×
10.01.2015
216.013.171e

Результат интеллектуальной деятельности: СПОСОБ ЭЛЕКТРОЛИТНО-ПЛАЗМЕННОЙ ОБРАБОТКИ ПОВЕРХНОСТИ МЕТАЛЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электролитно-плазменной обработке поверхности металлов. Способ включает полировку детали из медьсодержащего сплава в электролите, используемой в качестве анода, и синхронное нанесение медного покрытия на стальную деталь, которую используют в качестве катода. На катод и анод подают напряжение 250-340 В при температуре электролита 60-90ºС. Электролит используют в виде водного раствора, содержащего хлористый аммоний, фтористый аммоний и аммоний лимоннокислый одно-, двух-, трехзамещенный или их смесь. Обеспечивается полирование активного анода до зеркального блеска с синхронным покрытием поверхности стального катода медью. 1 пр.
Основные результаты: Способ электролитно-плазменной обработки поверхности металлических деталей, включающий полировку детали из медьсодержащего сплава в электролите, используемой в качестве анода, отличающийся тем, что синхронно полировке в электролите детали из медьсодержащего сплава, используемой в качестве анода, наносят медное покрытие на стальную деталь, которую используют в качестве катода, при этом на катод и анод подают напряжение 250-340 В при температуре электролита 60-90ºС, который используют в виде водного раствора, содержащего хлористый аммоний, фтористый аммоний и аммоний лимоннокислый одно-, двух-, трехзамещенный или их смесь при следующем соотношении компонентов (вес.%):

Изобретение относится к электрофизическим и электрохимическим методам обработки материалов и может быть применено в процессах электролитно-плазменного полирования изделий в различных областях техники: в машиностроении, в электротехнической промышленности, в приборостроении и в декоративных целях при производстве товаров народного потребления. Способ синхронного полирования заключается в том, что одновременно осуществляется полировании металлического изделия, служащего активным электродом в электролитной плазме при анодном процессе, и нанесение медного покрытия на металлический катод.

Известно (1 - Дураджи В.Н., Парсаданян А.С. Нагрев металлов в электролитной плазме. - Кишинев, Штиинца, 1988), что анодный процесс в электролитах состоит из нескольких режимов: первый режим процесса, наблюдаемый на активном электроде (площадь поверхности анода не менее чем в два раза меньше поверхности катода) при прохождении электрического тока небольшой плотности в неподвижном электролите, представляет собой низковольтный электролиз. С повышением напряжения на электродах электролитической ячейки до 60-70 В и плотности тока до 10-16 А/см2 возникает коммутационный режим, характеризуемый тем, что вокруг активного электрода периодически образуется парогазовая оболочка, приводящая к запиранию тока в течение 10-3-10-4 с. Третий режим процесса - режим нагрева в электролитной плазме - возникает при напряжениях свыше 80-90 В, когда образуется стационарная парогазовая оболочка вокруг активного электрода, плотность тока уменьшается до 0,8-1,5 А/см2, температура активного электрода может изменяться от 400 до 1100°C. Дальнейшее увеличение напряжения на электродах ячейки (в пределах от 250 до 350 В) после установления режима нагрева приводит к росту интенсивности свечения электрических разрядов, толщины парогазовой оболочки, а на отдельных участках активного электрода даже к ее срыву и интенсивному перемещению электролита в виде струи вниз от нижнего конца активного электрода. При этом температура нагрева анода может становиться меньше 100°C, величина электрического тока в цепи уменьшается в 2-2,5 раза, т.е. устанавливается четвертый режим анодного процесса - электрогидродинамический.

Во всех этих режимах происходит полирование поверхности активного электрода (2 - Дураджи В.Н. и др. Исследование эрозии анода при воздействии на него электролитной плазмой. - Электронная обработка материалов, 1978, № 5, с.13-17). Коммутационный режим требует больших энергетических затрат и используется в исключительных случаях, например, при получении острий из LaB6. В режиме нагрева осуществляется термическая и химико-термическая обработка, что приводит к изменению структуры металлического изделия. Поэтому в настоящее время в промышленности для полирования металлических деталей используется электрогидродинамический режим, при котором температура детали не превышает 100°C и плотность тока на активном электроде в 2-2,5 раза меньше, чем в режиме нагрева.

При реализации способа полировки используют в основном водные растворы солей (при необходимости в зависимости от материала активного электрода можно использовать водные растворы кислот и щелочей). В случаях полирования изделий из меди и медных сплавов (3 - Патент РБ на изобретение №8424 - Способ электрохимической обработки металлических изделий, преимущественно из меди и медных сплавов, под гальванические покрытия) используют водный раствор аммонийных солей, содержащий фтористый аммоний и аммоний лимоннокислый одно-, двух-, трехзамещенный и другие составы при температуре электролита 60-90°C.

Медные покрытия (4 - Вайнер Я.В., Дасоян М.А. Технология электрохимических покрытий. Л., Машиностроение, 1972, 464 с.), как правило, не применяются в качестве самостоятельного покрытия ни для декоративных целей, ни для защиты стальных деталей от коррозии. Это связано с тем, что медь в атмосферных условиях легко окисляется, покрываясь налетом окислов.

Однако благодаря хорошему сцеплению осажденной меди с различными металлами медное покрытие применяется в многослойных защитно-декоративных покрытиях в качестве промежуточного подслоя, а также для защиты стальных деталей от цементации. В гальванопластике медные осадки применяются для изготовления металлических копий, барельефов, волноводов и матриц.

Электролиты меднения подразделяют на кислые и щелочные. Из кислых электролитов используют сернокислые и борфтористоводородные. Наибольшее применение нашли сернокислые электролиты, отличающиеся простотой состава, устойчивостью и высоким выходом по току (до 100%). Недостатком этих электролитов является невозможность непосредственного покрытия стальных и цинковых деталей вследствие контактного выделения меди, имеющей плохое сцепление с основным металлом. Поэтому перед меднением стальных деталей в кислых электролитах их предварительно меднят в цианистых электролитах или осаждают тонкий подслой никеля. К недостаткам сернокислых электролитов относятся также их незначительная рассеивающая способность и более грубая структура осадков по сравнению с другими электролитами.

К щелочным электролитам меднения относятся цианистые, пирофосфатные и другие электролиты. Цианистые медные электролиты обладают высокой рассеивающей способностью, мелкокристаллической структурой осадков, возможностью непосредственного меднения стальных деталей. К недостаткам относятся низкая плотность тока и неустойчивость состава вследствие карбонизации свободного цианида под действием двуокиси углерода воздуха. Кроме того, цианистые электролиты характеризуются пониженным выходом по току (не более 60-70%).

Кислые электролиты меднения;

Медь сернокислая - 150-250 г/л;

Никель хлористый - 50-70 г/л;

Температура электролита = 18-25°C;

Плотность тока = 1-4 А/дм2.

При перемешивании электролита сжатым воздухом можно довести катодную плотность тока до 10-15 А/дм2.

Для приготовления сернокислого электролита меднения растворяют медный купорос, фильтруют его в рабочую ванну и при непрерывном помешивании добавляют серную кислоту.

При нанесении медных покрытий из сернокислого электролита медные аноды растворяются в основном с образованием двухвалентных ионов, которые, разряжаясь на катоде, осаждаются в виде металлической меди. Однако наряду с этими процессами происходят и другие, нарушающие нормальное течение электролиза. Возможно также анодное растворение с образованием одновалентных ионов, хотя и в меньшей степени.

В электролите, омывающем металлическую медь, идет также химический обратимый процесс: Cu+Cu2+=2Cu+.

Накопление в растворе ионов одновалентной меди в больших количествах приводит к сдвигу реакции влево, в результате чего выпадает металлическая губчатая медь.

В растворе, кроме того, происходит окисление сернокислой одновалентной меди за счет кислорода воздуха и серной кислоты, особенно при воздушном перемешивании: Cu2SO4+1/2O2+H2SO4=2CuSO4+H2O. На катоде процесс заключается в разряде двухвалентных и одновалентных ионов меди, но в связи с тем, что концентрация ионов одновалентной меди приблизительно в 1000 раз меньше концентрации ионов двухвалентной меди, катодный процесс выглядит так: Cu2++2e-=Cu. Выход по току составляет 100%.

Для получения плотного гладкого осадка в электролите необходимо присутствие серной кислоты. Серная кислота выполняет ряд функций: значительно повышает электропроводность электролита; понижает активность ионов меди, что способствует образованию мелкозернистых осадков; предотвращает гидролиз сернокислой закисной меди, который сопровождается образованием рыхлого осадка закиси меди.

Задачей, решаемой изобретением, является расширение технологических возможностей за счет обработки медных и медьсодержащих сплавов, а также увеличение номенклатуры обрабатываемых деталей.

Поставленная задача решается таким образом, что при полировании активного электрода анодного процесса при напряжении на электродах электролитической ванны 250-340 В синхронно осуществляется меднение стального катода. Ионы меди, образующиеся в парогазовой оболочке, под действием электрического поля переносятся на стольной катод и, таким образом, осуществляется процесс меднения без использования медьсодержащих электролитов. В качестве электролита используется раствор аммонийных солей, содержащий хлористый аммоний, фтористый аммоний и аммоний лимоннокислый одно-, двух-, трехзамещенный или их смесь при следующем соотношении компонентов, мас.%:

Хлористый аммоний - 4-15;

Фтористый аммоний - 1-5;

Аммоний лимоннокислый одно-, двух-, трехзамещенный или их смесь - 1-2;

Вода - остальное.

Предельные величины концентрации компонент электролитов обусловлены сохранением эффекта полирования и образования медного покрытии на поверхности стального катода. При меньших концентрациях обрабатываемая поверхность активного анода подвергается интенсивному травлению, приводящему к повышению шероховатости поверхности и исчезновению блеска. При концентрации, превышающей указанные пределы, ухудшается качество полирования из-за явно выраженной пассивации поверхности анода, снижения блеска и повышения шероховатости.

Примеры конкретной реализации способа

Пример 1. Активный электрод изготовлялся в виде пластин размером 60×15×3,5 мм из латуни Л63 и прутков диаметром 8 мм, длиной 60 мм из латуни Л63. Катод выполнен из нержавеющей стали 80×150×0,3 мм в виде полуцилиндра. Активный электрод погружают в электролит состава (вес.%):

Хлористый аммоний - 10;

Фтористый аммоний - 4;

Аммоний лимоннокислый одно-, двух-, трехзамещенный или их смесь - 1,5;

Вода - остальное.

Электролит нагрет до температуры 70°C-80°C, напряжение на электродах 300 В при плотности тока на активном аноде 0,7-0,8 А/см2, время обработки - 2 мин. После обработки поверхность анода имеет равномерный зеркальный блеск, а катод равномерно покрывается слоем меди толщиной 4-6 мкм как с внутренней стороны, так и с внешней.

Пример 2. Активный электрод изготовлялся из меди в виде пластин размером 60×10×3 мм. Катод выполнен из нержавеющей стали 80×150×0,3 мм в виде полуцилиндра. Активный электрод погружают в электролит того же состава. Электролит нагрет до температуры 70-80°C, напряжение на электродах 300 В при плотности тока на активном аноде 0,7-0,8 А/см2, время обработки - 2 мин. После обработки поверхность анода имеет равномерный зеркальный блеск, а катод равномерно покрывается слоем меди толщиной 4-6 мкм как с внутренней стороны, так и с внешней.

Таким образом, заявленный способ позволяет осуществить полирование активного электрода из медного или медьсодержащих сплавов до зеркального блеска с синхронным покрытием поверхности стального катода медью.

Способ электролитно-плазменной обработки поверхности металлических деталей, включающий полировку детали из медьсодержащего сплава в электролите, используемой в качестве анода, отличающийся тем, что синхронно полировке в электролите детали из медьсодержащего сплава, используемой в качестве анода, наносят медное покрытие на стальную деталь, которую используют в качестве катода, при этом на катод и анод подают напряжение 250-340 В при температуре электролита 60-90ºС, который используют в виде водного раствора, содержащего хлористый аммоний, фтористый аммоний и аммоний лимоннокислый одно-, двух-, трехзамещенный или их смесь при следующем соотношении компонентов (вес.%):
Источник поступления информации: Роспатент

Showing 71-80 of 234 items.
20.12.2013
№216.012.8e6a

Уран-гадолиниевое ядерное топливо и способ его получения

Изобретение относится к атомной промышленности, в частности к изготовлению таблетированного топлива из диоксида урана для тепловыделяющих элементов (твэлов) ядерных реакторов. Способ изготовления таблетированного топлива для тепловыделяющих элементов включает приготовление легирующей...
Тип: Изобретение
Номер охранного документа: 0002502141
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8e79

Кремниевый фотоэлектрический преобразователь с гребенчатой конструкцией и способ его изготовления

Настоящее изобретение относится к области кремниевых многопереходных фотоэлектрических преобразователей (ФЭП) солнечных батарей. Согласно изобретению предложено создание «гребенчатой» конструкции фотоэлектрического преобразователя, которая позволяет реализовать в его диодных ячейках максимально...
Тип: Изобретение
Номер охранного документа: 0002502156
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.8fb5

Способ хирургического лечения кишечных непроходимостей тонкого и толстого кишечника и устройство для его осуществления

Группа изобретений относится к медицине и может быть применима для хирургического лечения кишечных непроходимостей тонкого и толстого кишечника. Проводят продвижение эндоскопа по тонкому и толстому кишечнику. Эндоскоп для хирургического лечения кишечных непроходимостей тонкого и толстого...
Тип: Изобретение
Номер охранного документа: 0002502482
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9108

Сталь

Изобретение относится к области металлургии, а именно к составам низкоуглеродистых сталей, используемых для изготовления гильз патронов автоматического стрелкового оружия калибра 7,62 мм, покрытых сплавом латуни (томпаком) или лаком. Сталь содержит углерод, кремний, марганец, алюминий, хром,...
Тип: Изобретение
Номер охранного документа: 0002502821
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.910b

Способ термообработки отливок из сплавов на основе гамма алюминида титана

Изобретение относится к области металлургии, в частности к способам термообработки отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 800°С, в частности лопаток газотурбинных двигателей....
Тип: Изобретение
Номер охранного документа: 0002502824
Дата охранного документа: 27.12.2013
27.01.2014
№216.012.9af9

Способ получения нанопорошков оксида цинка с поверхностным модифицированием для использования в строительных герметиках

Изобретение относится к порошковой металлургии, в частности к получению модифицированных нанопорошков оксида цинка. Может использоваться в качестве строительных герметиков, работающих при высоких деформирующих нагрузках и требующих повышенных значений обратимых относительных удлинений....
Тип: Изобретение
Номер охранного документа: 0002505379
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9eae

Способ вскрытия вольфрамитовых концентратов

Изобретение относится к металлургии редких металлов. Способ вскрытия вольфрамитовых концентратов включает предварительную механообработку вольфрамитовых концентратов и последующую обработку активированных вольфрамитовых концентратов раствором NaOH. Последующей обработке подвергают...
Тип: Изобретение
Номер охранного документа: 0002506330
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9eb1

Способ вскрытия лопаритовых концентратов

Изобретение относится к металлургии редких металлов. Способ вскрытия лопаритовых концентратов включает предварительную механообработку лопаритовых концентратов и последующую обработку активированных лопаритовых концентратов 30% раствором HNO при температуре 99°С. Последующей обработке...
Тип: Изобретение
Номер охранного документа: 0002506333
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9eb5

Литейный магниевый сплав

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 150°С и 250°С кратковременно. Литейный сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002506337
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a1e0

Способ получения наночастиц магнетита, стабилизированных поливиниловым спиртом

Изобретение может быть использовано в магнитной наноэлектронике для магнитных регистрирующих сред с высокой плотностью записи, для магнитных сенсоров, радиопоглощающих экранов, а также в медицине. Способ получения наночастиц магнетита, стабилизированных поливиниловым спиртом, включает получение...
Тип: Изобретение
Номер охранного документа: 0002507155
Дата охранного документа: 20.02.2014
Showing 71-80 of 237 items.
27.11.2013
№216.012.857b

Способ получения композиционного материала на основе сплава алюминий-магний с содержанием нанодисперсного оксида циркония

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов, упрочненных нанодисперсными частицами. Упрочняющие нанодисперсные частицы оксида циркония вводят в расплав на основе сплава алюминий-магний. Расплав кристаллизуют в поле центрифуги с коэффициентом...
Тип: Изобретение
Номер охранного документа: 0002499849
Дата охранного документа: 27.11.2013
20.12.2013
№216.012.8d5c

Совмещенный карботермический способ получения кальция из карбоната

Изобретение относится к металлургии, а именно к способу получения кальция, в режиме совмещенного карботермического восстановления карбоната кальция в вакууме. Способ включает приготовление шихты из карбоната кальция, преимущественно из химически осажденного мела или высококачественных отсевов...
Тип: Изобретение
Номер охранного документа: 0002501871
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8e6a

Уран-гадолиниевое ядерное топливо и способ его получения

Изобретение относится к атомной промышленности, в частности к изготовлению таблетированного топлива из диоксида урана для тепловыделяющих элементов (твэлов) ядерных реакторов. Способ изготовления таблетированного топлива для тепловыделяющих элементов включает приготовление легирующей...
Тип: Изобретение
Номер охранного документа: 0002502141
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8e79

Кремниевый фотоэлектрический преобразователь с гребенчатой конструкцией и способ его изготовления

Настоящее изобретение относится к области кремниевых многопереходных фотоэлектрических преобразователей (ФЭП) солнечных батарей. Согласно изобретению предложено создание «гребенчатой» конструкции фотоэлектрического преобразователя, которая позволяет реализовать в его диодных ячейках максимально...
Тип: Изобретение
Номер охранного документа: 0002502156
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.8fb5

Способ хирургического лечения кишечных непроходимостей тонкого и толстого кишечника и устройство для его осуществления

Группа изобретений относится к медицине и может быть применима для хирургического лечения кишечных непроходимостей тонкого и толстого кишечника. Проводят продвижение эндоскопа по тонкому и толстому кишечнику. Эндоскоп для хирургического лечения кишечных непроходимостей тонкого и толстого...
Тип: Изобретение
Номер охранного документа: 0002502482
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9108

Сталь

Изобретение относится к области металлургии, а именно к составам низкоуглеродистых сталей, используемых для изготовления гильз патронов автоматического стрелкового оружия калибра 7,62 мм, покрытых сплавом латуни (томпаком) или лаком. Сталь содержит углерод, кремний, марганец, алюминий, хром,...
Тип: Изобретение
Номер охранного документа: 0002502821
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.910b

Способ термообработки отливок из сплавов на основе гамма алюминида титана

Изобретение относится к области металлургии, в частности к способам термообработки отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 800°С, в частности лопаток газотурбинных двигателей....
Тип: Изобретение
Номер охранного документа: 0002502824
Дата охранного документа: 27.12.2013
27.01.2014
№216.012.9af9

Способ получения нанопорошков оксида цинка с поверхностным модифицированием для использования в строительных герметиках

Изобретение относится к порошковой металлургии, в частности к получению модифицированных нанопорошков оксида цинка. Может использоваться в качестве строительных герметиков, работающих при высоких деформирующих нагрузках и требующих повышенных значений обратимых относительных удлинений....
Тип: Изобретение
Номер охранного документа: 0002505379
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9eae

Способ вскрытия вольфрамитовых концентратов

Изобретение относится к металлургии редких металлов. Способ вскрытия вольфрамитовых концентратов включает предварительную механообработку вольфрамитовых концентратов и последующую обработку активированных вольфрамитовых концентратов раствором NaOH. Последующей обработке подвергают...
Тип: Изобретение
Номер охранного документа: 0002506330
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9eb1

Способ вскрытия лопаритовых концентратов

Изобретение относится к металлургии редких металлов. Способ вскрытия лопаритовых концентратов включает предварительную механообработку лопаритовых концентратов и последующую обработку активированных лопаритовых концентратов 30% раствором HNO при температуре 99°С. Последующей обработке...
Тип: Изобретение
Номер охранного документа: 0002506333
Дата охранного документа: 10.02.2014
+ добавить свой РИД