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87f5

Способ определения механических параметров материальной среды в условиях фиксированного внешнего воздействия

Изобретение относится к области «физика материального взаимодействия». Способ определения механических параметров нарушенной материальной среды в условиях фиксированного внешнего воздействия заключается в том, что фиксируют определяющий для исследуемой среды физический параметр внешнего...
Тип: Изобретение
Номер охранного документа: 0002566408
Дата охранного документа: 27.10.2015
27.11.2015
№216.013.9399

Способ хрусталёва е.н. определения деформации материальной среды под давлением

Изобретение относится к области «Физики материального контактного взаимодействия», конкретно к способу определения упругой и общей деформации сжимаемой материальной среды в массиве. Способ заключается в том, что на глубине h массива среды предусматривают ее деформацию давлением p в выработке...
Тип: Изобретение
Номер охранного документа: 0002569404
Дата охранного документа: 27.11.2015
10.03.2016
№216.014.bf33

Способ хрусталёва е.н. получения равномерного контактного напряжения при взаимодействии материальных сред

Изобретение относится к «Физике материального контактного взаимодействия» и касается возможности достижения равномерного напряженно-деформированного состояния в зоне контакта двух материальных сред. Суть изобретения заключается в том, что придают контактирующей поверхности более прочной...
Тип: Изобретение
Номер охранного документа: 0002576542
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.bfd5

Способ е.н.хрусталева предотвращения аварийности гидроэлектростанции и устройство для его осуществления

Группа изобретений относится к области гидротехнического строительства. По предлагаемому способу монолитное железобетонное тело гравитационной плотины высотой Н (см) выполняют выпуклым в сторону водохранилища в виде арочного перекрытия русла реки. Тело плотины по высоте Н проектируют и...
Тип: Изобретение
Номер охранного документа: 0002576444
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c070

Способ хрусталёва е.н. определения границ упругого фазового напряженно-деформированного состояния материальной среды в массиве

Изобретение относится к области «Физики материального контактного взаимодействия» и касается определения границ упругого состояния материальной среды в массиве. Предлагается после определения физических параметров структурированной среды в массиве - угла внутреннего трения , удельного сцепления...
Тип: Изобретение
Номер охранного документа: 0002576539
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.cc2d

Способ повышения скорости подводной лодки и устройство для его осуществления

Изобретение относится к подводному судостроению и касается носовых оконечностей корпуса, надстроек и боевой рубки подводной лодки. Устройство повышения скорости подводной лодки состоит из цилиндрического корпуса подводной лодки с радиусом поперечного сечения R носовой оконечности корпуса с...
Тип: Изобретение
Номер охранного документа: 0002577984
Дата охранного документа: 20.03.2016
Showing 11-20 of 27 items.
10.09.2015
№216.013.7991

Способ определения прочностных параметров материальной среды методом ее вращательного среза и устройство для его осуществления

Изобретение относится к области «Физики материального контактного взаимодействия» четырехлопастного жесткого штампа рабочего наконечника для испытания материальной среды в скважине или массиве методом вращательного среза. Устройство лопастного наконечника снабжено регистратором непрерывной...
Тип: Изобретение
Номер охранного документа: 0002562710
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7cce

Способ хрусталёва е.н. определения среднего начального (первого) критического давления для сжимаемой плоским жестким штампом материальной среды.

Изобретение относится к области «Физики контактного взаимодействия материальной среды», конкретно к способу определения несущей способности и устойчивости дисперсной среды под нагрузкой от плоского жесткого штампа. Сущность: определяют физические характеристики структурированной материальной...
Тип: Изобретение
Номер охранного документа: 0002563547
Дата охранного документа: 20.09.2015
20.10.2015
№216.013.83fb

Способ определения гравитационного давления и коэффициентов общего бокового давления и общей относительной поперечной деформации грунтовой и торфяной среды

Изобретение относится к области «Физики материального контактного взаимодействия» весомой среды в ее массиве и на краях откосов в естественном и нарушенном состоянии. На глубине h весомого материального массива определяют на отобранных образцах среды в лабораторных условиях параметры ее угла φ...
Тип: Изобретение
Номер охранного документа: 0002565390
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87ed

Способ определения модуля деформации материальной среды

Изобретение относится к «физике материального взаимодействия», конкретно к способу определения модуля E общей деформации и модуля E упругости материальной среды в условиях гравитационного взаимодействия p и влияния атмосферного давления . По образцам среды, отобранным на глубине h (см) ее...
Тип: Изобретение
Номер охранного документа: 0002566400
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87f5

Способ определения механических параметров материальной среды в условиях фиксированного внешнего воздействия

Изобретение относится к области «физика материального взаимодействия». Способ определения механических параметров нарушенной материальной среды в условиях фиксированного внешнего воздействия заключается в том, что фиксируют определяющий для исследуемой среды физический параметр внешнего...
Тип: Изобретение
Номер охранного документа: 0002566408
Дата охранного документа: 27.10.2015
27.11.2015
№216.013.9399

Способ хрусталёва е.н. определения деформации материальной среды под давлением

Изобретение относится к области «Физики материального контактного взаимодействия», конкретно к способу определения упругой и общей деформации сжимаемой материальной среды в массиве. Способ заключается в том, что на глубине h массива среды предусматривают ее деформацию давлением p в выработке...
Тип: Изобретение
Номер охранного документа: 0002569404
Дата охранного документа: 27.11.2015
10.03.2016
№216.014.bf33

Способ хрусталёва е.н. получения равномерного контактного напряжения при взаимодействии материальных сред

Изобретение относится к «Физике материального контактного взаимодействия» и касается возможности достижения равномерного напряженно-деформированного состояния в зоне контакта двух материальных сред. Суть изобретения заключается в том, что придают контактирующей поверхности более прочной...
Тип: Изобретение
Номер охранного документа: 0002576542
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.bfd5

Способ е.н.хрусталева предотвращения аварийности гидроэлектростанции и устройство для его осуществления

Группа изобретений относится к области гидротехнического строительства. По предлагаемому способу монолитное железобетонное тело гравитационной плотины высотой Н (см) выполняют выпуклым в сторону водохранилища в виде арочного перекрытия русла реки. Тело плотины по высоте Н проектируют и...
Тип: Изобретение
Номер охранного документа: 0002576444
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c070

Способ хрусталёва е.н. определения границ упругого фазового напряженно-деформированного состояния материальной среды в массиве

Изобретение относится к области «Физики материального контактного взаимодействия» и касается определения границ упругого состояния материальной среды в массиве. Предлагается после определения физических параметров структурированной среды в массиве - угла внутреннего трения , удельного сцепления...
Тип: Изобретение
Номер охранного документа: 0002576539
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.cc2d

Способ повышения скорости подводной лодки и устройство для его осуществления

Изобретение относится к подводному судостроению и касается носовых оконечностей корпуса, надстроек и боевой рубки подводной лодки. Устройство повышения скорости подводной лодки состоит из цилиндрического корпуса подводной лодки с радиусом поперечного сечения R носовой оконечности корпуса с...
Тип: Изобретение
Номер охранного документа: 0002577984
Дата охранного документа: 20.03.2016
+ добавить свой РИД