×
10.01.2015
216.013.1867

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ ДЛИННОМЕРНЫХ ИЗДЕЛИЙ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

№ охранного документа
0002537675
Дата охранного документа
10.01.2015
Аннотация: Изобретение относится к обработке давлением заготовок из дисперсионно-стареющих алюминиевых сплавов и может быть использовано при изготовлении длинномерных полуфабрикатов тонкого и супертонкого сечения для ответственных деталей, используемых в электротехнической промышленности, машиностроении, авиастроении. Способ включает пластическую деформацию заготовки из алюминиевого сплава систем Al-Si-Mg и Al-Cu-Mg многоходовой прокаткой или волочением с одновременным воздействием импульсного тока плотностью в интервале 10-1000 А/мм и длительностью импульса в интервале 50-1000 мкс с получением накопленной истинной деформации e>1, при этом на каждом проходе деформацию осуществляют с получением истинной деформации в пределах 0,01-0,1 при уменьшении плотности тока с соблюдением следующего соотношения: j×τ=const, где j - плотность тока, А/мм, τ - длительность импульса, мкс. Техническим результатом изобретения является получение наноструктурных алюминиевых полуфабрикатов в виде тонких проволок, листов и лент толщиной менее 1,0 мм, обладающих высокими прочностными свойствами при сохранении технологической пластичности. 1 з.п. ф-лы, 1 пр., 1 табл., 1 ил.

Изобретение относится к металлургии, в частности к способам обработки давлением заготовок из алюминиевых дисперсионно-твердеющих сплавов систем Al-Cu-Mg и Al-Si-Mg для получения однородной нанокристаллической структуры, и может быть использовано при изготовлении прутков, проволоки и полос тонкого сечения для электротехнической промышленности, энергетики, машиностроения, авиастроения.

Известны способы обработки алюминиевых сплавов с целью улучшения физико-механических свойств, в частности прочностных и пластических характеристик, за счет получения ультрамелкозернистой структуры. Эти способы могут сочетать интенсивную пластическую деформацию и термомеханическую обработку [1].

Известен способ обработки алюминиевых сплавов для получения нано- и микрокристаллической структуры посредством предварительного равноканального углового прессования и последующего деформационного формообразования штамповкой из них изделий [2]. В результате повышается технологичность, прочность и пластичность сплавов.

Известен также способ изготовления изделий методом многократной всесторонней ковки при повышенных температурах [3]. На каждом этапе ковки сменяют направление деформирования и снижают температуру материала заготовки до температуры ниже порога рекристаллизации. Обработку проводят в несколько циклов до достижения степени накопленной деформации не менее 3. В результате обеспечивается улучшение физико-механических свойств материала и повышение производительности обработки.

Известен также способ, включающий горячую и холодную пластическую деформацию, промежуточный и окончательный отжиг в расплаве хлоридов металлов. Изобретение позволяет упростить процесс обработки алюминиевых сплавов за счет сокращения времени промежуточного и окончательного отжига при сохранении пластических свойств, улучшить качество изделий за счет повышения сопротивления образованию и развитию микротрещин [4].

Известен способ изготовления электротехнической проволоки из алюминиевого сплава Al-Mg-Si, включающий закалку проволоки, естественное старение, холодное волочение, искусственное старение с последующим волочением, при этом суммарную степень деформации выбирают в пределах 35-57%. Способом достигается повышение микросплошности поверхности проволоки, механических свойств и снижение удельного электросопротивления [5].

Недостатками приведенных выше способов являются необходимость использования крупногабаритных заготовок и их печного нагрева, проведения длительных операций промежуточного и окончательного отжига, недостаточное измельчение структуры, низкие производительность и энергосбережение. Указанные недостатки ограничивают технические возможности методов для получения изделий тонкого сечения.

Известны методы электропластической и электроимпульсной обработки, используемые для снижения напряжений деформирования и повышения технологической пластичности различных металлов и сплавов [6]. Однако в монографии не рассматривается возможность влияния режимов обработок на структурные аспекты, например формирования ультрамелкозернистой или наноструктуры с размером зерен менее 100 нм в материалах, в частности алюминиевых сплавах.

В статье [7] исследовали применение вышеописанного метода к алюминий-литиевому сплаву 1463, в котором многоходовая прокатка плоского образца производится с одновременным пропусканием постоянного или импульсного тока. Обнаружено качественное влияние вида тока на оптическую структуру прокатываемых полос, которая оставалась достаточно крупнозернистой. В методике содержится информация об использовании степени инженерной деформации в интервале 22-88%, однако отсутствуют важные сведения о режимах тока.

Известны два способа, наиболее близких к предлагаемому способу.

Первый способ [8] предназначен для пластификации металла деформированием при основных способах обработки металлов давлением (ОМД). В процессах ОМД в зону очага пластической деформации вводят импульсы тока плотностью j=350000-1000000 А/см2 длительностью 100-150 мкс с частотой, зависящей от скорости процесса. Предложенный способ имеет определенные ограничения. Плотность импульсного тока для алюминиевых сплавов тонкого сечения настолько высокая, что приведет к оплавлению изделий. Частота, плотность и длительность импульсов тока зависят от скорости пластической деформации металла в зоне деформации, и для тонких заготовок технология воспроизводима только при повышенных скоростях прокатки. Реализация предлагаемого метода как способа получения наноструктуры, а также влияние обусловленной им структуры на функциональные и механические свойства в алюминиевых сплавах не известны.

Второй способ относится к способам получения наноструктурных сплавов [9], включающий холодную деформацию многократной плоской прокаткой с введением импульсного тока плотностью j=60-300 А/мм2, длительностью импульса τ=40-200 мкс и отжигом при температуре 250-550°C, при этом режимы деформации, тока и нагрева постоянны от цикла к циклу и зависят только от химического состава сплава. Данная методика и последовательность обработок успешно применялась на сплаве титан-никель с памятью формы с целью эффективного получения наноструктурных полос с высокой прочностью и анизотропией механических свойств. Однако применение метода к алюминиевым дисперсионно-твердеющим сплавам неизвестно.

Недостатками способа являются: относительно низкие степени разовой (25 мкм по толщине) и суммарной деформации (e<1), связанные с высокой концентрацией напряжений в прямоугольном сечении заготовки и трещинообразованием по кромкам; необходимость проведения промежуточного отжига при многоходовой прокатке и фиксированные режимы обработки, не учитывающие эволюцию структуры и свойств от начала до конца процесса. Указанные недостатки не позволяют достигать высоких эксплуатационных и технологических свойств и являются ограничением для формирования нанокристаллической структуры и, соответственно, возможности одновременного улучшения механических (прочностных и пластических) характеристик.

Первый из описанных выше способов основан преимущественно на тепловом эффекте, а второй - на электропластическом эффекте, возникающих при деформации с импульсным током.

Целью предлагаемого изобретения является получение тонких наноструктурных проволок, листов и лент (толщиной менее 1.0 мм) из алюминиевых дисперсионно-твердеющих сплавов систем Al-Cu-Mg и Al-Si-Mg с улучшенными технологическими и эксплуатационными свойствами за счет многократной прокатки с введением импульсного тока.

Поставленная задача достигается следующим способом. Заготовку из алюминиевого сплава в закаленном состоянии подвергают многоходовой прокатке или волочению с одновременным воздействием импульсного тока с плотностью в интервале 10-1000 А/мм2 и длительностью импульса в интервале 50-1000 мкс с получением накопленной истиной деформации e>1, при этом на каждом проходе деформацию осуществляют с получением истинной деформации в пределах 0,01-0.1 при уменьшении плотности тока с соблюдением следующего соотношения: j2×τ=const, где j - плотность тока, А/мм2, τ - длительность импульса, мкс. После окончания пластической деформации заготовки осуществляют старение полуфабриката путем воздействия импульсного тока мощностью, равной мощности на последнем проходе.

Изменение j и τ позволяет регулировать величину электропластического и теплового эффектов на каждом из этапов деформации и таким образом влиять на процессы упрочнения (разупрочнения) и формирования (измельчение, выделение частиц) структуры.

Для повышения деформируемости, получения регламентированной микроструктуры (размер зерен и частиц менее 100 нм) и необходимых физико-механических свойств j и τ должны быть согласованы с разовой и суммарной деформацией. Это достигается уменьшением плотности тока и соответствующим повышением длительности импульса при уменьшении сечения проволоки на каждом этапе.

Таким образом, предложенная совокупность признаков способа позволяет получить длинномерные наноструктурные прутки и проволоку тонкого сечения, а также устранить дорогостоящие операции промежуточных отжигов при повышении качества продукции. Кроме того, заявляемый способ обработки не зависит от скорости прокатки, его отличает возможность локального воздействия на элементы тонкой структуры, высокий КПД процесса и экологическая чистота.

Способ осуществляется следующим образом. Исходную заготовку, например пруток диаметром ⌀6÷10 мм из алюминиевого сплава, в закаленном или состаренном состоянии подвергают многоходовой прокатке или волочению до диаметра ⌀<1 мм с импульсным током плотностью в интервале 10-1000 А/мм2, длительностью импульса в интервале 50-1000 мкс в калибрах на прокатном стане, оснащенном генератором импульсного тока, с целью накопления истинной деформации e>1. Разовая деформация, при этом, изменяется в интервале e=0.01-0.1. Направление тока должно совпадать с направлением прокатки. Для подведения и съема тока используется скользящий контакт (отрицательный полюс) до зоны деформации и один из валков (положительный полюс). Температура в зоне деформации на образце, подвергнутом пропусканию электроимпульсного тока, регулируется длительностью импульса и плотностью тока по соотношению j2×τ=const и не должна превышать температуры искусственного старения для данного сплава. В зависимости от размеров заготовки до и после обжатия и требований к структуре и физико-механическим свойствам проволоки задается величина разовой и накопленной деформации.

Пример

В конкретном примере для регулирования микроструктуры и прочностных характеристик в проволоке из сплава ABE (содержащие, вес.%: Mg-0.5; Si-0.5; Mn-0.5; Fe-0.5; Al - остальное) с начальными размерами ⌀6×150 мм3 использовался импульсный ток плотностью 50-100 А/мм2, длительностью импульса 100-400 мкс, с частотой 1000 Гц. Режимы тока в процессе деформации прокаткой (волочением) менялись в соответствии с соотношением j2×τ=const. На первом этапе при разовой деформации e=0.01 плотность и длительность были, соответственно, j=100 А/мм2 и τ=100 мкс; на последнем этапе при накопленной деформации e=5.0 j=50 А/мм2 и τ=400 мкс. При этом была получена наноструктура с размером зерен менее 100 нм (фиг.1б) и максимальными прочностными характеристиками (таблица 1, режим 3). В случае прокатки (волочения) без тока (режим 2) формируется полосовая структура, а прочностные характеристики ниже, чем по режиму 3. Если прокатка (волочение) с током ведется при постоянных параметрах (режимы 4 и 5), то структура измельчается по сравнению с исходной (фиг.1в), но остается более крупной, чем по режиму 3. Во всех случаях деформации с током или без тока структура мельче, а свойства выше, чем при традиционной термообработке (фиг.1а, режим 1). Влияние импульсного тока заметно снижается при плотности тока j<10 А/мм2 и длительности импульса τ<50 мкс и практически отсутствует. Высокие значения плотности тока (j>1000 А/мм2) или длительности импульса (τ>1000 мкс) приводят к перегреву и даже оплавлению образцов.

Результаты исследований показывают, что при прокатке (волочении) без тока разрушение начиналось уже при e>3.0, тогда как при деформации с током разрушение не наблюдалось даже при e>5.

Таким образом, предложенный способ обработки позволяет получать длинномерный полуфабрикат тонкого сечения с правильными геометрическими размерами без промежуточных отжигов, уменьшить размер зерен в структуре, за счет чего существенно повысить механические свойства обрабатываемого материала и использовать его для производства ответственных деталей в энергетике, машиностроении, авиастроении.

Таблица 1
Механические свойства и размер зерен в проволоке из сплава ABE
Вид обработки Размер зерен, мкм σв, МПа σ0,2, МПа δ, %
1 Закалка + старение 1 час 190°C 50 295 290 10
2 Прокатка (e=5.0; j=0 А/мм2) Полосовая структура, микротрещины 395 375 2.5
3 Прокатка (e=5.0; j=100-50 А/мм2; τ=100-400 мкс) <0.001 443 400 5.0
4 Прокатка (e=5.0; j=100 А/мм2; τ=100 мкс) 1 410 390 6.0
5 Прокатка (e=5.0; j=200 А/мм2; τ=200 мкс) 10 300 250 9.0

Список использованной литературы

1. Валиев Р.З., Александров И.В. Объемные наноструктурные металлические материалы: получение, структура и свойства. - М.: ИКЦ «Академкнига», 2007. - 398 с.

2. Патент №2467090, МПК B21J, B82B, C22F, 20.11.2012.

3. Патент №2393936, МПК B21J, C22F, 25 03.2009.

4. Патент №2468113, МПК C22F, C23C, 09.11.2011.

5. Патент №2141389, МПК C1, 20.11.1999.

6. Баранов Ю.В., Троицкий О.А., Авраамов Ю.С., Шляпин А.Д. Физические основы электропластической и электроимпульсной обработок и новые материалы. М.: Изд-во МГИУ, 2001. 844 с.

7. Юрьев В.А., Баранов Ю.В., Столяров В.В., Шульга В.А., Костина И.В. Влияние электропластической обработки на структуру алюминий-литиевого сплава 1463, Известия РАН, серия физическая, 2008, том 72, №9, стр.1317-1319.

8. Патент №2321469, МПК B21B 1/08, B21C 1/00, 02.09.2005.

9. Патент №2367712 С2, 19.09.2007.


СПОСОБ ОБРАБОТКИ ДЛИННОМЕРНЫХ ИЗДЕЛИЙ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ
Источник поступления информации: Роспатент

Showing 11-20 of 80 items.
10.10.2015
№216.013.814b

Модель для определения трещиностойкости труб

Изобретение относится к определению механических характеристик труб, а именно к моделям, предназначенным для испытаний материалов труб малого диаметра на трещиностойкость, и может быть использовано при производстве и эксплуатации труб. Модель изготавливают в виде кольца, вырезанного из...
Тип: Изобретение
Номер охранного документа: 0002564696
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.8185

Адаптивный мобильный пространственный реабилитационный робот-манипулятор и способ организации движений и диагностики пациента с его помощью

Изобретение относится к реабилитационной робототехнике, а именно к адаптивным мобильным пространственным робототехническим системам, и может быть использовано для восстановительной реабилитации в спортивной и клинической медицине, при проведении лечебно-профилактических процедур в...
Тип: Изобретение
Номер охранного документа: 0002564754
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8330

Способ получения чистой воды из морских и минерализованных вод, промышленных стоков и устройство для его осуществления.

Изобретение относится к области разделения смесей жидкостей с различной температурой кипения, составляющих многокомпонентную смесь. Наиболее предпочтительная область применения - получение пресной воды из водного солевого раствора, например, морских и минерализованных вод и промышленных стоков....
Тип: Изобретение
Номер охранного документа: 0002565187
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.8a99

Способ изготовления осесимметричной детали типа диска

Изобретение относится к области обработки давлением и может быть использовано при изготовлении деталей типа дисков из многофазных труднодеформируемых жаропрочных сплавов. Заготовку нагревают в печи до температуры, соответствующей температурному интервалу сверхпластической деформации. Производят...
Тип: Изобретение
Номер охранного документа: 0002567084
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.9256

Способ распознавания источников сигналов акустической эмиссии, возникающих при деградации материала, образовании трещин и разрушении конструкции

Использование: для идентификации источников сигналов акустической эмиссии (АЭ). Сущность изобретения заключается в том, что измеряют максимальную амплитуду импульса, число выбросов и длительность импульсов сигналов, после чего на основании проведенных измерений осуществляют распознавание...
Тип: Изобретение
Номер охранного документа: 0002569078
Дата охранного документа: 20.11.2015
20.12.2015
№216.013.9b03

Способ оценки адгезионной прочности порошковых металлических покрытий со стальной поверхностью

Изобретение относится в способам оценки прочности сцепления металлических покрытий с основой из металлов и сплавов и может быть использовано в различных отраслях машиностроения, где применяются газотермический и газодинамический методы нанесения покрытий для придания поверхности повышенных...
Тип: Изобретение
Номер охранного документа: 0002571308
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a037

Способ автоматической настройки резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя

Изобретение относится к вибрационной технике и может быть использовано в различных отраслях промышленности. Технический результат заключается в возбуждении и поддержании резонансных колебаний рабочего органа вибрационной машины, возбуждаемых дебалансным инерционным вибровозбудителем с приводом...
Тип: Изобретение
Номер охранного документа: 0002572657
Дата охранного документа: 20.01.2016
20.02.2016
№216.014.cf57

Способ определения тензора инерции тела

Изобретение относится к измерительной и испытательной технике, в частности к способам определения тензора инерции тела. Сущность предлагаемого способа заключается в определении массы тела, координат центра масс и шести осевых центральных моментов инерции, по которым определяется тензор инерции...
Тип: Изобретение
Номер охранного документа: 0002575184
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2e21

Способ работы двухтактного детонационного двигателя внутренного сгорания (варианты)

Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания (ДВС) с детонационным процессом. Техническим результатом является повышение кпд цикла двухтактного детонационного ДВС с водородом в качестве горючего. Сущность изобретения заключается в том, что в двигателе...
Тип: Изобретение
Номер охранного документа: 0002579287
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.47d8

Способ обработки металлов давлением

Изобретение относится к области металлургии и может быть применено при обработке металлов давлением. Для снижения сопротивления металла деформированию и усиления релаксационных процессов на движущуюся проволочную или полосовую заготовку в области зоны деформации одновременно воздействуют...
Тип: Изобретение
Номер охранного документа: 0002585920
Дата охранного документа: 10.06.2016
Showing 11-20 of 34 items.
10.10.2015
№216.013.814b

Модель для определения трещиностойкости труб

Изобретение относится к определению механических характеристик труб, а именно к моделям, предназначенным для испытаний материалов труб малого диаметра на трещиностойкость, и может быть использовано при производстве и эксплуатации труб. Модель изготавливают в виде кольца, вырезанного из...
Тип: Изобретение
Номер охранного документа: 0002564696
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.8185

Адаптивный мобильный пространственный реабилитационный робот-манипулятор и способ организации движений и диагностики пациента с его помощью

Изобретение относится к реабилитационной робототехнике, а именно к адаптивным мобильным пространственным робототехническим системам, и может быть использовано для восстановительной реабилитации в спортивной и клинической медицине, при проведении лечебно-профилактических процедур в...
Тип: Изобретение
Номер охранного документа: 0002564754
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8330

Способ получения чистой воды из морских и минерализованных вод, промышленных стоков и устройство для его осуществления.

Изобретение относится к области разделения смесей жидкостей с различной температурой кипения, составляющих многокомпонентную смесь. Наиболее предпочтительная область применения - получение пресной воды из водного солевого раствора, например, морских и минерализованных вод и промышленных стоков....
Тип: Изобретение
Номер охранного документа: 0002565187
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.8a99

Способ изготовления осесимметричной детали типа диска

Изобретение относится к области обработки давлением и может быть использовано при изготовлении деталей типа дисков из многофазных труднодеформируемых жаропрочных сплавов. Заготовку нагревают в печи до температуры, соответствующей температурному интервалу сверхпластической деформации. Производят...
Тип: Изобретение
Номер охранного документа: 0002567084
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.9256

Способ распознавания источников сигналов акустической эмиссии, возникающих при деградации материала, образовании трещин и разрушении конструкции

Использование: для идентификации источников сигналов акустической эмиссии (АЭ). Сущность изобретения заключается в том, что измеряют максимальную амплитуду импульса, число выбросов и длительность импульсов сигналов, после чего на основании проведенных измерений осуществляют распознавание...
Тип: Изобретение
Номер охранного документа: 0002569078
Дата охранного документа: 20.11.2015
20.12.2015
№216.013.9b03

Способ оценки адгезионной прочности порошковых металлических покрытий со стальной поверхностью

Изобретение относится в способам оценки прочности сцепления металлических покрытий с основой из металлов и сплавов и может быть использовано в различных отраслях машиностроения, где применяются газотермический и газодинамический методы нанесения покрытий для придания поверхности повышенных...
Тип: Изобретение
Номер охранного документа: 0002571308
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a037

Способ автоматической настройки резонансных режимов колебаний вибрационной машины с приводом от асинхронного двигателя

Изобретение относится к вибрационной технике и может быть использовано в различных отраслях промышленности. Технический результат заключается в возбуждении и поддержании резонансных колебаний рабочего органа вибрационной машины, возбуждаемых дебалансным инерционным вибровозбудителем с приводом...
Тип: Изобретение
Номер охранного документа: 0002572657
Дата охранного документа: 20.01.2016
20.02.2016
№216.014.cf57

Способ определения тензора инерции тела

Изобретение относится к измерительной и испытательной технике, в частности к способам определения тензора инерции тела. Сущность предлагаемого способа заключается в определении массы тела, координат центра масс и шести осевых центральных моментов инерции, по которым определяется тензор инерции...
Тип: Изобретение
Номер охранного документа: 0002575184
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2e21

Способ работы двухтактного детонационного двигателя внутренного сгорания (варианты)

Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания (ДВС) с детонационным процессом. Техническим результатом является повышение кпд цикла двухтактного детонационного ДВС с водородом в качестве горючего. Сущность изобретения заключается в том, что в двигателе...
Тип: Изобретение
Номер охранного документа: 0002579287
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.47d8

Способ обработки металлов давлением

Изобретение относится к области металлургии и может быть применено при обработке металлов давлением. Для снижения сопротивления металла деформированию и усиления релаксационных процессов на движущуюся проволочную или полосовую заготовку в области зоны деформации одновременно воздействуют...
Тип: Изобретение
Номер охранного документа: 0002585920
Дата охранного документа: 10.06.2016
+ добавить свой РИД