×
10.12.2014
216.013.0eda

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ТЕХНОЛОГИЧЕСКОГО КОНДЕНСАТА

Вид РИД

Изобретение

№ охранного документа
0002535219
Дата охранного документа
10.12.2014
Аннотация: Изобретение относится к способу очистки технологического конденсата со способа парового риформинга или способа парового крекинга. В способе очистки технологического конденсата (17) со способа парового риформинга или способа парового крекинга упомянутый технологический конденсат подают в способ электродеионизации (7). Способ отличается тем, что упомянутый технологический конденсат (17) подают на процесс обратного осмоса (24) до процесса электродеионизации (7) и где чистый технологический конденсат (18), полученный способом электродеионизации (7), используют в качестве чистого водяного пара (6) вне способа парового риформинга или парового крекинга, предпочтительно в паровых сетях, включая парогенераторные установки и паровые турбины, а также отправляют на рецикл в виде части технологического водяного пара (14) способа парового риформинга или парового крекинга. Технический результат - альтернативный способ очистки технологического конденсата с получением чистого водяного пара. 2 з.п. ф-лы, 2 ил.

Изобретение относится к способу очистки технологического конденсата со способа парового риформинга или способа парового крекинга.

В способах парового риформинга углеводородсодержащее исходное сырье, такое как природный газ, петролейный эфир или лигроин, перемешивают с водяным паром и подвергают реакции в установках парового риформинга для получения синтез-газа - газовой смеси, образованной в основном из монооксида углерода (СО) и водорода (Н2). Из синтез-газа в результате очистки и фракционирования на дополнительных технологических стадиях получают и отводят в качестве продуктов вещества, такие как СО, Н2 или оксогаз (определенная смесь из Н2 и СО).

Данные углеводороды могут вступать в реакцию с высокой степенью конверсии. Поэтому способ парового риформинга обычно реализуют при избытке водяного пара. Для удаления избыточной воды синтез-газ, выработанный данным образом, охлаждают до температуры, меньшей чем точка росы для водяных паров. Следовательно, водяной пар конденсируется, и образуется то, что называют технологическим конденсатом, который преимущественно образован из воды и в общем случае включает примеси, такие как метанол, аммиак, диоксид углерода, муравьиная кислота и уксусная кислота.

В способах парового крекинга углеводородсодержащее исходное сырье, такое как длинноцепочечные углеводороды, такие как лигроин, но также и бутан, пропан и этан или газойли или гидровоски, перемешивают с водяным паром и подвергают термическому крекингу для получения короткоцепочечных углеводородов. Получающееся в результате газообразное исходное сырье в основном содержит водород (Н2), метан (СН4), этилен (С2Н4) и пропилен (С3Н6). Газообразное исходное сырье фракционируют способом низкотемпературного фракционирования, в результате чего в качестве ценных продуктов получают по существу этилен и пропилен.

Способ парового крекинга обычно реализуют при избытке водяного пара во избежание агломерирования крекированных короткоцепочечных углеводородов. После реализации способа парового крекинга газообразное исходное сырье закаливают и высушивают. Тем самым, получают технологический конденсат, который преимущественно образован из воды, и в общем случае включает различные примеси, такие как некрекированные длинноцепочечные углеводороды, ароматические соединения или другие тяжелые углеводородсодержащие побочные продукты способа крекинга и некоторые короткоцепочечные углеводороды.

В рамках настоящей заявки конденсат, преимущественно состоящий из воды и образованный в процессе парового риформинга или в процессе парового крекинга, называют технологическим конденсатом.

В соответствии с предшествующим уровнем техники технологический конденсат перемешивают с деминерализованной водой, которую обычно поставляют в способ извне. Таким образом полученную смешанную воду впоследствии дегазируют и испаряют под действием массовых потоков, охлаждаемых в способе парового риформинга или парового крекинга. После перегревания водяного пара под действием охлаждаемых отработанных газов часть водяного пара (технологический водяной пар) используют внутри способа, в то время как оставшуюся часть (отводимый на сторону водяной пар) используют не в способе парового риформинга или парового крекинга, а во внешнем способе. Выработка отводимого на сторону водяного пара делает возможными использование тепла, которое не может быть использовано в способе парового риформинга или способе парового крекинга, и увеличение экономической эффективности способа парового риформинга или парового крекинга, но во внешнем способе.

Зачастую требования потребителя в отношении качества отводимого на сторону водяного пара настолько высоки, что они не могут быть удовлетворены отводимым на сторону водяным паром, вырабатываемым описанным выше способом. Например, электрическая проводимость отводимого на сторону водяного пара, который должен быть использован в конденсационной турбине, не должна превышать 0,3 мкСм/см - значения, которое зачастую превышают вследствие присутствия в технологическом конденсате примесей. Для сохранения выработки отводимого на сторону водяного пара существуют способы, которые предусматривают очистку технологического конденсата до его перемешивания с деминерализованной водой.

В том, что касается очистки технологического конденсата, то известны способы, в которых примеси отделяют в результате отгонки в отгоночных колоннах. В качестве отгоночного газа в таких случаях используют массовые потоки (например, природный газ), содержащие воздух или углеводороды.

В других способах технологический конденсат расширяют, а после этого дегазируют в скрубберной колонне при использовании водяного пара низкого давления, воздуха или азота. Примеси и отгоняющие агенты выпускают из установки вовне. Для удовлетворения требований к вырабатываемому отводимому на сторону водяному пару по высокой степени чистоты данные способы предусматривают наличие дополнительной стадии очистки в результате ионного обмена в соответствующих реакторах.

Один альтернативный способ выработки водяного пара в способе парового риформинга описывается в публикации DE102006019100. В соответствии с процессом и аппаратом, описанными в публикации DE102006019100, вырабатывают два потока водяного пара. Первый поток водяного пара (технологический водяной пар) предпочтительно полностью используют в способе парового риформинга, в то время как второй поток водяного пара (отводимый на сторону водяной пар) может быть использован вовне. Отводимый на сторону водяной пар вырабатывают предпочтительно исключительно в результате испарения дегазированной и деминерализованной воды (высокочистой воды). Описываемый способ делает возможными выработку очень чистого и беспримесного отводимого на сторону водяного пара и поэтому хорошее использование энергии способа парового риформинга. Недостатком описанного способа является необходимость наличия второго парового барабана и второго деаэратора для подводимой со стороны деминерализованной воды в целях выработки второго потока чистого водяного пара.

Цель настоящего изобретения представляет собой альтернативный способ очистки технологического конденсата, который мог бы быть использован для очистки технологического конденсата, образованного либо в процессе парового риформинга, либо в процессе парового крекинга.

Достижения цели добиваются в результате подачи упомянутого технологического конденсата в способ электродеионизации.

В соответствии с изобретением для очистки технологического конденсата, производимого в способе парового риформинга или парового крекинга, используют совершенно другой способ. Способом электродеионизации является способ очистки воды на основе использования электрохимической мембраны. Тем самым, ионизируемые примеси удаляют из жидкостей при использовании электроактивных сред и электрического потенциала, воздействующего на ионный транспорт. Благодаря способу электродеионизации вырабатывают очищенную водную фазу и жидкую фазу, содержащую ионизированные примеси.

Полученная чистая вода могла бы быть известным образом использована для выработки чистого водяного пара. В соответствии с настоящим изобретением очисткой технологического конденсата при использовании способа электродеионизации мог бы быть получен чистый водяной пар, характеризующийся теоретической проводимостью 0,06 мкСм/см. Это намного ниже требований к чистому водяному пару для конденсационной турбины. В соответствии с результатами измерений в неоднократных испытаниях при использовании способа электродеионизации, соответствующего идее изобретения, добиваются достижения проводимости, меньшей чем 0,3 мкСм/см. Данная проводимость является достаточной с точки зрения требований к чистому водяному пару.

Поэтому способ по изобретению является превосходным способом выработки чистого водяного пара из технологического конденсата, образованного в процессе парового риформинга или парового крекинга.

В дополнение к этому, затраты на аппарат, необходимый для способа по изобретению, значительно ниже по сравнению с предшествующим уровнем техники. Затраты на отгоняющую колонну или на формирование цикла выработки второго водяного пара являются намного более высокими, чем в случае простого оборудования для электродеионизации.

В одном предпочтительном варианте осуществления изобретения упомянутый технологический конденсат возникает в рамках методики высушивания технологического газа, являющегося результатом способа парового риформинга, в рамках методики высушивания технологического газа, являющегося результатом способа парового риформинга с последующим способом реакции конверсии водяного газа, или в рамках методики высушивания технологического газа, являющегося результатом способа парового крекинга. Технологический газ после печи парового риформинга охлаждают. Тем самым, получают поток со смешанной фазой. Данный поток со смешанной фазой разделяют, по меньшей мере, в одном сепараторе на газовую фазу, содержащую продукты реакции способа парового риформинга, и водную фазу - технологический конденсат. Данный технологический конденсат из нижней части сепараторов в данном варианте осуществления изобретения подвергают обработке способом электродеионизации. В случае разработки способа парового риформинга для получения по возможности большего количества водорода технологический газ из печи парового риформинга подают в промежуточный способ реакции конверсии водяного газа. Монооксид углерода в технологическом газе вступает в реакцию с водой с образованием диоксида углерода (СО2) и водорода (Н2) по способу реакции конверсии водяного газа. Получающийся в результате технологический газ охлаждают описанным выше способом, в результате чего получают подобный технологический конденсат за исключением некоторых отличий в отношении уровня содержания метанола и этанола. В данном варианте осуществления изобретения получающийся в результате технологический конденсат подают в способ электродеионизации.

В наиболее предпочтительном варианте осуществления изобретения технологический конденсат до способа электродеионизации подают в предварительный фильтр, теплообменник, подают в процесс механической очистки, на химическую и каталитическую предварительную обработку и/или в процесс обратного осмоса. В соответствии с данным вариантом осуществления технологический конденсат подвергают предварительной обработке по ходу технологического потока до способа электродеионизации. Технологический конденсат подают в процесс предварительной очистки, состоящий из индивидуально требуемых стадий предварительной очистки. Предварительный фильтр и/или способ механической очистки являются подходящими для использования при удалении частиц, агломератов или других твердых веществ в технологическом конденсате. При использовании теплообменника температура технологического конденсата могла бы быть выгодным образом доведена до оптимальной рабочей температуры способа электродеионизации. Способ обратного осмоса является подходящим, простым и дешевым способом предварительной очистки технологического конденсата. В случае технологического конденсата, являющегося результатом реакции конверсии водяного газа, необязательное использование химической и каталитической предварительной обработки также выгодным образом превращает спирты в технологическом конденсате в органические кислоты, которые легко диссоциируют в технологическом конденсате и поэтому могли бы быть подвергнуты обработке способом электродеионизации. Выгодным является использование всех или, по меньшей мере, одного или описанных выше способов предварительной обработки по ходу технологического потока до способа электродеионизации изобретения.

Чистый технологический конденсат, полученный способом электродеионизации, выгодным образом используют для чистого водяного пара вне способа парового риформинга или парового крекинга. Чистый технологический конденсат подают в паровой барабан, где тепло печи парового риформинга используют для выработки водяного пара. Обычно для компенсации потерь, обусловленных реакцией парового риформинга или парового крекинга, добавляют определенное количество деминерализованной воды. Чистый технологический конденсат, полученный способом по изобретению, не содержит каких-либо примесей и удовлетворяет требованиям к чистому водяному пару. Поэтому в паровом барабане вырабатывают чистый водяной пар, который мог бы быть использован вне способа парового риформинга или парового крекинга, например, в конденсационной турбине. Выработанный чистый водяной пар также мог бы быть с выгодой использован во внешних паровых сетях, включая парогенераторные установки, паровые турбины, такие как противодавленческие турбины или конденсационные турбины. Такие технологические паровые сети в общем случае требуют наличия определенной степени качества водяного пара для обеспечения надежности большой паровой системы и во избежание возникновения сбоев в ходе эксплуатации.

В соответствии с еще одним вариантом осуществления изобретения чистый технологический конденсат, полученный способом электродеионизации, отправляют на рецикл в виде части потока подаваемого материала способа парового риформинга или парового крекинга. В зависимости от потребностей в способах вне способа парового риформинга или парового крекинга часть чистого технологического конденсата могла бы быть использована в качестве водяного пара для способа парового риформинга или парового крекинга. Количество отправляемого на рецикл технологического конденсата в данном варианте осуществления изобретения зависит от количества чистого водяного пара, требующегося вне способа парового риформинга или парового крекинга.

Настоящее изобретение содержит различные преимущества. Настоящее изобретение предлагает выработку очень чистого водяного пара из технологического конденсата с процесса парового риформинга или парового крекинга. Капитальные затраты на аппарат, необходимый для выработки чистого водяного пара из такого технологического конденсата, кардинально уменьшаются по сравнению с предшествующим уровнем техники. Требуемый аппарат для процесса электродеионизации является намного более простым и дешевым в сравнении с отгоночной колонной или вторым паровым барабаном с соответствующим циклом питания.

Для дополнительного иллюстрирования изобретения один вариант осуществления, продемонстрированный на фигурах, описывается более подробно.

Фигура 1 демонстрирует один вариант осуществления изобретения в отношении очистки технологического конденсата со способа парового риформинга.

Фигура 2 подробно демонстрирует один вариант осуществления необязательной предварительной обработки в способе электродеионизации.

Фигура 1 демонстрирует один вариант осуществления способа по изобретению в отношении очистки технологического конденсата со способа парового риформинга. Углеводородсодержащий подаваемый материал 2 через теплообменники 10 перепускают в секцию предварительного нагревания 11а печи парового риформинга 11. Углеводородсодержащий подаваемый материал перемешивают с технологическим потоком 14 в секции предварительного нагревания 11а печи парового риформинга. Смесь из подаваемого материала и водяного пара перепускают через канал 15 в секцию риформинга 11b печи парового риформинга 11. Технологический газ через определенные емкости 16 и последовательность из теплообменников 10 перепускают в сепаратор 9. Технологический газ непрерывно охлаждают при использовании теплообменников 10 и, тем самым, вырабатывают двухфазную смесь. Двухфазную смесь в сепараторе 9 разделяют на газообразный продукт, который перепускают на дополнительную обработку 5, и водную фазу 17, собираемую из нижней части сепаратора 9. Водная фаза 17 представляет собой технологический конденсат, который должен быть очищен. Технологический конденсат 17 перепускают в способ электродеионизации 7. В качестве продукта способа электродеионизации производят чистый технологический конденсат 18. Чистый технологический конденсат 18 подают в деаэратор 8 совместно с определенным количеством деминерализованной воды 1 для компенсации потерь, обусловленных способом парового риформинга. Деаэрированную чистую водную фазу 19 из деаэратора 8 через теплообменник 10 перепускают в паровой барабан 12, который в результате теплообмена в секции предварительного нагревания 11а печи парового риформинга 11 вырабатывает чистый водяной пар для отвода на сторону 6. Печь парового риформинга 11 нагревают в результате сжигания углеводородсодержащего топлива 4 с использованием воздуха 3. Топливный газ перепускают через дымовую трубу 13 в атмосферу.

Фигура 2 демонстрирует один вариант осуществления способа электродеионизации 7 совместно со всей необязательной предварительной обработкой. Технологический конденсат 17 перепускают на электродеионизацию 7 через предварительный фильтр 20, теплообменник 21, механическую очистку 22, химическую/каталитическую обработку 23 и способ обратного осмоса 24. Предварительный фильтр 20 используют для удаления из технологического конденсата 17 твердых частиц и более крупных примесей. В теплообменнике 21 температуру технологического конденсата 17 доводят до оптимальной рабочей температуры электродеионизации. В результате механической очистки 22 удаляют примеси, такие как сажа и пыль. При химической/каталитической предварительной обработке 23 примеси, такие как спирты, превращают в органические кислоты, которые диссоциируют и поэтому могут быть подвергнуты обработке следующим далее процессом электродеионизации. Процесс обратного осмоса 24 производит деминерализованную и обессоленную водную фазу. Для достижения требований к чистому водяному пару технологический конденсат 17, в заключение, очищают способом электродеионизации 7, в результате чего удаляют оставшиеся примеси, такие как диссоциированные органические кислоты или карбонатные ионы. Со способа электродеионизации 7 чистый технологический конденсат 18 перепускают в деаэратор 8.


СПОСОБ ОЧИСТКИ ТЕХНОЛОГИЧЕСКОГО КОНДЕНСАТА
СПОСОБ ОЧИСТКИ ТЕХНОЛОГИЧЕСКОГО КОНДЕНСАТА
Источник поступления информации: Роспатент

Showing 71-80 of 114 items.
16.06.2018
№218.016.635b

Стимулирующие текучие среды на основе смеси шфлу

Изобретение относится к стимулирующим текучим средам для гидроразрыва углеводородсодержащего пласта и системному оборудованию для них. Технический результат – повышение экономичности, эффективности и безопасности обработки. Стимулирующая текучая среда содержит проппант и не разделенную на...
Тип: Изобретение
Номер охранного документа: 0002657569
Дата охранного документа: 14.06.2018
05.07.2018
№218.016.6c1e

Установка разделения воздуха, способ получения продукта, содержащего аргон, и способ изготовления установки разделения воздуха

Предложена установка (100) разделения воздуха для получения продукта, содержащего аргон, низкотемпературным разделением сжатого и охлажденного исходного воздуха и способы ее работы. Установка (100) имеет колонну (1) высокого давления, образованную несколькими секциями колонну низкого давления с...
Тип: Изобретение
Номер охранного документа: 0002659698
Дата охранного документа: 03.07.2018
24.07.2018
№218.016.7448

Способ для сжижения обогащенной углеводородом фракции

Описан способ сжижения обогащенной углеводородом фракции, в частности природного газа, за счет косвенного теплообмена с холодильной смесью контура циркуляции холодильной смеси. Холодильная смесь сжимается, разделяется на жидкую фазу, которая обогащена высококипящими компонентами (HMR)...
Тип: Изобретение
Номер охранного документа: 0002662005
Дата охранного документа: 23.07.2018
17.08.2018
№218.016.7cb6

Резервуар для хранения сжиженных горючих газов

Резервуар (80) для хранения сжиженных криогенных газов пулевидной формы полной герметизации содержит внутренний (82) и внешний резервуары (83) из криогенной стали, ножки для опоры резервуара (80) для хранения на опорной конструкции (81) и выпускную трубу (84), сообщающуюся с внутренней частью...
Тип: Изобретение
Номер охранного документа: 0002663930
Дата охранного документа: 13.08.2018
26.09.2018
№218.016.8bfb

Комбинированная сепарация высококипящих и низкокипящих компонентов из природного газа

Изобретение относится к способу сепарации высококипящих и низкокипящих компонентов из обогащенного углеводородами сырья. Сырье (1) частично конденсируют (Е1, Е2) и путем ректификации (Т1) отделяют обогащенную высококипящими компонентами жидкую фракцию (8) (стадия сепарации 1). Обедненную...
Тип: Изобретение
Номер охранного документа: 0002668053
Дата охранного документа: 25.09.2018
11.10.2018
№218.016.9029

Обкладка резервуара для криогенно сжиженных веществ

Изобретение относится к резервуару для хранения сжиженного газа, включающему закрытую бетонную оболочку (1) для размещения емкости (2), стенки которого находятся на расстоянии от внутренней стенки бетонной оболочки (1), причем бетонная оболочка (1) в области стенки снабжена на внутренней...
Тип: Изобретение
Номер охранного документа: 0002669083
Дата охранного документа: 08.10.2018
15.10.2018
№218.016.927e

Обработка газов

Изобретение относится к обработке газов. Для восстановления серы из содержащего сероводород потока газа осуществляют следующие стадии. Создают поток газа, содержащий сероводород, и пропускают поток газа в устройство, содержащее области термической и каталитической обработки. Каталитическая...
Тип: Изобретение
Номер охранного документа: 0002669606
Дата охранного документа: 12.10.2018
19.10.2018
№218.016.93dd

Теплообменник, имеющий сборный канал для отвода жидкой фазы

Изобретение касается теплообменника (1) для непрямого теплообмена между первой средой (F1) и второй средой (F2), имеющего кожух (2), который имеет затрубное пространство (3) для помещения жидкой фазы (L1) первой среды (F1), по меньшей мере один расположенный в затрубном пространстве (3)...
Тип: Изобретение
Номер охранного документа: 0002669991
Дата охранного документа: 17.10.2018
27.10.2018
№218.016.978a

Колонна с жидкостными распределителями и массообменными тарелками из уголковых профилей

Изобретение относится к колонне, предназначенной, в частности, для массо- и/или энергообмена между жидкостной фазой и направленной в противотоке к ней газообразной фазой. Колонна содержит боковую стенку, проходящую вдоль продольной оси колонны и окружающую внутреннее пространство колонны,...
Тип: Изобретение
Номер охранного документа: 0002670891
Дата охранного документа: 25.10.2018
01.11.2018
№218.016.988f

Способ удаления кислотных газов из природного газа

Изобретение относится к способу удаления кислотных газов, прежде всего диоксида углерода и сероводорода, из богатой углеводородом фракции, прежде всего природного газа. В предложенном способе богатая углеводородом фракция (1) охлаждается и частично конденсируется (Е1-Е4), а получающаяся при...
Тип: Изобретение
Номер охранного документа: 0002671253
Дата охранного документа: 30.10.2018
Showing 61-63 of 63 items.
20.01.2018
№218.016.1b35

Многопламенная горелка и способ нагрева заготовки

Изобретение относится к области энергетики. Многопламенная горелка (10) имеет некоторое количество горелочных головок (1) и предусмотренных для них соединительных труб (4), которые выполнены для того, чтобы при питании топливом создавать по меньшей мере один факел пламени горелки,...
Тип: Изобретение
Номер охранного документа: 0002635949
Дата охранного документа: 17.11.2017
20.01.2018
№218.016.1cd8

Улучшенный пузырьками проппант для гидроразрыва в скважинах

Изобретение относится к производству проппанта и его суспензии в жидкости для гидроразрыва. Способ формирования газонаполненных пузырьков на поверхности частицы проппанта, содержащий этапы помещения частиц проппанта в воду при рабочем давлении 8000-12000 фунтов на квадратный дюйм, создание...
Тип: Изобретение
Номер охранного документа: 0002640614
Дата охранного документа: 10.01.2018
13.02.2018
№218.016.219f

Способ низкотемпературного разделения воздуха в установке для разделения воздуха и установка для разделения воздуха

Группа изобретений относится к разделению воздуха. Охлажденный воздух (AIR) при первом разделительном давлении в первой разделительной колонне (S1) разделяют на обогащенную азотом головную фракцию и обогащенную кислородом нижнюю фракцию. Дополнительный охлажденный воздух (AIR) в смесительной...
Тип: Изобретение
Номер охранного документа: 0002641766
Дата охранного документа: 22.01.2018
+ добавить свой РИД