×
20.12.2014
216.013.1366

РЕЗОНАТОР С ТЕМПЕРАТУРНОЙ КОМПЕНСАЦИЕЙ ПО МЕНЬШЕЙ МЕРЕ ПЕРВОГО И ВТРОГО ПОРЯДКА

Вид РИД

Изобретение

№ охранного документа
0002536389
Дата охранного документа
20.12.2014
Аннотация: Изобретение относится к термокомпенсированному резонатору, который может использоваться в частотных генераторах. Технический результат - уменьшение частотного дрейфа в зависимости от температуры. Термокомпенсированный резонатор включает основу для деформации, сердцевина которой содержит первый материал, имеет по меньшей мере первое и второе покрытия, выполненные соответственно из второго и третьего материалов, причем для каждого материала изменение модуля Юнга в зависимости от температуры различное, каждая толщина первого и второго покрытий отрегулирована так, чтобы обеспечить резонатору практически нулевое изменение частоты первого и второго порядка в зависимости от температуры. 2 н. и 16 з. п. ф-лы, 9 ил.

Область техники, к которой относится изобретение

Изобретение относится к термокомпенсированному резонатору типа балансирной пружины, микроэлектромеханической системы (МЭМС) (MEMS) или камертона, для изготовления временного или частотного генератора, температурные коэффициенты которого практически равны нулю для по меньшей мере первого и второго порядка.

Уровень техники

Патент ЕПВ №1422436 раскрывает балансирную пружину, сформированную из кремния и покрытую двуокисью кремния, чтобы получить практически нулевой температурный коэффициент вблизи температур сертификационного процесса COSC (швейцарский официальный институт хронометрического тестирования), т.е. между +8 и +38°С. Аналогично, международная заявка №WO 2008/043727 раскрывает резонатор МЭМС, который имеет сходные свойства малого дрейфа его модуля Юнга в том же самом температурном диапазоне.

Однако даже только частотный дрейф второго порядка в вышеуказанных описаниях требует сложной коррекции в зависимости от применения. Например, для электронных часов, которые могут быть сертифицированы COSC, электронная коррекция должна осуществляться на основе температурного измерения.

Раскрытие изобретения

Цель настоящего изобретения состоит в преодолении всех или части из вышеупомянутых недостатков за счет обеспечения резонатора с температурной компенсацией по меньшей мере первого и второго порядка.

Поэтому изобретение относится к термокомпенсированному резонатору, который содержит основу, используемую при изгибании, при этом сердцевина основы содержит первый материал, основа включает в себя по меньшей мере первое и второе покрытия, соответственно сделанные из второго и третьего материалов, причем изменение модуля Юнга каждого материала в зависимости от температуры отличается, а каждая толщина упомянутых первого и второго покрытий регулируется так, чтобы обеспечить упомянутому резонатору возможность иметь практически нулевые изменения частоты первого и второго порядка в зависимости от температуры.

Преимущественно, согласно данному изобретению, основа резонатора, используемая при изгибании, имеет множество покрытий, когда необходимо скомпенсировать порядки температурных коэффициентов. Таким образом, в зависимости от размеров и знаков каждого порядка материалов сердцевины и каждого покрытия каждая толщина рассчитывается так, чтобы обеспечить компенсацию для каждого порядка.

В соответствии с другими преимущественными признаками изобретения:

- основа включает в себя третье покрытие, выполненное из четвертого материала, изменения модуля Юнга которого в зависимости от температуры отличны от материалов сердцевины и остальных покрытий, причем каждая толщина упомянутых трех покрытий регулируется, чтобы обеспечить упомянутому резонатору возможность иметь практически нулевые изменения частоты первого, второго и третьего порядка в зависимости от температуры;

- основа сердцевины имеет изменения модуля Юнга первого и второго порядка в зависимости от температуры, которые являются отрицательными подобно монокристаллическому кремнию;

- основа включает в себя секцию практически четырехугольной формы, грани которой покрыты в одинаковых парах или полностью;

- первое покрытие имеет изменения модуля Юнга в зависимости от температуры положительные для первого порядка и отрицательные для второго порядка, как у двуокиси кремния;

- второе покрытие имеет изменения модуля Юнга в зависимости от температуры положительные для второго порядка и отрицательные для первого порядка, как у двуокиси германия, либо имеет отрицательные изменения модуля Юнга второго порядка в зависимости от температуры;

- первое покрытие переставляется со вторым покрытием;

- нанесение упомянутых покрытий осуществляется в первую очередь на поверхности, параллельные нейтральной плоскости основы, чтобы в наибольшей степени модифицировать частоту упомянутого резонатора;

- основа представляет собой стержень, свернутый вокруг самого себя для образования балансирной пружины, и соединяется с инерционным маховиком либо включает в себя по меньшей мере два симметрично установленных стержня, чтобы образовать камертон, либо она является резонатором МЭМС.

Наконец, изобретение относится также к временному или частотному генератору, такому, например, как хронометр, отличающемуся тем, что он включает в себя по меньшей мере один резонатор по любому из предшествующих вариантов.

Краткое описание чертежей

Прочие признаки и преимущества станут ясны из нижеследующего описания, данного посредством неограничивающей иллюстрации со ссылкой на приложенные чертежи, где:

фиг.1 является общей перспективной схемой балансирной пружины;

фиг.2 является эквивалентным сечением балансирной пружины по Фиг.1;

фиг.3 является схемой нескольких вариантов осуществления по изобретению;

фиг.4 является графиком, показывающим модули упругости каждого материала по

первому варианту осуществления изобретения;

фиг.5 является графиком, показывающим модули упругости каждого материала по второму варианту осуществления изобретения;

фиг.6 является графиком, показывающим отсутствие изменения частоты в резонаторе по изобретению;

фиг.7 является графиком, показывающим изменения температурного коэффициента первого и второго порядка в кремниевой балансирной пружине, покрытой двуокисью кремния;

фиг.8 является графиком, показывающим изменения температурного коэффициента первого и второго порядка в кремниевой балансирной пружине, покрытой двуокисью германия;

фиг.9 является графиком, показывающим изменения температурного коэффициента первого и второго порядка в кремниевой балансирной пружине, покрытой двуокисью кремния и двуокисью германия.

Подробное описание предпочтительных вариантов осуществления

Как пояснено выше, изобретение относится к резонатору, который может быть балансирной пружиной, камертоном или, в более общем виде, резонатором МЭМС (микроэлектромеханической системы). Для упрощения пояснения изобретения ниже представлено только применение в балансирной пружине. Однако специалисты без чрезмерных затруднений могут выполнить другие применения резонатора подобно указанным выше из представленного далее описания.

Аналогично, пояснение относится к сердцевине, в нашем случае балансирной пружины, сформированной из монокристаллического кремния. Однако материал сердцевины не ограничивается монокристаллическим кремнием, но может быть расширен до различных типов материалов, таких как, например, поликремний, стекло, нитрид, алмаз, монокристаллический кварц или металл.

График на Фиг.6 показывает характеристику температурного дрейфа для существующих резонаторов в зависимости от температуры. Первая кривая в виде сплошной линии, названная «Кварц с Z-срезом», показывает частотный дрейф монокристаллического кварцевого камертона на 32 кГц, сделанного в слегка повернутом Z-срезе. Вторая кривая в виде пунктира, названная «Si-SiO2», показывает частотный дрейф кремниевого резонатора МЭМС, покрытого двуокисью кремния.

Для обеих этих кривых видно, что дрейф является ненулевым в широком температурном диапазоне, в частности между -20 и +80°С. Этот частотный дрейф, главным образом, связан с изменением модуля Юнга в зависимости от температуры. Однако даже низкий частотный дрейф между +10 и +40°С двух ныне изготавливаемых примеров может потребовать внешней коррекции резонатора. Это случай, например, электронных часов, которые содержат кварцевый камертон, корректируемый электронным образом на основе температурного измерения часов для сертификации COSC.

Таким образом, преимущественно, цель изобретения состоит в том, чтобы предложить резонатор, в котором частотный дрейф в зависимости от температуры был еще более минимизирован, как показано штрихпунктирной линией, названной «составной», масштаб которой умышленно выдержан одинаковым относительно двух других кривых, чтобы показать значительное различие в дрейфе. Конкретнее, основа резонатора согласно изобретению включает в себя множество покрытий, когда имеются температурные коэффициенты, которые надо скомпенсировать.

Предпочтительно, основа резонатора поэтому включает в себя по меньшей мере два покрытия и, возможно, третье покрытие, если компенсация второго порядка все же вызывает неприемлемый частотный дрейф. Однако после компенсации третьего порядка частотный дрейф для любого резонатора становится пренебрежимым. Таким образом, в зависимости от размеров и знаков каждого порядка материалов сердцевины и каждого покрытия каждая толщина рассчитывается так, чтобы обеспечивать компенсацию для каждого порядка.

По определению относительное изменение частоты резонатора подчиняется следующему соотношению:

,

где

- - относительное изменение частоты, выраженное в ppm, т.е. в миллионных долях (106);

- A - постоянная, которая зависит от точки отсчета, в ppm (10-6);

- Т0 - исходная температура отсчета, в °С;

- α - температурный коэффициент первого порядка, выраженный в ppm·°С-1;

- β - температурный коэффициент второго порядка, выраженный в ppm·°С-2;

- γ - температурный коэффициент третьего порядка, выраженный в ppm·°С-3.

Кроме того, температурный коэффициент упругости (ТКУ) (СТЕ) представляет относительное изменение модуля Юнга в зависимости от температуры. Выражения «α» и «β», которые используются ниже, представляют таким образом, соответственно, температурные коэффициенты первого и второго порядка, т.е. относительное изменение частоты резонатора в зависимости от температуры. Выражения «α» и «β» зависят от температурного коэффициента упругости основы резонатора и коэффициента расширения основы. Кроме того, выражения «α» и «β» также учитывают коэффициенты, специфичные для любого отдельного инерционного блока, такого как, например, балансир в резонаторе на балансирной пружине. Поскольку колебания любого резонатора, предназначенного для временного или частотного генератора, должны поддерживаться, температурная зависимость может также включать в себя вклад от системы их поддержания. Предпочтительно, основа резонатора представляет собой сердцевину 3, покрытую по меньшей мере двумя покрытиями 4, 5.

Пример, проиллюстрированный на фиг.1-3, показывает балансирную пружину 1, выполненную заедино с гнездом 2, в которой температурные коэффициенты первого и второго порядка основы компенсируются. Фиг.2 предлагает поперечное сечение основы балансирной пружины, которое более ясно показывает ее прямоугольное сечение. Основа может, таким образом, определяться своими длиной l, высотой h и толщиной е. Фиг.3 показывает возможные, но не ограничивающие альтернативы А, А', В, С и D. Разумеется, покрытия 4 и 5 даны не в масштабе относительно измерений сердцевины 3, чтобы показать более ясно расположение каждой части 3, 4 и 5.

В первой альтернативе А единственная поверхность секции последовательно покрыта покрытием 4, а затем покрытием 5. Порядок, в котором покрытия 4 и 5 накладываются, не установлен, т.е. покрытия 4 и 5 могут переставляться. Кроме того, когда поверхности, которые покрыты, параллельны нейтральной плоскости F стержня, это видоизменяет частоту упомянутого резонатора более сильно, чем если нанесение осуществляется на поверхностях, перпендикулярных плоскости F изгиба. Разумеется, возможно также предусмотреть, чтобы каждое покрытие 4, 5 было представлено на отличной поверхности, как иллюстрируется в альтернативе А'.

Во второй альтернативе В или С сечение основы включает в себя пары одинаковых поверхностей. Таким образом, любые две параллельные поверхности включают в себя два покрытия 4, 5, наложенные не в конкретном порядке, т.е. покрытия 4 и 5 могут переставляться, как в примере В, либо каждая из параллельных поверхностей имеет одно из покрытий 4, 5, как в примере С. Разумеется, можно также предусмотреть, чтобы покрытие 4 было представлено на двух смежных поверхностях, а другие две поверхности были покрыты покрытием 5.

В третьей альтернативе D сечение основы включает в себя поверхности, которые полностью покрыты последовательно покрытием 4, а затем покрытием 5. Порядок, в котором нанесены покрытия 4 и 5, не имеет, однако, никакого значения, т.е. покрытия 4 и 5 могут переставляться.

Фиг.4 показывает график, иллюстрирующий температурную зависимость модуля Юнга каждого материала, чтобы проиллюстрировать вариант осуществления изобретения, который использует кремний, двуокись кремния и двуокись германия. Таким образом, модуль Юнга кремния уменьшается при увеличении температуры, когда модуль Юнга двух других материалов возрастает при нарастании температуры. Кроме того, увеличение более заметно для двуокиси кремния нежели двуокиси германия между двумя значениями температуры, т.е. между -20°С и +80°С.

Фактически температурный коэффициент упругости кремния отрицателен для первого и второго порядка, когда температурные коэффициенты упругости двух других материалов положительны для первого порядка. Однако температурный коэффициент упругости второго порядка отрицателен для двуокиси кремния, тогда как для двуокиси германия он положителен.

Однако данная интерпретация фиг.4 сосредоточена на температурном коэффициенте упругости материалов. Необходимо также учесть коэффициенты расширения материалов и эффект поддерживающей колебания системы, чтобы окончательно получить коэффициенты α, β изменения частоты резонатора. Для понимания этой последней интерпретации ее два коэффициента показаны на фиг.7 и 8.

Так, на фиг.7 сердцевина 3 имеет отрицательные температурные коэффициенты упругости первого и второго порядка, подобно кремнию, и покрыта покрытием 4, которое включает в себя положительный первого порядка и отрицательный второго порядка температурные коэффициенты упругости, как у двуокиси кремния. Коэффициенты расширения этих материалов, в частности, баланса (18 ppm/°C) также учтены. Эффект поддерживающей колебания системы здесь пренебрежим. Фиг.7 также показывает, что единица порядков α (непрерывные линии) и порядков β (прерывистые линии) не одна и та же. Можно видеть, что α первого порядка скомпенсирована после некоторой толщины покрытия, т.е. пересекает линию 0, однако β второго порядка просто уменьшается по отношению к материалу одной сердцевины. Таким образом, ясно, что хотя α первого порядка можно скомпенсировать, но это не для случая β второго порядка.

На фиг.8 сердцевина 34 имеет отрицательные температурные коэффициенты упругости первого и второго порядка, подобно кремнию, покрыта покрытием 5, которое имеет положительные температурные коэффициенты упругости первого и второго порядка, как у двуокиси германия. Как и на фиг.7, фиг.8 показывает, что единица порядков α (непрерывные линии) и порядков β (прерывистые линии) не одна и та же. Можно видеть, что с тонкой толщины покрытия β второго порядка скомпенсирована, т.е. пересекает линию 0, однако α первого порядка скомпенсирована для большей толщины. Однако важно для обоих порядков α и β скомпенсировать в зависимости от толщины единственного материала.

Это имеет место вследствие разности в размерах температурных коэффициентов упругости каждого материала на каждом порядке. Таким образом, хотя может показаться иллюзорным найти материал для покрытия, который был бы точно «обратным» сердцевине, который позволял бы наносить единственный компенсационный слой, изобретение предлагает добавлять покрытие для каждого порядка, подлежащего компенсации. Каждое покрытие не предназначено далее для «прямой» коррекции порядка, но для улучшения каждой из компенсаций.

На фиг.9 посредством примера показаны расчеты. В этом примере сердцевина 3 имеет отрицательные температурные коэффициенты упругости первого и второго порядков, подобно кремнию. Сердцевина 3 покрыта первым покрытием 4, которое имеет положительные температурные коэффициенты упругости первого порядка и отрицательные температурные коэффициенты упругости второго порядка, как у двуокиси кремния. Первое покрытие 4 в свою очередь покрыто вторым покрытием 5, которое имеет положительные температурные коэффициенты упругости первого и второго порядков, как у двуокиси германия.

Фиг.9 показывает, что с помощью расчета становится возможным регулировать толщину каждого покрытия 4, 5, чтобы компенсация порядков α и β сходилась на практически одной и той же конечной толщине, т.е. чтобы две кривые α и β пересекали линию 0 на одной и той же толщине. В примере по фиг.9 сердцевина 3, первое покрытие 4 и второе покрытие 5 имеют, таким образом, соответственные толщины примерно 40, 3,5 и 3,6 микрометров.

Таким образом, в зависимости от желательной толщины сердцевины 3 или желательного конечного сечения возможно предложить резонатор со значительно улучшенной температурной компенсацией по сравнению с «Кварцем с Z-срезом» или «Si-SiO2», показанным на фиг.6.

Конечно, данное изобретение не ограничивается проиллюстрированным примером, но способно дать различные варианты и альтернативы, которые будут ясны специалистам. В частности, для сердцевины 3 или покрытий 4, 5 можно предусматривать иные материалы, чтобы получать улучшенную температурную компенсацию.

Например, в высшей степени вероятно, что материал, который назовем Х (наподобие стабилизированных окислов циркония или гафния), имеющий отрицательный температурный коэффициент упругости первого порядка (как в случае большинства материалов) и положительный температурный коэффициент упругости второго порядка, может обеспечить температурную компенсацию. Этот пример иллюстрируется на фиг.5. Поэтому ясно, для данного типа материала, что первое покрытие имеет большую толщину, чем в варианте осуществления по фиг.4.


РЕЗОНАТОР С ТЕМПЕРАТУРНОЙ КОМПЕНСАЦИЕЙ ПО МЕНЬШЕЙ МЕРЕ ПЕРВОГО И ВТРОГО ПОРЯДКА
РЕЗОНАТОР С ТЕМПЕРАТУРНОЙ КОМПЕНСАЦИЕЙ ПО МЕНЬШЕЙ МЕРЕ ПЕРВОГО И ВТРОГО ПОРЯДКА
РЕЗОНАТОР С ТЕМПЕРАТУРНОЙ КОМПЕНСАЦИЕЙ ПО МЕНЬШЕЙ МЕРЕ ПЕРВОГО И ВТРОГО ПОРЯДКА
РЕЗОНАТОР С ТЕМПЕРАТУРНОЙ КОМПЕНСАЦИЕЙ ПО МЕНЬШЕЙ МЕРЕ ПЕРВОГО И ВТРОГО ПОРЯДКА
РЕЗОНАТОР С ТЕМПЕРАТУРНОЙ КОМПЕНСАЦИЕЙ ПО МЕНЬШЕЙ МЕРЕ ПЕРВОГО И ВТРОГО ПОРЯДКА
РЕЗОНАТОР С ТЕМПЕРАТУРНОЙ КОМПЕНСАЦИЕЙ ПО МЕНЬШЕЙ МЕРЕ ПЕРВОГО И ВТРОГО ПОРЯДКА
РЕЗОНАТОР С ТЕМПЕРАТУРНОЙ КОМПЕНСАЦИЕЙ ПО МЕНЬШЕЙ МЕРЕ ПЕРВОГО И ВТРОГО ПОРЯДКА
РЕЗОНАТОР С ТЕМПЕРАТУРНОЙ КОМПЕНСАЦИЕЙ ПО МЕНЬШЕЙ МЕРЕ ПЕРВОГО И ВТРОГО ПОРЯДКА
РЕЗОНАТОР С ТЕМПЕРАТУРНОЙ КОМПЕНСАЦИЕЙ ПО МЕНЬШЕЙ МЕРЕ ПЕРВОГО И ВТРОГО ПОРЯДКА
Источник поступления информации: Роспатент

Showing 51-53 of 53 items.
24.08.2019
№219.017.c358

Механизм для настройки частоты генератора колебаний часов

Микросистема (10) для настройки частоты генератора колебаний часов, содержащая колесно-инерционный блок (20), включающий в себя эксцентричный дисбаланс (22) и зубчатый венец (21) и установленный с возможностью поворота относительно подложки (60) микросистемы (10), которая включает в себя...
Тип: Изобретение
Номер охранного документа: 0002698187
Дата охранного документа: 22.08.2019
27.01.2020
№220.017.fac4

Механизм автоподзавода для часов

Часы (1), содержащие корпус (10) с находящимся в нем накопителем (30) энергии, подзаряжаемым от механизма (40) подзавода, указанные часы (1) выполнены с возможностью добавления к ним по меньшей мере одного дополнительного механизма (100) автоподзавода, который прикрепляется к корпусу (10) или...
Тип: Изобретение
Номер охранного документа: 0002711970
Дата охранного документа: 23.01.2020
23.05.2020
№220.018.201d

Часовой регулирующий механизм с оптимизированным магнитным спуском

Изобретение относится к часовому регулирующему механизму (1). Указанный механизм содержит накопитель энергии (2), передающий выходной крутящий момент (CS) посредством передачи (3) на узел колеса (4), образующий магнитный спусковой механизм (10) с узлом колеса (5) резонатора, на которое...
Тип: Изобретение
Номер охранного документа: 0002721618
Дата охранного документа: 21.05.2020
Showing 41-44 of 44 items.
19.12.2018
№218.016.a89e

Балансовая пружина часов

Балансовая пружина (1), включающая в себя расположенные по касательной друг к другу: первый внутренний виток до первой точки Р1 внутри первого центрального угла α1 и уменьшающегося сечения с первым коэффициентом R1; второй виток до второй точки Р2 внутри второго центрального угла α2 и...
Тип: Изобретение
Номер охранного документа: 0002675181
Дата охранного документа: 17.12.2018
29.03.2019
№219.016.f814

Составной маятник

Изобретение относится к области часовой промышленности и направлено на создание маятника, свойства которого в зависимости от температуры могут быть легко отрегулированы, при этом простого в изготовлении, что обеспечивается за счет того, что составной маятник образован в слое материала на основе...
Тип: Изобретение
Номер охранного документа: 0002468405
Дата охранного документа: 27.11.2012
02.07.2019
№219.017.a33a

Часовой колебательный механизм

Часовой осциллятор (1), содержащий конструкцию (2) и отдельные смещенные по времени и геометрически первичные резонаторы (10), каждый из которых содержит массу (5), возвращаемую к конструкции (2) с помощью упругого возвратного средства (6), причем часовой осциллятор (1) содержит соединительное...
Тип: Изобретение
Номер охранного документа: 0002692817
Дата охранного документа: 28.06.2019
04.04.2020
№220.018.131e

Механический часовой механизм с системой обратной связи

Изобретение относиться к механическому часовому механизму (1). Механизм содержит по меньшей мере один барабан (11), комплект (12) зубчатых колес, приводимый в движение с одного конца барабаном, спусковой механизм генератора (13) колебаний с резонатором в виде балансира с пружиной, а также...
Тип: Изобретение
Номер охранного документа: 0002718348
Дата охранного документа: 02.04.2020
+ добавить свой РИД