×
10.12.2014
216.013.0f3e

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ СВОЙСТВ ПРОДУКТИВНОГО ПЛАСТА

Вид РИД

Изобретение

№ охранного документа
0002535319
Дата охранного документа
10.12.2014
Аннотация: Данное изобретение относится к способами оценки продуктивных пластов на нефтегазовых месторождениях, в частности к оценке их свойств. Технический результат заключается в более эффективной оценке свойств пористого пласта. Способ оценки свойств продуктивного пласта, пробуренного скважиной, включает закачку флюида с множеством индикаторных добавок субмикронного размера в ствол скважины и продуктивный пласт, ожидание обратного притока и определение свойств пласта. Данные свойства определяются посредством анализа изменений функции распределения индикаторов по размерам и типу в закачанном и добытом флюидах. 17 з.п. ф-лы.

Область изобретения

Данное изобретение относится к способами оценки продуктивных пластов на нефтегазовых месторождениях, в частности к оценке их свойств.

Уровень техники

Существует множество методов оценки свойств продуктивных пластов.

Традиционные способы проведения исследований в скважинах позволяют получить детальную информацию о пористости пласта и флюидонасыщенности посредством применения методов кабельного каротажа - электрического, гамма-, или нейтронного каротажа; однако эти методы имеют ограниченную глубину исследования - 5-10 см. Инструменты, используемые для испытания/опробования пласта, позволяют проводить исследования на более глубоких интервалах, но при этом дают лишь усредненную информацию об эффективной проницаемости пласта, или отобрать образец пластового флюида, формирующий лишь общее представление о призабойной зоне скважины. Зонды акустического каротажа способны обнаружить только выраженное изменение флюидонасыщенности.

Американский патент №7.472.748 содержит описание метода оценки свойств продуктивного пласта, который заключается в нагнетании в пласт одно- или многоиндикаторной жидкости для гидроразрыва. Из флюида притока в скважину отбирается множество образцов, затем устанавливается идентичность между жидкостью для гидроразрыва и одним или несколькими отобранными образцами флюида. После этого определяются одно или несколько приблизительных свойств продуктивного пласта исходя из данных идентичности флюидов; на основании полученной информации выполняется моделирование продуктивного пласта.

Применяемые в настоящее время методы оценки свойств продуктивного пласта достаточно эффективны, но сегодня присутствует необходимость в технологии, безопасной для окружающей среды и позволяющей выполнять измерения при высоком разрешении данных.

Краткое описание изобретения

Целью настоящего изобретения является создание способа оценки свойств продуктивного пласта, пробуренного скважиной, содержащего приготовление закачиваемого флюида со множеством индикаторных добавок субмикронного размера, закачку флюида со множеством индикаторных добавок в ствол скважины и продуктивный пласт, ожидание обратного притока флюида из пласта и определение свойств продуктивного пласта путем анализа изменений функции распределения индикаторов по размерам и типу в закачиваемом и добытом флюидах. Анализ изменений функции распределения индикаторов по размерам и типу может быть выполнен путем сравнения образцов закачиваемого и добытого флюидов или посредством акустического, электрического, импульсного, нейтронного или гамма-каротажа.

Свойства продуктивного пласта включают распределение пор по размерам, эффективную проницаемость совокупностей пор, распределение флюидонасыщенности, распределение химических свойств в системе флюид/порода, смачиваемость породы по отношению к совокупностям пор и температуру пласта.

Согласно одному из вариантов осуществления изобретения множество наноиндикаторных добавок представляют собой слаборастворимые или нерастворимые пузырьки газа с диаметром, не превышающим 500 нм, закачиваемый флюид представляет собой раствор на водной или углеводородной основе, а закачиваемый флюид со множеством индикаторных добавок представляет собой высокодисперсную газожидкостную смесь. Газами, пригодными для использования в качестве индикаторных добавок, являются метан, углеводородный газ с повышенной молекулярной массой, азот или другие нерастворимые неорганические газы или их смеси.

Нанопузырек образуется, как правило, в результате дисперсии перечисленных газов/газа в растворе на водной или углеводородной основе. Растворы на водной основе могут образовываться с различными стандартными солями, присутствующими на нефтяных месторождениях (NaCl, KCl, CaCl2, ZnBr2, CaBr2 и прочими неорганическими или органическими соляными растворами и их смесями), используемыми при заканчивании скважин (в качестве стандартных и сильнодействующих соляных растворов), а также прочими подобными флюидами. Нанопузырьки можно эффективно стабилизировать с помощью электролитов ионов железа, марганца, кальция или ионов любого другого минерала, добавив его в водный раствор, при этом удельная электропроводность в водном растворе должна быть не менее 300 µС/см. Диаметр нанопузырька составляет всего 500 нм, поэтому они не претерпевают воздействия выталкивающей силы и не разрываются у поверхности флюида, что характерно для обычных и микропузырьков.

Согласно другому варианту осуществления изобретения множество наноиндикаторных добавок представляют собой капли высоковязкой жидкости диаметром не более 1000 нм, а закачиваемый флюид со множеством индикаторных добавок представляет собой эмульсию, например, такую, как сырая нефть в воде, толуол в воде и т.п., при этом вода пресная; растворы различных солей (неорганических, таких, как NaCl, KCl, NH4Cl, CaCl2, MgCl2, NaBr2, ZnBr2, CaBr2, или органических, например, формиат натрия, формиат калия, и прочие соляные растворы и их смеси, которые обычно используются для интенсификации притока, при гравийной набивке и при заканчивании скважин) в воде (насыщенные и недонасыщенные), соляные растворы и вода с другими химическими веществами, такими как ПАВ, биоциды, а также используемыми в качестве присадок при стабилизации глин, железа и при контроле за образованием отложений. Нет ничего необычного в том, что стабилизацию эмульсий осуществляют с помощью твердых наночастиц, к примеру, кварцевых. Размер кварцевых наночастиц варьирует в пределах 2-500 нм. Концентрация твердых наночастиц, используемых для стабилизации, достигала 0,1-15% веса в зависимости от степени солености и температуры системы, в которой повышение степени солености, как правило, требует повышения концентрации твердых частиц для повышения стабильности эмульсии.

Существует также вариант осуществления изобретения, в соответствии с которым множество наноиндикаторных добавок являются твердыми частицами. Это могут быть частицы кварца, синтезированной меди, магнетита (Fe3O4), ферро/железистых хлоридов, оксида железа и бария (BaFe12O19), оксидов цинка, алюминия, магния, циркония, титана, кобальта (II) и никеля (II), сульфата бария (BaSO4) и т.д., а закачиваемый флюид с множеством индикаторных добавок представляет собой раствор, стабилизированный в жидкости на водной основе, в жидкости на основе растворителя, например, спирты (этиленгликоль) или на углеводородной основе. Эти частицы могут также иметь органическое происхождение, например, сополимерные суспензии, такие как латекс, гранулированный полистирол в соединении с дивинилбензолом и т.д. В составе таких соединений могут присутствовать пироэлектрические и пьезоэлектрические кристаллы.

Получение флюида, содержащего множество наноиндикаторных добавок, обеспечивают путем смешивания закачиваемого флюида с множеством индикаторных добавок посредством генератора, расположенного в стволе скважины, или с использованием наземного оборудования.

Закачивание флюида в пласт может сопровождаться физическим воздействием (вибрацией, нагреванием или акустической обработкой), которое применяют до, во время или после закачки.

Существует также вариант осуществления изобретения, в соответствии с которым в закачиваемый флюид, содержащий множество индикаторов, добавляют одну или несколько присадок, выбираемых из группы, включающей загустители, пенообразователи, понизители трения и ПАВ.

Прочие аспекты и преимущества данного изобретения рассмотрены в подробном описании и в представленной формуле изобретения.

Подробное описание изобретения

Независимо от происхождения (пузырьки газа, твердые частицы, капли жидкости или другая форма) индикаторные добавки субмикронного размера обладают свойством сохраняться в массе транспортируемого флюида без гравитационного разделения и без изменения функции распределения индикаторов по размерам на протяжении временного интервала, превышающего длительность операции по испытанию пласта. Благодаря стабильности свойств индикаторов любые изменения функции распределения индикаторных добавок по размерам в добытом флюиде объясняются взаимодействием между индикаторными добавками и поровой средой продуктивного пласта. Изменения функции распределения индикаторных добавок по размерам и типу можно объяснить:

- улавливанием индикаторов порами сопоставимого размера, различной эффективной проницаемостью пор при разной шкале;

- химическим взаимодействием между индикаторными добавками и компонентами пластового флюида/фазами флюида, химическим взаимодействием с породой при использовании химически активных индикаторов;

- разницей во взаимодействии с поверхностью породы, вызванной неоднородностью смачиваемости породы по отношению к совокупностям пор;

- температурной чувствительностью индикаторных добавок.

В данном случае закачиваемый флюид, содержащий множество индикаторов, является смесью:

- газа и жидкости, при этом газ представляет собой слаборастворимые или нерастворимые пузырьки, а жидкость может быть смесью воды, соляного раствора, кислот и углеводородов любой концентрации и в любой комбинации с загустителями, пенообразователями, понизителями трения и т.п. Используемый газ может быть углеводородным газом, например, метаном, или углеводородным газом с повышенной молекулярной массой, азотом или другим неорганическим газом или их смесью. Жидкая фаза представляет собой основную фазу, газ - вторичную фазу, распределенную в смеси при известном гранулометрическом составе и периоде полураспада, и определяет физические и химические свойства смеси;

- жидкости с жидкостью - эмульсия, которая может быть представлена высоковязкой жидкостью внутри низковязкой жидкости или малыми каплями внутри более крупных капель, называемых двойной, тройной эмульсией и т.п.;

- жидкости с твердыми частицами, в которой присутствие твердых объектов в основной жидкой фазе может быть осуществлено путем введения твердых частиц, кристаллизацией, химической реакцией, биологическим процессами и т.п.

Закачиваемый флюид с множеством индикаторных добавок осаждают с помощью скважинного генератора смеси наноиндикаторов, размещаемого в стволе скважины, или наземного оборудования - генераторов, баков или канистр, из которых осуществляется подача объема, необходимого для закачки смеси. Пример такого наземного генератора нанопузырьков содержится в описании американского патента №7.059.591. Также описание различных генераторов пузырьков содержится в описании японского патента №2001-276589, 2002-11335, 2002-166151, 2003-117368, 3682286, патента ЕР №2020260 и прочих аналогичных патентов.

Процесс образования твердых наночастиц описан в ряде публикаций, а также представлен в описании американского патента №2009/0107673 и патента РСТ № WO 2009/079092.

Закачивание флюида в пласт может сопровождаться физическим воздействием (вибрацией, нагреванием или акустической обработкой), которое применяют до, во время или после закачки.

Затем выполняют измерения с целью определения свойств пласта, включающие анализ функции распределения индикаторных добавок по размерам и типу в закачиваемом и добытом флюидах. Анализ изменений функции распределения индикаторных добавок по размерам и типу может быть выполнен за счет сравнения образцов закачиваемого и добытого флюида или посредством акустического, электрического, импульсного, нейтронного или гамма-каротажа.

Этот анализ позволяет получить: информацию о распределении пор по размерам, эффективной проницаемости разных совокупностей пор, распределении химических свойств в системе флюид/насыщенность компонентов флюида/порода при использовании химически активных маркеров, смачиваемости породы по отношению к совокупностям пор и температуре пласта. Этот набор свойств является критичным для характеристики продуктивного пласта, точного планирования обработки в призабойной зоне и выбора метода повышения нефтеотдачи (МПНО). Возможность оценки этих свойств является принципиально новым подходом по сравнению с существующими методами, не позволяющими получить такие сведения о продуктивном пласте. Использование смеси активных и неактивных индикаторов позволяет выявить факт механического улавливания маркеров и влияния прочих химических и физических механизмов.

Контроль флюида в стволе скважины, содержащего наномаркеры, осуществляется с помощью инструментов, спускаемых в скважину на канате или перманентно устанавливаемых на эксплуатационной насосно-компрессорной колонне. Выбор необходимого инструмента зависит от глубины проведения исследований и свойств используемых наномаркеров.

Например:

- короткий интервал 1-10 см: ЯМР-маркеры из материала с высококонтрастным ЯМР сигналом для пласта/закачиваемого флюида; маркер из материалов с высоким коэффициентом адсорбции/рассеяния для гамма/нейтронного каротажа;

- средний интервал 10-100 см: каротаж сопротивления - проводящие материалы или транспортируемый флюид;

- длинный интервал 1-20 м: акустика - контраст с высокой плотностью между частицами и транспортируемым флюидом.

- очень длинный интервал >10 м: приборы сейсмического каротажа для высокого контраста распространения сейсмических волн между закачиваемым и пластовым флюидами.

В качестве примера выполнения работ в скважинных условиях можно рассмотреть использование инструмента для испытания пласта в скважине с необсаженным стволом, такого как модульный динамический пластоиспытатель (MDT), при применении которого флюид с наноиндикаторами через специальные отверстия нагнетается в изолированную секцию пласта, после чего образцы добытого флюида отбираются и анализируются с использованием скважинного анализатора флюидов (DFA). Результаты проведения анализа следующие:

- оценка концентрации закачиваемого флюида в добытом флюиде;

- распределение маркеров в добытом флюиде по размеру - колориметрия, светорассеяние/адсорбция (УФ-диапазон).

Свойства продуктивного пласта рассчитываются по решению обратной задачи: измеренная функция распределения маркеров по размеру подгоняется под функцию распределения, вычисленную посредством мезомасштабного моделирования (см. Динарьев О.Ю., Михайлов Д.Н. «Моделирование изотермических процессов в пористых материалах на основе концепции совокупности пор», «Известия», РАН, «Механика жидкости и газа», 2007, №5, стр.118-1323) маркеров, транспортируемых в призабойной зоне. К числу оцениваемых свойств относятся: функции распределения пор по размерам, эффективная проницаемости разных совокупностей пор, распределение химических свойств в системе флюид/насыщенность компонентов флюида/порода при использовании химически активных маркеров, смачиваемость породы по отношению к совокупностям пор и температуре пласта. Использование смеси активных и неактивных маркеров позволяет выявить факт механического улавливания маркеров и влияния прочих химических и физических механизмов.

Настоящее изобретение описано в отношении предпочтительных вариантов осуществления, но специалист в данной области может предложить другие варианты осуществления, которые не выходят за рамки объема раскрытого изобретения. Соответственно объем изобретения ограничен только прилагаемой формулой изобретения.

Источник поступления информации: Роспатент

Showing 21-30 of 112 items.
27.01.2014
№216.012.9c21

Способ определения свойств углеводного пласта и добываемых флюидов в процессе добычи

Изобретение относится к мониторингу свойств углеводородных пластов и свойств добываемых флюидов во время добычи, особенно в ходе механизированной добычи. Техническим результатом является определение характеристик параметров призабойной зоны и получение более качественных характеристик пласта на...
Тип: Изобретение
Номер охранного документа: 0002505675
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9fa4

Способ определения локального изменения концентрации примеси в потоке жидкости

Использование: для измерения локального изменения концентрации примеси в потоке жидкости на входе в измерительную ячейку. Сущность заключается в том, что сначала определяют изменение концентрации примеси во времени внутри измерительной ячейки для жидкости, содержащей примесь, изменение...
Тип: Изобретение
Номер охранного документа: 0002506576
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a1f7

Способ получения проппанта (варианты) и способ гидравлического разрыва пласта с использованием полученного проппанта (варианты)

Изобретение относится к керамическому проппанту и к способу его изготовления, а также к способу гидравлического разрыва пласта. Техническим результатом изобретения является снижение плотности и повышение стойкости к разрушению проппанта. Керамический проппант включает множество спеченных...
Тип: Изобретение
Номер охранного документа: 0002507178
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a339

Способ измерения весовой концентрации глинистого материала в образце пористой среды

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507500
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a33a

Способ измерения весовой концентрации глинистого материала в образце пористой среды

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507501
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a343

Способ измерения весовой концентрации глины в образце пористого материала

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507510
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a346

Способ определения количественного состава многокомпонентной среды

Изобретение относится к области исследования состава жидкостей и материалов с содержанием не менее двух компонентов, в частности к способам определения количественного состава многокомпонентных сред. В соответствии со способом определения количественного состава многокомпонентной среды,...
Тип: Изобретение
Номер охранного документа: 0002507513
Дата охранного документа: 20.02.2014
27.07.2014
№216.012.e445

Добавка к жидкости для обработки подземного пласта и способ обработки подземного пласта

Изобретение относится к обработке подземных пластов, конкретно к добавкам, улучшающим свойства используемых при этом композиций, и способам обработки с использованием этих добавок. Добавка к обрабатывающей жидкости для повышения проницаемости проппантной упаковки содержит агент для...
Тип: Изобретение
Номер охранного документа: 0002524227
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e500

Способ определения теплоты адсорбции и теплоты смачивания поверхности и измерительная ячейка калориметра

Изобретение относится к области исследования свойств взаимодействия поверхности с флюидами и может быть использовано для определения теплоты адсорбции и смачивания поверхности. Заявлена измерительная ячейка калориметра, состоящая из изолированных друг от друга верхней и нижней частей,...
Тип: Изобретение
Номер охранного документа: 0002524414
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e7a4

Способ прогнозирования изменения свойств призабойной зоны пласта под воздействием бурового раствора

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для прогнозирования изменения характеристик призабойной зоны нефтегазосодержащих пластов. Техническим результатом является повышение точности и снижение трудоемкости прогнозирования изменения характеристик...
Тип: Изобретение
Номер охранного документа: 0002525093
Дата охранного документа: 10.08.2014
Showing 21-30 of 77 items.
27.01.2014
№216.012.9c1c

Способ управления траекторией трещины гидроразрыва в пластах, содержащих природные трещины

Изобретение относится к способам управления, контроля и оптимизации параметров трещины гидроразрыва пласта (ГРП) при проведении ГРП в нефте- и газоносных резервуарах с существующей сетью природных (геологических) трещин и может найти применение на соответствующих нефтяных и газовых...
Тип: Изобретение
Номер охранного документа: 0002505670
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c1e

Способ определения профиля притока и параметров околоскважинного пространства в многопластовой скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин и может быть использовано, в частности, при определении профиля притока скважины и параметров околоскважинного пространства. Согласно способу изменяют дебит скважины и осуществляют измерение во времени...
Тип: Изобретение
Номер охранного документа: 0002505672
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c21

Способ определения свойств углеводного пласта и добываемых флюидов в процессе добычи

Изобретение относится к мониторингу свойств углеводородных пластов и свойств добываемых флюидов во время добычи, особенно в ходе механизированной добычи. Техническим результатом является определение характеристик параметров призабойной зоны и получение более качественных характеристик пласта на...
Тип: Изобретение
Номер охранного документа: 0002505675
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9fa4

Способ определения локального изменения концентрации примеси в потоке жидкости

Использование: для измерения локального изменения концентрации примеси в потоке жидкости на входе в измерительную ячейку. Сущность заключается в том, что сначала определяют изменение концентрации примеси во времени внутри измерительной ячейки для жидкости, содержащей примесь, изменение...
Тип: Изобретение
Номер охранного документа: 0002506576
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a1f7

Способ получения проппанта (варианты) и способ гидравлического разрыва пласта с использованием полученного проппанта (варианты)

Изобретение относится к керамическому проппанту и к способу его изготовления, а также к способу гидравлического разрыва пласта. Техническим результатом изобретения является снижение плотности и повышение стойкости к разрушению проппанта. Керамический проппант включает множество спеченных...
Тип: Изобретение
Номер охранного документа: 0002507178
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a339

Способ измерения весовой концентрации глинистого материала в образце пористой среды

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507500
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a33a

Способ измерения весовой концентрации глинистого материала в образце пористой среды

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507501
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a343

Способ измерения весовой концентрации глины в образце пористого материала

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507510
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a346

Способ определения количественного состава многокомпонентной среды

Изобретение относится к области исследования состава жидкостей и материалов с содержанием не менее двух компонентов, в частности к способам определения количественного состава многокомпонентных сред. В соответствии со способом определения количественного состава многокомпонентной среды,...
Тип: Изобретение
Номер охранного документа: 0002507513
Дата охранного документа: 20.02.2014
27.07.2014
№216.012.e445

Добавка к жидкости для обработки подземного пласта и способ обработки подземного пласта

Изобретение относится к обработке подземных пластов, конкретно к добавкам, улучшающим свойства используемых при этом композиций, и способам обработки с использованием этих добавок. Добавка к обрабатывающей жидкости для повышения проницаемости проппантной упаковки содержит агент для...
Тип: Изобретение
Номер охранного документа: 0002524227
Дата охранного документа: 27.07.2014
+ добавить свой РИД