×
10.01.2015
216.013.1738

СПОСОБ ПЛАЗМЕННО-ЭЛЕКТРОМАГНИТНОГО ВОЗДЕЙСТВИЯ НА ДИЭЛЕКТРИЧЕСКИЙ МАТЕРИАЛ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002537372
Дата охранного документа
10.01.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технологии термической обработки твердых диэлектрических тел, включая их разрушение, в частности тел с низким коэффициентом поглощения электромагнитного излучения (горные породы, строительные материалы и пр.), и может быть использовано в горном деле и строительстве. Способ плазменно-электромагнитного воздействия на диэлектрический материал заключается в том, что создают плазму плазмотроном, формируют из нее плазменный поток и направленно воздействуют им на поверхность материала, отличающийся тем, что плазму создают и формируют из нее плазменный поток плазмотроном с регулируемыми параметрами, при этом дополнительно создают управляемый поток электромагнитных волн с частотой 0,5-5 ГГц и направляют его в место контакта плазменного потока с поверхностью материала, при этом регулировкой параметров плазмотрона и/или управлением потоком электромагнитных волн обеспечивают и поддерживают температуру плазмы в ее скин-слое в месте контакта плазмы с поверхностью материала в диапазоне 3000-5000 К. В результате достигается повышение производительности разрушения твердых диэлектрических тел и расширение области применении. 6 з.п. ф-лы.
Реферат Свернуть Развернуть

Область применения

Изобретение относится к технологии термической обработки твердых диэлектрических тел, включая их разрушение, в частности тел с низким коэффициентом поглощения электромагнитного излучения (горные породы, строительные материалы и пр.).

Предшествующий уровень техники

Диэлектрические тела, в частности горная порода, являются хрупкими материалами, поэтому, если возникающие в них механические напряжения σ превысят предел прочности σП, то тела растрескиваются и разрушаются. Одним из способов создания в теле напряжений является его неоднородный нагрев, при котором вследствие перепада температуры ΔТ в теле возникают напряжения, равные σ=αΔТЕ, где Е - модуль Юнга, α - коэффициент термического расширения.

Таким образом, создание в теле перепада температуры ΔТ>σП/αЕ обеспечивает разрушение тела.

Известен способ разрушения диэлектрических тел электромагнитным излучением, в котором, воздействуя на тело излучением, например в СВЧ-диапазоне, производят его нагрев. Поскольку поглощение излучения в теле, как правило, происходит неоднородно по его объему, то из-за возникающей разницы температур между частями тела в нем возникают термомеханические напряжения, величина которых превосходит предел прочности (см. Политехнический словарь. Гл. ред. И.И. Артоболевский. М., «Советская энциклопедия», 1976 г., с.93).

Недостатками этого способа являются ограниченность его применения и неуправляемость процессом. Способ эффективно работает, если коэффициент поглощения излучения существенен, а для большинства диэлектрических тел он становится таковым лишь при очень высокой температуре ≥1000 К, когда у диэлектрика появляется заметная электропроводность (см. Ерошев В.К., Козлов Ю.А., Павлова В.Д. Конструирование и технология изготовления паянных металлокерамических узлов, часть 1, М., ЦНИИ «Электроника», 1988, с.43).

Наиболее близким к изобретению по технической сущности и достигаемому результату является способ разрушения, основанный на плазменном нагреве диэлектрического твердого тела, включающий создание плазмы, формирование из нее плазменного потока, направленного извне к поверхности твердого тела и воздействующего на нее (см. патент RU №2365731, кл. E21B 7/15, 27.08.2009).

Недостатками этого способа являются низкая эффективность нагрева вследствие малого коэффициента теплопередачи, характерного для нагрева тела горячим газом, роль которого играет плазма, и ограниченность применения; исключаются тела с высокой теплопроводностью, так как в них тепло выравнивается быстрее, чем подводится (см. Кутателадзе С.С. Теплопередача и гидродинамическое сопротивление. - М.: Энергоатомиздат, 1990, - 367 с.).

Раскрытие изобретения

Задачей, на решение которой направлено настоящее изобретения, является создание плазменно-электромагнитного способа термического разрушения диэлектрических тел с низким коэффициентом поглощения электромагнитного излучения, позволяющего эффективно разрушать тела даже с повышенной теплопроводностью.

Техническим результатом изобретения является повышение производительности при разрушении твердых диэлектрических тел и расширение области применения.

Задача решается, а технический результат достигается тем, что способ плазменно-электромагнитного воздействия на диэлектрический материал заключается в том, что создают плазму плазмотроном, формируют из нее плазменный поток и направленно воздействуют им на поверхность материала, причем плазму создают и формируют из нее плазменный поток плазмотроном с регулируемыми параметрами, при этом дополнительно создают управляемый поток электромагнитных волн с частотой 0,5-5 ГГц и направляют его в место контакта плазменного потока с поверхностью материала, при этом регулировкой параметров плазмотрона и/или управлением потоком электромагнитных волн обеспечивают и поддерживают температуру плазмы в ее скин-слое в месте контакта плазмы с поверхностью материала в диапазоне 3000-5000 К.

Предпочтительно поток электромагнитных волн подают в скин-слой плазмы в месте контакта плазмы с поверхностью материала из объема материала.

Может быть подан дополнительный поток электромагнитных волн навстречу основному потоку электромагнитных волн.

После формирования плазмотроном плазменного потока последний может быть уменьшен, а мощность потока электромагнитных волн увеличена и таким образом поддерживают температуру в диапазоне 3000-5000 К в скин-слое в месте контакта плазмы с поверхностью материала, при этом используют плазмотрон в виде ВЧ плазмотрона, СВЧ плазмотрона или гибридного плазмотрона.

Плазменный поток может быть сформирован в импульсном режиме и/или поток электромагнитных волн создают в импульсном режиме, а импульсные режимы плазменного потока и потока электромагнитных волн синхронизируют для работы в противофазе.

В ходе проведенного исследования выявлено, что сочетание создания управляемого потока электромагнитных волн с частотой 0,5-5 ГГц и направления его в место контакта плазменного потока с поверхностью материала и поддержка температуры плазмы в месте контакта с поверхностью материала в диапазоне 3000-5000 К с одновременной регулировкой плазменного потока путем изменения параметров плазмотрона и/или управлением потоком электромагнитных волн позволяет менять глубину проникновения тепла, а тем самым управлять геометрией разрушения, поскольку, как только температура поверхности диэлектрического материала подрастает на величину ΔT=σв/αЕ, в теле появляются трещины и оно разрушается. При этом установлено, что сочетание указанных выше параметров плазмы и потока электромагнитных волн позволяет резко сократить время нагрева диэлектрического материала и повысить производительность процесса разрушения диэлектрического материала.

Положительный эффект достигается тем, что вследствие увеличения плотности мощности потока q тепла в диэлектрический материал снижается время τ его нагрева ΔT, необходимое для разрушения породы: ΔT~q√τ (см. Сканави Г.И., Физика диэлектриков, М., Физматгиз, 1958 г.). При этом суммарные энергозатраты W падают, так как W=qτ~(ΔT)2/q - const/q, а это позволяет эффективнее разрушать диэлектрический материал, в частности горную породу.

Краткое описание чертежей

На фиг.1 схематически показано воздействие плазменного потока и потока электромагнитных волн на разрушаемое диэлектрическое тело.

Лучший вариант осуществления изобретения

С помощью плазмотрона создают плазменный поток 1, направляя его непосредственно на поверхность диэлектрического материала 2. Плазма, контактируя с ней, передает диэлектрическому материалу 2 свою энергию, нагревая его. В место контакта плазменного потока 1 с поверхностью диэлектрического материала 2 подают поток электромагнитных волн 3, генерируемый, например, СВЧ генератором. Поток электромагнитных волн 3 поглощается в узком скин-слое 4 плазмы (см. фиг.1), соприкасающемся с поверхностью диэлектрического материала 2, и выделяет в нем всю свою энергию, интенсифицируя нагрев диэлектрического материала 2.

Если диэлектрический материал 2 имеет ограниченные размеры, то поток электромагнитных волн 3 подают извне на его поверхность, противоположную поверхности, контактирующей с плазмой. Поток электромагнитных волн 3, проходя без потерь сквозь диэлектрический материал 2, изнутри диэлектрического материала 2 поступает в зону контакта плазменного потока 1 с диэлектрическим материалом 2 и полностью поглощается в узком скин-слое 4 плазмы, непосредственно контактирующей с поверхностью диэлектрического материала 2. Это существенно повышает удельную плотность мощности, выделяемой на поверхности диэлектрического материала 2, причем представляется возможность подавать дополнительный поток электромагнитных волн (не показан) навстречу основному потоку электромагнитных волн 3 и, кроме того, после формирования плазмотроном плазменного потока 1 последний уменьшать, а мощность потока электромагнитных волн 3 увеличивать и таким образом поддерживать температуру в диапазоне 3000-5000 К в скин-слое 4 в месте контакта плазмы с поверхностью материала 2, что расширяет возможности по регулировке процесса воздействия на диэлектрические материалы 2 и позволяет повысить производительность при проведении такого воздействия.

Если диэлектрический материал 2 имеет неограниченные размеры (полуплоскость), или доступ к его противоположной стороне затруднен, то поток электромагнитных волн 3, направленный навстречу плазменному потоку 1, формируют в объеме диэлектрического материала 2 с помощью электродов (антенны), предварительно расположенных в диэлектрическом материале 2.

На расширение возможности регулирования воздействия на диэлектрические материалы 2 и, как следствие, расширение области применения и повышение производительности при разрушении твердых диэлектрических тел 2 направлено формирование плазменного потока 1 в импульсном режиме и/или создание потока электромагнитных волн 3 в импульсном режиме, причем предпочтительно импульсные режимы плазменного потока 1 и потока электромагнитных волн 3 синхронизовать для работы в противофазе.

Промышленная применимость

Настоящее изобретение может быть использовано в горной промышленности и строительстве при бурении скважин и возведении гражданских и промышленных объектов в горной местности, а также для интенсивного нагрева различного рода диэлектрических материалов в других отраслях промышленности.


СПОСОБ ПЛАЗМЕННО-ЭЛЕКТРОМАГНИТНОГО ВОЗДЕЙСТВИЯ НА ДИЭЛЕКТРИЧЕСКИЙ МАТЕРИАЛ
Источник поступления информации: Роспатент

Showing 1-10 of 14 items.
10.04.2014
№216.012.b493

Тепловой диод

Изобретение относится к области теплотехники, в частности к регулировке температурных режимов теплонагруженных устройств, и может быть использовано в твердотельной и вакуумной электронике, в авиационном двигателестроении, а также других областях техники. Тепловой диод содержит, по меньшей мере,...
Тип: Изобретение
Номер охранного документа: 0002511948
Дата охранного документа: 10.04.2014
27.09.2014
№216.012.f710

Броневая защита от поражения ударным оружием

Изобретение относится к области военной техники, в частности к броневым защитным конструкциям. Броневая защита от поражения ударным оружием включает подложку и наружный покровный слой. Подложка выполнена одно- или двухслойной. Покровный слой выполнен из материала, скорость звука в котором...
Тип: Изобретение
Номер охранного документа: 0002529085
Дата охранного документа: 27.09.2014
10.08.2016
№216.015.526b

Источник рентгеновского излучения

Изобретение относится к рентгеновской технике, в частности к рентгеновским трубкам, и может быть использовано в радиационных технологиях, неразрушающем контроле, рентгеноструктурном анализе, медицине для диагностики и терапии, а также в других областях техники. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002594172
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5c90

Теплоотвод (варианты)

Изобретение относится к твердотельной электронике, в частности к теплоотводам полупроводниковых приборов повышенной мощности, и может быть использовано в различных теплотехнических устройствах, работающих с большими удельными тепловыми нагрузками. Теплоотвод для охлаждения по крайней мере...
Тип: Изобретение
Номер охранного документа: 0002589942
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6075

Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду

Изобретение относится к электронной технике, а именно к электронным пушкам, предназначенным для вывода электронного потока из вакуумной области пушки наружу: в атмосферу или иную газовую среду, и может быть использовано в полупроводниковой и квантовой электронике, в медицине, в плазмохимии....
Тип: Изобретение
Номер охранного документа: 0002590891
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7907

Алмазный теплоотвод

Изобретение относится к твердотельной электронике, в частности к теплоотводам полупроводниковых приборов повышенной мощности, а также может быть использовано в различных теплотехнических устройствах, работающих с большими удельными тепловыми нагрузками. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002599408
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.b219

Материал керамического слоя теплозащитного покрытия

Изобретение относится к области теплотехники, а именно к теплозащитным покрытиям лопаток энергетических и транспортных турбин, и может быть использовано в других областях техники для защиты теплонагруженных конструкций. Покрытие содержит оксид циркония, оксид иттрия и оксид алюминия при...
Тип: Изобретение
Номер охранного документа: 0002613005
Дата охранного документа: 14.03.2017
10.05.2018
№218.016.3aec

Электронная отпаянная пушка для вывода электронного потока и рентгеновского излучения из вакуумной области в атмосферу

Изобретение относится к электронной технике и рентгенотехнике, а именно к электронным пушкам, предназначенным для инжекции высокоэнергетических электронов и рентгеновского излучения из вакуумной области пушки в атмосферу или иную среду, и может быть использовано в плазмохимии, биологии,...
Тип: Изобретение
Номер охранного документа: 0002647489
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3b78

Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду

Изобретение относится к электронной технике, а именно к электронным пушкам, предназначенным для вывода электронного потока из вакуумной области пушки наружу: в атмосферу или иную газовую среду, и может быть использовано в полупроводниковой электронике для создания мощных миниатюрных структур, в...
Тип: Изобретение
Номер охранного документа: 0002647487
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.45f7

Многоступенчатый плазмотрон

Изобретение относится к генераторам плазмы, а именно к плазменным реакторам с увеличенными объемом плазмы и величиной вводимой в плазму электрической энергии, и может быть использовано в металлургии для прямого восстановления металлов, в материаловедении для синтеза порошков, в плазмохимии для...
Тип: Изобретение
Номер охранного документа: 0002650197
Дата охранного документа: 11.04.2018
Showing 1-7 of 7 items.
10.04.2014
№216.012.b493

Тепловой диод

Изобретение относится к области теплотехники, в частности к регулировке температурных режимов теплонагруженных устройств, и может быть использовано в твердотельной и вакуумной электронике, в авиационном двигателестроении, а также других областях техники. Тепловой диод содержит, по меньшей мере,...
Тип: Изобретение
Номер охранного документа: 0002511948
Дата охранного документа: 10.04.2014
27.09.2014
№216.012.f710

Броневая защита от поражения ударным оружием

Изобретение относится к области военной техники, в частности к броневым защитным конструкциям. Броневая защита от поражения ударным оружием включает подложку и наружный покровный слой. Подложка выполнена одно- или двухслойной. Покровный слой выполнен из материала, скорость звука в котором...
Тип: Изобретение
Номер охранного документа: 0002529085
Дата охранного документа: 27.09.2014
10.08.2016
№216.015.526b

Источник рентгеновского излучения

Изобретение относится к рентгеновской технике, в частности к рентгеновским трубкам, и может быть использовано в радиационных технологиях, неразрушающем контроле, рентгеноструктурном анализе, медицине для диагностики и терапии, а также в других областях техники. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002594172
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5c90

Теплоотвод (варианты)

Изобретение относится к твердотельной электронике, в частности к теплоотводам полупроводниковых приборов повышенной мощности, и может быть использовано в различных теплотехнических устройствах, работающих с большими удельными тепловыми нагрузками. Теплоотвод для охлаждения по крайней мере...
Тип: Изобретение
Номер охранного документа: 0002589942
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6075

Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду

Изобретение относится к электронной технике, а именно к электронным пушкам, предназначенным для вывода электронного потока из вакуумной области пушки наружу: в атмосферу или иную газовую среду, и может быть использовано в полупроводниковой и квантовой электронике, в медицине, в плазмохимии....
Тип: Изобретение
Номер охранного документа: 0002590891
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7907

Алмазный теплоотвод

Изобретение относится к твердотельной электронике, в частности к теплоотводам полупроводниковых приборов повышенной мощности, а также может быть использовано в различных теплотехнических устройствах, работающих с большими удельными тепловыми нагрузками. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002599408
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.b219

Материал керамического слоя теплозащитного покрытия

Изобретение относится к области теплотехники, а именно к теплозащитным покрытиям лопаток энергетических и транспортных турбин, и может быть использовано в других областях техники для защиты теплонагруженных конструкций. Покрытие содержит оксид циркония, оксид иттрия и оксид алюминия при...
Тип: Изобретение
Номер охранного документа: 0002613005
Дата охранного документа: 14.03.2017
+ добавить свой РИД