×
10.01.2015
216.013.179d

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МАССЫ СЖИЖЕННОГО ГАЗА В СЛИВНОМ РУКАВЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Способ определения массы сжиженного газа, по которому измеряют температуру и давление в емкости, выпускают вещество из емкости и контролируют время истечения вещества из емкости через насадку и изменение давления в емкости. Массу вещества определяют по газодинамическим соотношениям. При этом согласно изобретению измеряют геометрические размеры внутренней полости сливных рукавов, определяют коэффициент расхода насадки из справочных данных, измеряют температуру в автоцистерне, определяют состав сжиженного газа согласно паспорту качества. Рассчитывают плотность паровой фазы сжиженного газа как двухфазной системы по правилу аддитивности для определенного состава и измеренной температуры. Выпускают сжиженный газ из рукава паровой фазы и рукава слива через насадку при сверхкритическом и докритическом истечении. Определяют достоверность определения коэффициента расхода путем соотнесения массы, прошедшей через насадку из рукава паровой фазы, и массы, которая находилась в рукаве паровой фазы до истечения. Сопоставляют величины массы, прошедшей через насадку из рукава паровой фазы и рукава слива, и по разности величин определяют массу жидкой фазы сжиженного газа в рукаве слива. Технический результат - измерение расхода массы сжиженного газа из сливного рукава через насадку при истечении с непостоянным давлением. 2 н.п. ф-лы, 1 ил., 3 табл.

Изобретение относится к автозаправочным станциям и может быть использовано для практического применения при определении массы и потерь сжиженного газа в сливных рукавах при сливоналивных операциях.

Известен способ измерения массы сжиженного газа в замкнутом резервуаре (патент РФ №2421693, кл. G01F 23/28, 2011), основанный на электрическом методе контроля и измерении положения границы раздела и диэлектрической проницаемости каждого слоя двухслойных сред. Сущность: в резонаторе, размещенном в резервуаре, возбуждают электромагнитные колебания на трех собственных частотах. Эти частоты измеряют во всем диапазоне изменения степени заполнения резервуара сжиженным газом. При этом указанные три собственные частоты выбирают такими, что значения хотя бы одной пары частот из них, нормированных к соответствующим частотам резонатора при заполнении газовой фазой всего объема резервуара, не совпадают при любой степени заполнения резонатора сжиженным газом в двухфазном состоянии, и обратные значения отношения разности квадратов обратных значений нормированных частот этой пары к такой же разности, образованной одной из указанных частот и третьей частотой, составляют монотонную зависимость от степени заполнения. Массу сжиженных газов определяют по трем измеренным собственным частотам резонатора.

Недостатком такого способа является сложность конструкции для измерения массы в емкости малого объема.

Известен способ измерения объема или массы газов путем пропускания их через измерительные устройства непрерывным потоком (патент РФ 2114397, кл. G01F 1/34, 1998), а более конкретно к измерению расхода газа, транспортируемого по газопроводам различного назначения, включая магистральные, который реализуется устройством, содержащим форкамеру с перфорированным диском на входе и датчиком для замера высокого давления, сопло, цилиндрическую насадку с перфорацией, сообщающуюся с коаксиально размещенной кольцевой камерой, снабженной датчиком для замера низкого давления, а также коническую насадку.

Недостатком такого способа является ограничение функциональных возможностей определения массы в замкнутом объеме емкости, обусловленное определением массы газа при движении в газопроводе.

Наиболее близким к предлагаемому способу и устройству является способ определения объема вещества в замкнутой емкости (резервуар хранения) и устройство для его осуществления (патент РФ №2079112, кл. G01F 17/00, 1997), где для определения объема вещества осуществляют наддув емкости до докритического отношения давлений, измеряют давление в емкости, окружающей атмосфере и температуру в емкости и контролируют таймером и датчиком избыточного давления истечение воздуха через сопло с непостоянным расходом в атмосферу. Массу вещества в емкости определяют по газодинамическим соотношениям.

Недостатком этого способа является использование дополнительных приборов и оборудования для создания давления в емкости.

Задача изобретения - определение массы сжиженного газа в сливном рукаве автозаправочной станции при выполнении сливоналивной операции.

Технический результат - измерение расхода массы сжиженного газа из сливного рукава через насадку при истечении с непостоянным давлением.

Поставленная задача и технический результат достигаются тем, что в емкости измеряют температуру и давление, выпускают вещество из емкости и контролируют время истечения вещества из емкости через насадку и изменение давления в емкости, массу вещества определяют по газодинамическим соотношениям, согласно изобретению, измеряют геометрические размеры внутренней полости сливных рукавов, определяют коэффициент расхода насадки из справочных данных, измеряют температуру в автоцистерне, определяют состав сжиженного газа согласно паспорту качества, рассчитывают плотность паровой фазы сжиженного газа как двухфазной системы (пар-жидкость) по правилу аддитивности для определенного состава и измеренной температуры, выпускают сжиженный газ из рукава паровой фазы и рукава слива через насадку при сверхкритическом и докритическом истечении, определяют достоверность определения коэффициента расхода путем соотнесения массы, прошедшей через насадку из рукава паровой фазы, и массы, которая находилась в рукаве паровой фазы до истечения, сопоставляют величины массы, прошедшей через насадку из рукава паровой фазы и рукава слива, и по разности величин определяют массу жидкой фазы сжиженного газа в рукаве слива.

Поставленная задача решается, технический результат достигается устройством, которое содержит емкость, насадки, манометры, термометры, секундомер, согласно изобретению содержит автоцистерну, соединенную со сливными рукавами и газопроводами, на которых установлены краны, связанные с насадками и манометрами, при этом термометр установлен в автоцистерне.

Существо заявляемого изобретения поясняется схемой. На чертеже приведена схема подключения технологического оборудования, приборов и насадок для определения массы сжиженного газа в рукавах.

Пример конкретной реализации способа.

На автозаправочной станции определялась масса сжиженного газа в сливных рукавах. Состав сжиженного газа по массе согласно паспорту качества составил: пропан - 80,1%, бутан - 19,3%, этан - 0,6%.

Результаты измеренных исходных данных приведены в таблице 1.

Таблица 1
Результаты измерений исходных данных
Температура, K Начальное (абсолютное) давление (P0), Па Площадь сечения насадки на выходе (f), м2 Объем сливного рукава (V0), м3
295 1001325 0,0000196 0,0113

Плотность паровой фазы сжиженного газа в сливном рукаве в начальный момент времени определялась по формуле

где yi - доля компонента СУГ (об.); - плотность паров компонента сжиженного газа при заданной температуре, кг/м3.

Плотности компонентов сжиженного газа принимались из справочных данных.

Пересчет состава сжиженного газа, выраженный в долях массы, на состав, выраженный в долях объема, осуществлялся формуле

где - доля компонента СУГ (масс.).

Расчетная плотность паровой фазы сжиженного газа в сливном рукаве составила 20,05 кг/м3.

Изменение плотности паровой фазы сжиженного газа в сливном рукаве при падении давления определялось по политропному закону

где Pi - текущее абсолютное давление в сливном рукаве, Па,

ρi - текущая плотность паровой фазы сжиженного газа в сливном рукаве, кг/м3,

n - показатель политропы.

Процесс изменения состояния сжиженного газа в сливном рукаве принимался изотермическим, а значение показателя политропы n - равным 1.

Результаты измерений времени истечения и давления в сливных рукавах и расчетные величины плотности сжиженного газа приведены в таблице 2.

Таблица 2
Результаты измерений времени истечения и давления и расчетные величины плотности
Рукав паровой фазы Рукав слива
Интервал времени истечения (τi), сек Давление (Pi), Па Плотность (ρi), кг/м3 Интервал времени истечения (τi), сек Давление (Pi), Па Плотность (ρi), кг/м3
1-14 1001325 20,05 1-35 1001325 20,05
15 872753,57 17,48 36 911325 18,25
16 744182,14 14,90 37 821325 16,45
17 615610,71 12,33 38 731325 14,64
18 487039,29 9,75 39 641325 12,84
19 358467,86 7,18 40 551325 11,04
20 229896,43 4,60 41 461325 9,24
21 101325,00 2,03 43 371325 7,43
- - - 42 281325 5,63
- - - 44 191325 3,83
- - - 45 101325 2,03

Критическое давление определялось по формуле

где Pa - атмосферное давление, Па,

где k - показатель адиабаты, равный 1,3.

Расчетная величина критического давления при нормальном атмосферном давлении (101325 Па) составила 186259 Па.

Как видно из таблицы 2, переход из сверхкритического в докритическое истечение наблюдался в интервале времени 20-21 сек - для рукава паровой фазы, 44-45 сек - для рукава слива.

Масса сжиженного газа в сливном рукаве, прошедшая через насадку, определялась по формуле

m=Σmi,

где mi - масса сжиженного газа, прошедшая через насадку за интервал времени, где плотность, давление постоянны.

Масса mi определялась по формуле

где

µ - коэффициент расхода насадки, равный 0,44,

f - площадь поперечного сечения насадки на выходе, м2,

τi - время истечения через насадку, при котором текущие давление и плотность постоянны, сек,

- коэффициент.

Результаты расчета массы в сливных рукавах приведены в таблице 3.

Таблица 3
Результаты расчета массы сжиженного газа в сливных рукавах
Рукав паровой фазы Рукав слива
Интервал времени истечения (τi), сек Коэффициент Ψ Масса (mi), кг Интервал времени истечения (τi), сек Коэффициент Ψ Масса (mi), кг
1-14 0,32386 0,17520 1-35 0,32386 0,43800
15 0,35155 0,01184 36 0,34266 0,01205
16 0,38566 0,01108 37 0,36430 0,01155
17 0,42881 0,01019 38 0,38951 0,01099
18 0,48508 0,00912 39 0,41929 0,01038
19 0,56016 0,00775 40 0,45498 0,00968
20 0,65062 0,00577 41 0,49840 0,00887
21 0,00000 0,00000 43 0,55166 0,00790
- - - 42 0,61494 0,00668
- - - 44 0,66687 0,00492
- - - 45 0,00000 0,00000
Итого (m) 0,23094 Итого (m) 0,52102

Как видно из таблицы 3, масса сжиженного газа в сливных рукавах (m) составила: 0,23094 кг в рукаве паровой фазы, 0,52102 кг в рукаве слива.

Таким образом, можно сделать вывод, что по окончании сливоналивной операции в рукаве слива, помимо паровой фазы, остается жидкая фаза сжиженного газа.

Для достоверности определения коэффициента расхода насадки сопоставлялись величины массы, прошедшей через насадку из рукава паровой фазы (m), и массы, находившейся в рукаве паровой фазы до истечения (m′).

Масса сжиженного газа, находившаяся в рукаве паровой фазы, определялась по формуле

m′=ρ0·V0.

Расчетная величина массы сжиженного газа (m′) составила 0,22656 кг.

Относительная погрешность эксперимента составила δX=(0,22656-0,23094)/0,23094·100%=1,9%, что не превышает обычную инженерную погрешность (5%).

Предлагаемое устройство содержит автоцистерну 1, соединенную с резервуаром хранения 2 через два сливных рукава 3, 4, перед которыми установлены краны 5, 6, и газопроводами 7, 8, секундомер (на чертеже не показан). На газопроводах 7, 8 технологической системы автозаправочной станции установлены краны 9, 10 для перекрытия потока сжиженного газа из резервуара 2, манометры 11, 12, присоединенные при помощи кранов 13, 14, насадки 15, 16, связанные с газопроводами 7, 8 через краны 17, 18. Термометр 19 измерения температуры установлен в автоцистерне 1.

Согласно предложенному способу после завершения процесса слива сжиженного газа из автоцистерны 1 в резервуар хранения 2 закрывают краны 5, 6, 9, 10. К газопроводам 7, 8 подключают манометры 11, 12 посредством кранов 13, 14 и насадки 15, 16 посредством кранов 17, 18. Массу сжиженного газа определяют в сливных рукавах 5, 6 и газопроводах 7, 8. Температуру сжиженного газа измеряют термометром 19. Открывают краны 13, 14 и измеряют давление манометрами 11, 12. Поочередно открывают краны 17, 18 и производят истечение сжиженного газа из рукавов 3, 4 и газопроводов 7, 8, при котором фиксируют время истечения секундомером и изменение давления манометрами 11, 12.

Итак, заявляемое изобретение позволяет определять массу сжиженного газа в сливном рукаве автозаправочной станции при выполнении сливоналивной операции.


СПОСОБ ОПРЕДЕЛЕНИЯ МАССЫ СЖИЖЕННОГО ГАЗА В СЛИВНОМ РУКАВЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 121-130 of 168 items.
13.06.2019
№219.017.8175

Шпаговый манипулятор

Изобретение относится к области манипуляторов, предназначенных для дистанционной работы в герметичных боксах, исключающих воздействие агрессивных сред на обслуживающий персонал. Манипулятор содержит шаровую опору, в которой смонтирована труба с размещенной в ней шпагой, внутри которой...
Тип: Изобретение
Номер охранного документа: 0002691177
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.817e

Шпаговый манипулятор

Изобретение относится к механическим манипуляторам, предназначенным для работы в изолированных камерах с радиоактивными веществами и исключающим непосредственный контакт человека с этими веществами. Шпаговый манипулятор содержит образованный подвижной штангой и захватом исполнительный орган,...
Тип: Изобретение
Номер охранного документа: 0002691170
Дата охранного документа: 11.06.2019
14.06.2019
№219.017.82bf

Динамический манипулятор

Изобретение относится к машиностроению и может быть использовано в динамических манипуляторах, работающих на подземных рудниках и в испытательных камерах и предназначенных для разрушения горных пород ударным способом. Манипулятор содержит проходку, шаровую герметичную опору с фиксатором и...
Тип: Изобретение
Номер охранного документа: 0002691351
Дата охранного документа: 11.06.2019
14.06.2019
№219.017.82c5

Перемешивающее устройство

Перемешивающее устройство относится к химической, биологической и нефтеперерабатывающей промышленности, а также для перемешивания жидкостей или жидкостей с твердой фазой в различных мешалках лабораторного и промышленного назначения. Перемешивающее устройство содержит емкость с днищем,...
Тип: Изобретение
Номер охранного документа: 0002691343
Дата охранного документа: 11.06.2019
14.06.2019
№219.017.82db

Шпаговый манипулятор

Изобретение относится к области механических манипуляторов, предназначенных для работы, например, в изолированных камерах с радиоактивными веществами и исключающим непосредственный контакт человека с этими веществами. Манипулятор содержит исполнительный орган, образованный связанными между...
Тип: Изобретение
Номер охранного документа: 0002691349
Дата охранного документа: 11.06.2019
14.06.2019
№219.017.82ed

Перемешивающее устройство

Изобретение относится к химическому машиностроению и может быть использовано в химической, пищевой, фармацевтической и других отраслях промышленности. Перемешивающее устройство содержит корпус, мешалку, образованную штоком и лопастями, привод штока, лопасти жестко закреплены на звеньях ведомой...
Тип: Изобретение
Номер охранного документа: 0002691336
Дата охранного документа: 11.06.2019
14.06.2019
№219.017.82f4

Шпаговый манипулятор

Изобретение относится к механическим манипуляторам, предназначенным для работы в изолированных камерах с радиоактивными веществами и исключающими непосредственный контакт с человека с этими веществами. Шпаговый манипулятор содержит образованный подвижной штангой и захватом исполнительный орган,...
Тип: Изобретение
Номер охранного документа: 0002691352
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.89c9

Способ линейной сварки трением деталей из титановых сплавов

Изобретение может быть использовано при соединении трением деталей в виде пера лопатки и диска турбомашины, в частности при производстве или ремонте моноблоков турбомашин из титановых сплавов. На стадии нагрева заготовки прижимают друг к другу по контактным поверхностям с усилием,...
Тип: Изобретение
Номер охранного документа: 0002456141
Дата охранного документа: 20.07.2012
19.06.2019
№219.017.89cf

Способ линейной сварки трением заготовок из титановых сплавов для моноблоков турбомашин

Изобретение может быть использовано при производстве или ремонте моноблоков турбомашин из титановых сплавов. На стадии нагрева заготовки прижимают друг к другу по контактным поверхностям с усилием, обеспечивающим давление процесса сварки стыка при заданной амплитуде и частоте относительного...
Тип: Изобретение
Номер охранного документа: 0002456143
Дата охранного документа: 20.07.2012
20.06.2019
№219.017.8c86

Захватный механизм с пятью степенями подвижности

Изобретение относится к манипуляторам. Захватный механизм с пятью степенями подвижности содержит шаровую опору, вмонтированную в стенку камеры. Через шаровую опору пропущена трубка, концы которой закреплены в коленах. Одно колено шарнирно связано посредством оси со схватом, а другое колено...
Тип: Изобретение
Номер охранного документа: 0002691808
Дата охранного документа: 18.06.2019
Showing 121-130 of 184 items.
19.04.2019
№219.017.1d20

Перемешивающее устройство

Изобретение относится к оборудованию химической промышленности и может быть использовано в пищевой, фармацевтической отраслях промышленности. Перемешивающее устройство содержит сосуд 1, мешалку, образованную постоянным магнитом 11, валом 7 и установленными в несколько ярусов лопастями 8,...
Тип: Изобретение
Номер охранного документа: 0002685096
Дата охранного документа: 16.04.2019
20.04.2019
№219.017.3569

Устройство для лазерной обработки изделий

Изобретение относится к лазерной технике, а именно к лазерным технологическим установкам, предназначенным для обработки изделий в условиях глубокого вакуума. Устройство содержит источник лазерного излучения, вакуумную камеру, герметичный ввод излучения в нее, координатный стол и систему...
Тип: Изобретение
Номер охранного документа: 0002685288
Дата охранного документа: 17.04.2019
27.04.2019
№219.017.3c48

Перемешивающее устройство

Изобретение относится к химической, биологической и нефтеперерабатывающей промышленности, а также для перемешивания жидкостей или жидкостей с твердой фазой в различных мешалках лабораторного и промышленного назначения. Перемешивающее устройство содержит емкость с днищем, двигатель, экран,...
Тип: Изобретение
Номер охранного документа: 0002686143
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3cc4

Перемешивающее устройство

Изобретение относится к химическому машиностроению и может быть использовано в химической, пищевой, фармацевтической и других отраслях промышленности. Перемешивающее устройство содержит корпус, мешалку, образованную штоком и многократным шарнирным параллелограммом, на звеньях ведомой части...
Тип: Изобретение
Номер охранного документа: 0002686141
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3cd9

Баллистический манипулятор

Баллистический манипулятор относится к манипуляторам, работающим в герметизированном объеме, и может быть использован в боевой космической технике, а именно в механическом оружии, предназначенном для метания снарядов без применения боевых зарядов. Труба шпаги снабжена механизмом многократного...
Тип: Изобретение
Номер охранного документа: 0002686166
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3d2e

Захват манипулятора

Изобретение относится к захвату манипулятора. Захват содержит шток и корпус с шарнирно установленными на нем диаметрально расположенными парами губок. Шарниры образованы параллельными плоскими пружинами – периферийными и центральными. Одним концом пружины соединены с губками, другой конец у...
Тип: Изобретение
Номер охранного документа: 0002686167
Дата охранного документа: 24.04.2019
20.05.2019
№219.017.5cf4

Манипулятор, работающий в герметизированном объёме

Изобретение относится к манипулятору, работающему в герметизированном объеме, и может быть использовано в качестве манипулятора подложки электронографа. Манипулятор снабжен эластичным герметизирующим элементом, расположенным внутри компенсирующей герметичной полости, образованной двумя...
Тип: Изобретение
Номер охранного документа: 0002688075
Дата охранного документа: 17.05.2019
13.06.2019
№219.017.80f0

Манипулятор, работающий в герметизированном объёме

Изобретение относится к манипуляторам, используемым в технологических процессах изготовления электронных приборов, обработке радиоактивных, токсичных, взрывчатых веществ. Манипулятор, работающий в герметизированном объеме, содержит поворотное основание, на котором установлен складывающийся...
Тип: Изобретение
Номер охранного документа: 0002691169
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.8119

Шпаговый манипулятор

Изобретение относится к механическим манипуляторам, предназначенным для работы в изолированных камерах с радиоактивными веществами и исключающим непосредственный контакт человека с этими веществами. Шпаговый манипулятор содержит образованный подвижной штангой и захватом исполнительный орган,...
Тип: Изобретение
Номер охранного документа: 0002691172
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.812d

Шпаговый манипулятор

Изобретение относится к механическим манипуляторам, предназначенным для работы в изолированных камерах с радиоактивными, токсичными, агрессивными веществами. Шаровая опора 2 манипулятора размещена в проходке 1. В шаровой опоре смонтирована труба 4, в которой размещена подвижная штанга 5,...
Тип: Изобретение
Номер охранного документа: 0002691167
Дата охранного документа: 11.06.2019
+ добавить свой РИД