×
10.01.2015
216.013.1832

Результат интеллектуальной деятельности: СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих, взятых в следующем соотношении, мас.%: металлическая - 10-30, оксидная - остальное. Оксидная составляющая включает смесь двух или более микроразмерных порошков оксидов, выбранных из ряда: оксид никеля, оксид железа, оксид меди, оксид хрома. Металлическая составляющая включает микроразмерные порошки меди или сплава на основе меди, а также содержит 2-10 мас.% наноразмерного порошка меди или сплава на основе меди с размером частиц до 100 нм. Изобретение позволяет увеличить удельную электропроводность анода при температуре 750-850 °C и снизить скорость его коррозии при низкотемпературном электролитическом получении алюминия из оксидно-фторидного расплава. 4 ил., 2 табл., 1 пр.
Основные результаты: Состав шихты для изготовления оксидно-металлического инертного анода, включающий оксидную составляющую из смеси двух и более микроразмерных порошков оксидов из ряда: оксид никеля, железа, меди, хрома, и металлическую составляющую, включающую микроразмерные порошки меди или сплава на основе меди, отличающийся тем, что металлическая составляющая содержит 2-10 мас.% наноразмерного порошка меди или сплава на основе меди с размером частиц до 100 нм при соотношении оксидной и металлической составляющих, мас.%:

Изобретение относится к цветной металлургии и может быть использовано для изготовления композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности алюминия из оксидно-фторидных расплавов при пониженных температурах.

Известен состав шихты для изготовления оксидно-металлического инертного анода для электролитического получения алюминия (патент CN 101255569, опубл. 03.09.2008 г.) [1]. Шихта содержит порошки оксида железа, никеля, металлической меди при следующем соотношении компонентов, мас.%:

оксид железа 35-36
оксид никеля 47-50 (в т.ч. наноразмерная фракция 4-14 мас.%)
металлическая медь 14,8-15,1

Изготовленный из шихты известного состава инертный анод при температуре 1000°C обладает высокой удельной электропроводностью - свыше 100 См/см, хорошо подвергается механической обработке, формованию и может быть использован при промышленном электролитическом получении алюминия. Однако при понижении температуры электролиза до 800-900°C происходит снижение его электропроводности до 20-40 См/см, приводящее к быстрой коррозии анода. Это затрудняет либо исключает длительное использование известного инертного анода при этих температурах.

Известна шихта для изготовления оксидно-металлического инертного кислородвыделяющего анода для электролитического получении алюминия (патент RU 2106431, опубл. 10.03.1998 г.) [2]. Шихта содержит металлическую и оксидную составляющие, в мас.%: NiO-NiFe2O4 - 73-83; CuO - 10-20; порошок меди 2-12; углеродный полимер - 1-2.

При изготовлении анода из известной шихты в нем образуется металлическая фаза, содержащая 15-20 мас.% меди. Такой оксидно-металлический анод при температуре выше 950°C характеризуется высокой удельной электропроводностью - 70-400 См/см, и низкими коррозионными токами в оксидно-фторидном расплаве при термодинамическом потенциале выделения кислорода от 5-10 до 70-80 мА/см2. Однако такие важные технологические параметры инертного анода, как удельная электропроводность и плотность тока коррозии, являются невоспроизводимыми. Это указывает на неравномерное распределение оксидной и металлической фаз в оксидно-металлическом аноде, что отрицательно сказывается на его коррозионной стойкости и чистоте получаемого алюминия.

Наиболее близкой к заявляемому изобретению является шихта для изготовления оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности алюминия (патент RU 2401324, опубл. 10.01.2010 г.) [3]. Шихта содержит 5-30 мас.% металлической составляющей, состоящей из меди, или сплава на основе меди и оксидную составляющую из смеси двух и более оксидов из ряда оксидов никеля, железа, меди, хрома. При этом оксидная составляющая содержит оксиды железа и никеля, а также дополнительно включает 1-80 мас.% оксида меди и/или хрома.

Инертный анод, изготовленный из известной шихты, имеет низкую скорость коррозии, а алюминий, полученный электролизом оксидно-фторидного расплава с использованием этого анода, низкое содержание примесей - 0,156-0,188 мас.%. Однако, как показали исследования, для этого анода характерно неравномерное распределение металлической и оксидной фаз по объему, которое может приводить к локальным выкрашиваниям материала из тела анода, изменению удельной электропроводности и пористости, а также к нестабильной работе анода в условиях длительного электролиза.

Из анализа известных составов шихты [1, 2, 3] следует, что шихта для изготовления оксидно-металлических инертных анодов, как правило, состоит из микроразмерных порошков с размером частиц 10-50 мкм. При этом разница в показателях удельной электропроводности разных участков в объеме анода, а также снижение удельной электропроводности анода при снижении температуры электролиза свидетельствуют о том, что включения меди или сплава на основе меди в объеме анода распределены неравномерно. Это приводит к неравномерному распределению тока по поверхности анодов, появлению очагов катастрофической коррозии, локальным перегревам в условиях высоких токовых нагрузок, быстрому разрушению анода в целом, а также негативно сказывается на чистоте получаемого алюминия.

Задача настоящего изобретения заключается в увеличении ресурса работы оксидно-металлического анода, применяемого для низкотемпературного электролиза алюминия.

Для решения поставленной задачи оксидно-металлический инертный анод изготавливают из шихты, включающей оксидную составляющую из смеси двух и более оксидов из ряда: оксид никеля, железа, меди, хрома, и металлическую, состоящую из меди или сплава на основе меди при том, что металлическая составляющая содержит 2-10 мас.% наноразмерного порошка металла крупностью до 100 нм, при этом оксидная и металлическая составляющие шихты взяты в следующем соотношении, мас.%: металлическая составляющая 10-30; оксидная составляющая - остальное.

Установлено, что устойчивость структуры и более равномерное распределение компонентов в изготовленном оксидно-металлическом аноде достигается за счет добавки наноразмерного порошка меди или сплава на основе меди в размере от 2 мас.% в состав исходной шихты. По данным микрорентгеноструктурного анализа при добавке в шихту менее 2 мас.% наноразмерного порошка меди или сплава на основе меди эффект улучшения распределения компонентов в изготовленном оксидно-металлическом аноде не наблюдается. При повышении доли указанного наноразмерного порошка в исходной шихте выше 10 мас.% в ходе изготовления анода происходит частичная коагуляция наноразмерных частиц до микроразмерных конгломератов, и влияние дальнейшего увеличения доли наноразмерных частиц металла в шихте на равномерность распределения компонентов в изготавливаемом оксидно-металлическом аноде становится незначительным. В свою очередь устойчивость структуры и более равномерное распределение компонентов в аноде положительно сказывается на стабильности удельной электропроводности инертного анода в ходе длительного электролиза. Указанное соотношение содержания металлической и оксидной составляющих в заявляемой шихте выбрано экспериментальным путем при достижении наибольших значений удельной электропроводности изготавливаемого анода, обеспечении стабильности структуры и наименьшей растворимости его компонентов в оксидно-фторидном расплаве.

Таким образом, новый технический результат, достигаемый заявленным изобретением, заключается в более равномерном распределении металлической и оксидной составляющих в объеме оксидно-металлического анода и обеспечении его высокой удельной электропроводности.

Заявленное изобретение иллюстрируется следующими чертежами. На фиг.1 представлена микрофотография спеченного композита (25,3)NiO-(41,2)Fe2O3-(13,5)Cr2O3-(20)Cu (мас. %), изготовленного из оксидных порошков с добавлением порошка металлической меди, содержащего фракцию не более 100 нм в количестве 3 мас.%. Размер порошков основной и металлической фракции составляет 10 до 45 мкм. Для сравнения на фиг.2 приведена микрофотография композита аналогичного химического состава, полученного из шихты по прототипу [3], содержащей порошок меди размером от 10 до 45 мкм. На фиг.3 представлена микрофотография спеченного композита (25,3)NiO-(41,2)Fe2O3-(13,5) Cr2O3-(18)Cu-(2)Ag (мас.%), изготовленного из оксидных порошков с добавлением порошка сплава меди и серебра, содержащего фракцию не более 100 нм в количестве 5 мас.%. Размер порошков основной и металлической фракций составляет 10 до 45 мкм. Для сравнения на фиг.4 представлена микрофотография аналогичного химического состава, полученного из шихты по прототипу [3], изготовленного из оксидных порошков с добавлением порошка сплава меди и серебра, содержащего фракцию не более 100 нм в количестве 5 мас.%. Размер порошков основной и металлической фракций составляет 10 до 45 мкм. В таблице 1 приведены физические свойства композитов, полученных из шихты по прототипу [3] (номера в таблице 1-5), а также композитов аналогичного химического состава с добавлением наноразмерного порошка металлической меди, а также сплава на основе меди, в соответствии с заявляемой шихтой (номера в таблице 6-10). В таблице 2 представлены результаты исследования коррозионного поведения композитных анодов, изготовленных из известной [3] и заявляемой шихт, при электролизе оксидно-фторидного расплава, мас.%: 12NaF-36,8KF-51,2AlF3, насыщенного Al2O3 (5-7 мас.%), 800°C.

Заявляемая шихта составов 1-3 была получена путем равномерного перемешивания порошка металлической меди с содержанием наноразмерного (не более 100 нм) порошка меди 2, 5 и 10 мас. % (образцы 6-8 таблицы 1 и 2) и порошков оксидов железа, меди, никеля и хрома. Аналогично была получена шихта составов 4 и 5, содержащая металлическую фракцию сплава из смеси металлических порошков меди и никеля, а также меди и серебра с содержанием наноразмерного (не более 100 нм) порошка меди и никеля, а также порошка меди и серебра 5 мас. % (таблицы 1 и 2, образцы 9, 10) и порошков оксидов железа, меди, никеля и хрома.

Из полученной шихты были изготовлены оксидно-металлические композитные аноды в виде брусков размерами 10×10×80 мм ультразвуковым перемешиванием исходных порошков в органическом растворе, включая их седиментацию, фильтрование, сушку, формование, холодное прессование, спекание в атмосфере аргона, охлаждение и механическую обработку.

В ходе спекания методом твердофазного синтеза были получены аноды со структурой, устойчивой при электролизе в интервале температур 750-950°C.

Для сравнительного анализа были использованы оксидно-металлические аноды, изготовленные из известной шихты [3], см. таблицы 1 и 2.

Из фиг. 1, 2, а также из фигур 3, 4 видно, что анод, изготовленный из заявляемой шихты, характеризуется более равномерным распределением металлической и оксидной фаз по объему по сравнению с анодом, изготовленным из шихты состава по прототипу.

Удельную электропроводность оксидно-металлических анодов определяли четырехзондовым методом в атмосфере аргона при 750-950°C. Из таблицы 1 следует, что с понижением температуры электролиза с 950 до 750°C снижение значений удельной электропроводности оксидно-металлических анодов, изготовленных из заявляемой шихты, является существенно меньшим по сравнению с анодами, изготовленными из шихты по прототипу.

Коррозионный ток анодов, изготовленных из известной [3] и заявляемой шихт, определяли из стационарных поляризационных кривых, полученных путем измерения и фиксации анодной плотности тока при пошаговом увеличении анодного перенапряжения в лабораторном электролизере. После этого аноды испытывали при электролизе оксидно-фторидного расплава 72NaF-36,8KF-51,2AlF3, насыщенного Al2O3(5-7 мас. %), 800°C в течение 72 часов в лабораторном электролизере. Анодная плотность тока составляла 0,4 А/см2 (10 А). Алюминий выделялся на катоде из диборида титана и скапливался на дне алундового контейнера. По окончании электролиза расплав и алюминий анализировали на содержание компонентов анода спектрально-эмиссионным методом с высокочастотной индуктивно-связанной плазмой. По количеству примесей в катодном алюминии и электролите были оценены значения скоростей растворения анодов. Из таблицы 2 видно, что скорость растворения оксидно-металлических анодов, изготовленных из заявляемой шихты, ниже скорости растворения инертного анода, изготовленного из известной шихты [3].

Таким образом, благодаря более равномерному распределению металлической и оксидной составляющих в оксидно-металлическом аноде заявляемое изобретение позволяет увеличить удельную электропроводность анода при температуре 750-850°C и снизить скорость его коррозии при низкотемпературном электролитическом получении алюминия из оксидно-фторидного расплава.

Состав шихты для изготовления оксидно-металлического инертного анода, включающий оксидную составляющую из смеси двух и более микроразмерных порошков оксидов из ряда: оксид никеля, железа, меди, хрома, и металлическую составляющую, включающую микроразмерные порошки меди или сплава на основе меди, отличающийся тем, что металлическая составляющая содержит 2-10 мас.% наноразмерного порошка меди или сплава на основе меди с размером частиц до 100 нм при соотношении оксидной и металлической составляющих, мас.%:
СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА
СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА
СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА
СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА
Источник поступления информации: Роспатент

Showing 61-70 of 109 items.
25.08.2017
№217.015.b1df

Электрохимический способ измерения концентрации метана в азоте

Использование: для получения возможности измерения содержания метана в азоте в широком диапазоне температур и концентраций при одновременном контроле работоспособности электрохимической ячейки в процессе измерений. Сущность изобретения заключается в том, что в поток анализируемого газа,...
Тип: Изобретение
Номер охранного документа: 0002613328
Дата охранного документа: 16.03.2017
26.08.2017
№217.015.d8f3

Способ синтеза металл-графеновых нанокомпозитов

Изобретение относится к нанотехнологии и может быть использовано в авиационной, космической и электротехнической промышленности. Алюминий, магний или алюмо-магниевый сплав, содержащий, мас.%: алюминий 99,9-0,1; магний 0,1-99,9, расплавляют в расплаве галогенидов щелочных и/или щелочноземельных...
Тип: Изобретение
Номер охранного документа: 0002623410
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e3cc

Система видеонаблюдения с транспортного средства, находящегося в движении

Система видеонаблюдения с транспортного средства (ТС) 1, в которой видеонаблюдение осуществляют с нескольких ТС, двигающихся по заданным траекториям. Каждое ТС оборудовано видеокамерой 2, подключенной через плату видеоввода 3 к компьютеру 4, имеющему приемно-передающее устройство (ППУ) 5,...
Тип: Изобретение
Номер охранного документа: 0002626251
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e765

Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO + 0,1YO. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002627174
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.e7d6

Способ исследования кинетики межфазного обмена в системе "газ-электрохимическая ячейка" с использованием изотопного обмена в условиях поляризации электродов

Изобретение относится к электрохимии твердых кислород - ионных электролитов. Способ согласно изобретению заключается в том, что исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с...
Тип: Изобретение
Номер охранного документа: 0002627145
Дата охранного документа: 03.08.2017
29.12.2017
№217.015.f83e

Способ пирометаллургической переработки окисленной никелевой руды

Изобретение относится к металлургии, в частности к процессу пирометаллургической переработки окисленных никелевых руд с получением ферроникеля и чугуна. Способ включает загрузку окисленной никелевой руды совместно с флюсующими добавками и углеродсодержащим материалом, взятым в количестве...
Тип: Изобретение
Номер охранного документа: 0002639396
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fbb6

Система для контроля утечки газа из магистральных газопроводов

Система для контроля утечки газа из магистрального газопровода может быть использована при эксплуатации и контроле технического состояния магистральных трубопроводов. В системе для контроля утечки газа контроль утечки осуществляется с транспортного средства, двигающегося по трассе газопровода....
Тип: Изобретение
Номер охранного документа: 0002638136
Дата охранного документа: 11.12.2017
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.00d9

Способ утилизации углеродсодержащих отходов

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты. В качестве отходов используют отработавшие газы из газотурбинных установок...
Тип: Изобретение
Номер охранного документа: 0002629666
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
Showing 61-70 of 112 items.
26.08.2017
№217.015.d8f3

Способ синтеза металл-графеновых нанокомпозитов

Изобретение относится к нанотехнологии и может быть использовано в авиационной, космической и электротехнической промышленности. Алюминий, магний или алюмо-магниевый сплав, содержащий, мас.%: алюминий 99,9-0,1; магний 0,1-99,9, расплавляют в расплаве галогенидов щелочных и/или щелочноземельных...
Тип: Изобретение
Номер охранного документа: 0002623410
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e3cc

Система видеонаблюдения с транспортного средства, находящегося в движении

Система видеонаблюдения с транспортного средства (ТС) 1, в которой видеонаблюдение осуществляют с нескольких ТС, двигающихся по заданным траекториям. Каждое ТС оборудовано видеокамерой 2, подключенной через плату видеоввода 3 к компьютеру 4, имеющему приемно-передающее устройство (ППУ) 5,...
Тип: Изобретение
Номер охранного документа: 0002626251
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e765

Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO + 0,1YO. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002627174
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.e7d6

Способ исследования кинетики межфазного обмена в системе "газ-электрохимическая ячейка" с использованием изотопного обмена в условиях поляризации электродов

Изобретение относится к электрохимии твердых кислород - ионных электролитов. Способ согласно изобретению заключается в том, что исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с...
Тип: Изобретение
Номер охранного документа: 0002627145
Дата охранного документа: 03.08.2017
29.12.2017
№217.015.f83e

Способ пирометаллургической переработки окисленной никелевой руды

Изобретение относится к металлургии, в частности к процессу пирометаллургической переработки окисленных никелевых руд с получением ферроникеля и чугуна. Способ включает загрузку окисленной никелевой руды совместно с флюсующими добавками и углеродсодержащим материалом, взятым в количестве...
Тип: Изобретение
Номер охранного документа: 0002639396
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fbb6

Система для контроля утечки газа из магистральных газопроводов

Система для контроля утечки газа из магистрального газопровода может быть использована при эксплуатации и контроле технического состояния магистральных трубопроводов. В системе для контроля утечки газа контроль утечки осуществляется с транспортного средства, двигающегося по трассе газопровода....
Тип: Изобретение
Номер охранного документа: 0002638136
Дата охранного документа: 11.12.2017
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.00d9

Способ утилизации углеродсодержащих отходов

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты. В качестве отходов используют отработавшие газы из газотурбинных установок...
Тип: Изобретение
Номер охранного документа: 0002629666
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
+ добавить свой РИД