×
10.12.2014
216.013.0e6c

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ МЕТАЛЛОВ С ПОВЫШЕННОЙ ЗАПАСЕННОЙ ЭНЕРГИЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии, в частности к получению нанопорошков металлов с повышенной запасенной энергией. Может использоваться для повышения реакционной способности нанопорошков при спекании, горении, в энергосберегающих технологиях. Образец нанопорошка металла облучают потоком ускоренных электронов с энергией не более 6 МэВ в вакууме с обеспечением положительного заряда внутренней части частицы металла. Толщина образца не превышает длину пробега электронов. Обеспечивается повышение запасенной энергии на 10-15%. 1 ил., 1 табл., 1 пр.
Основные результаты: Способ получения нанопорошка металла с повышенной запасенной энергией, включающий облучение образца нанопорошка металла потоком ускоренных электронов с энергией не более 6 МэВ в вакууме с обеспечением положительного заряда внутренней части частицы металла, отличающийся тем, что облучению подвергают образец нанопорошка металла, толщина которого на превышает длину пробега электронов.

Изобретение относится к технологии получения нанопорошков с повышенной запасенной энергией, в частности нанопорошков металлов, и может использоваться для повышения реакционной способности нанопорошков металлов при спекании, горении, в энергосберегающих технологиях.

Известен способ запасания энергии нанопорошком алюминия при его пассивировании небольшими добавками воздуха (Ильин А.П. Особенности энергонасыщенной структуры малых металлических частиц, сформированных в сильнонеравновесных условиях // Физика и химия обработки материалов. 1997. №4. С.93-97).

Недостатком данного способа является низкая запасенная энергия, не превышающая 80-100 кДж/моль, что в 2-3 раза ниже энергии химической связи.

Наиболее близким по техническому эффекту является «Способ повышения запасенной энергии в нанопорошках металлов» (Патент РФ №2461445, опубл. 20.09.2012, бюл. №26) путем облучения нанопорошков металлов (железа, никеля, молибдена и меди) потоком ускоренных электронов с энергией не более 6 МэВ в вакууме, причем толщина образца превышает длину пробега электронов в нанопорошке.

Недостатком данного способа является относительно невысокая запасенная энергия: при пробеге электронов менее толщины слоя образца нанопорошка часть нанопорошка остается необлученной и это снижает запасенную энергию в нанопорошке (фиг.).

Основной технической задачей изобретения является повышение запасенной энергии в нанопорошках металлов за счет уменьшения толщины образца, при которой облучение электронами происходит «на прострел».

Основная техническая задача достигается тем, что в заявленном способе повышения запасенной энергии в нанопорошках металлов, согласно которому, так же как и в прототипе, энергия повышается за счет положительного заряда внутренней части частицы металла, в соответствии с предложенным решением нанопорошки металлов облучают потоком ускоренных электронов с энергией не более 6 МэВ в вакууме (без доступа воздуха), причем толщина образца нанопорошка не превышает длину пробега электронов в нанопорошке.

В таблице приведена зависимость запасенной энергии в нанопорошках железа, никеля, молибдена и меди от дозы облучения потоком ускоренных электронов (4 МэВ) при толщине образца менее пробега электронов.

На фиг. представлена схема облучения нанопорошка металла (1 - нанопорошок металла, подвергающийся действию потока электронов, при толщине образца более длины пробега электронов; 2 - нанопорошок металла, не подвергающийся действию потока электронов, при толщине образца более длины пробега электронов; 3 - образец нанопорошка металла с толщиной менее длины пробега электронов, полностью подвергающийся действию потока электронов): а) толщина образца нанопорошка металла превышает длину пробега электронов; б) толщина образца нанопорошка металла не превышает длину пробега электронов.

Пример исполнения. Образцы нанопорошка железа получают с помощью распыления железного проводника диаметром 0,3 мм мощными импульсами электрического тока (500 кА). Распределение частиц по диаметру соответствует нормально-логарифмическому. Максимум в распределении соответствует диаметру частиц, равному 100 нм.

После получения нанопорошков металлов распылением в аргоне металлических проводников при пропускании мощных импульсов электрического тока (500 кА) все металлические нанопорошки пирофорны и требуют нанесения защитных покрытий: оксидно-гидроксидных или других функциональных. При облучении потоком электронов частиц металлов в них происходит ионизация, вследствие чего повышается положительный заряд, за счет которого в частице увеличивается энергия.

Для повышения запасенной энергии две навески нанопорошка железа помещают в алюминиевую фольгу толщиной 40 мкм, придавая образцам плоскую форму. Толщина первого образца в фольге (5000 мкм) больше длины пробега электронов (2768 мкм), второго - меньше длины пробега электронов (2000 мкм). Образцы помещают в охлаждаемую ячейку и облучают потоком ускоренных электронов с энергией 4 МэВ (без доступа воздуха). Учитывая мощность ускорителя для получения образцами доз 1, 5, 10 Мрад, время облучения составляет 14, 70, 140 с, соответственно. При большей энергии ускоренных электронов возможно протекание ядерных реакций и появление наведенной радиоактивности.

При облучении потоком электронов образцов нанопорошков металлов с толщиной слоя более длины пробега электронов в образце не весь нанопорошок подвергается облучению (фиг., а), в связи с чем не весь нанопорошок запасает энергию.

После облучения образцы подвергают термическому анализу с помощью термоанализатора Q 600 SDT: масса навески 10 мг, скорость нагрева 10 град/мин, диапазон температур 20-1000°C. Результаты экспериментов приведены в таблице. При нагревании необлученного образца тепловой эффект слагается из теплоты окисления и из запасенной энергии, величину которой принимают за единицу. При нагревании облученных образцов фиксируют теплоту окисления и запасенную энергию. Учитывая, что степень окисленности необлученных и облученных нанопорошков одинакова, теплота окисления металлов также примерно одинакова. Повышение теплоты, выделившейся при окислении облученных образцов, составляет запасенную энергию.

Аналогичным образом облучают и анализируют нанопорошки никеля, молибдена, меди (таблица). После облучения потоком электронов, в соответствии с результатами термического анализа запасенная энергия повышается в нанопорошках: железа - на 15%; никеля - на 12%; молибдена - на 10%; меди - на 14%. Таким образом, заявленный способ дает существенно более высокую энергию, превышающую прототип на 10-15%.

Таблица
№ п/п Нанопорошок Доза облуче
ния, Мрад
Энергия, выделяющаяся при окислении, Дж/г Запасенная энергия, отн. ед. Примечание
Толщина образца больше длины пробега электронов Толщина образца меньше длины пробега электронов Толщина образца больше длины пробега электронов Толщина образца меньше длины пробега электронов
1 Fe 1 14474 16645 2,13 2,44
2 Ni 10 12358 13841 1,50 1,68
3 Mo 10 7798 8577 1,18 1,30
4 Cu 1 3324 3789 2,27 2,59

Способ получения нанопорошка металла с повышенной запасенной энергией, включающий облучение образца нанопорошка металла потоком ускоренных электронов с энергией не более 6 МэВ в вакууме с обеспечением положительного заряда внутренней части частицы металла, отличающийся тем, что облучению подвергают образец нанопорошка металла, толщина которого на превышает длину пробега электронов.
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ МЕТАЛЛОВ С ПОВЫШЕННОЙ ЗАПАСЕННОЙ ЭНЕРГИЕЙ
Источник поступления информации: Роспатент

Showing 91-100 of 148 items.
10.04.2015
№216.013.3cc8

Устройство для сварки

Устройство предназначено для импульсного питания сварочной дуги с плавящимся и неплавящимся электродами. Устройство состоит из источника питания 1, к положительному полюсу которого подсоединены коммутирующий дроссель 2 и силовой тиристор 3, зашунтированные последовательно включенными...
Тип: Изобретение
Номер охранного документа: 0002547048
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40b0

Сцинтилляционный счетчик ионизирующего излучения

Изобретение относится к области измерения ядерных излучений, а именно к подсчету количества гамма квантов от различных источников излучения в диапазоне энергий от сотен кэВ до единиц МэВ с загрузкой до 10 имп./мин и может быть использовано для точной регистрации интенсивных потоков гамма...
Тип: Изобретение
Номер охранного документа: 0002548048
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41dd

Депрессорная присадка к дизельному топливу

Изобретение относится к депрессорной присадке к дизельному топливу, которая включает остаточные продукты нефтепереработки, при этом присадка содержит продукт окисления тяжелой пиролизной смолы и алкилароматические углеводороды при следующих соотношениях реагентов (маc.%): окисленная тяжелая...
Тип: Изобретение
Номер охранного документа: 0002548359
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4246

Комплекс для отбора проб воды и способ его работы

Изобретение относится к технике определения расходов и периодического отбора проб воды с различных фиксированных по глубине горизонтов торфяной залежи. Техническим результатом является упрощение конструкции. Комплекс содержит обсадную трубу-скважину с конусным наконечником и водоприемник....
Тип: Изобретение
Номер охранного документа: 0002548464
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.42d6

Способ выделения геохимических аномалий на основе анализа химического состава речных отложений

Изобретение относится к области геохимии и может быть использовано для поиска геохимических аномалий донных отложений рек. Сущность: проводят геоинформационный анализ исследуемой территории. Отбирают 2-3 пробы донных отложений на малоприточных участках с относительно резким уменьшением...
Тип: Изобретение
Номер охранного документа: 0002548608
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.45f2

Способ получения кремния из силицида магния

Изобретение относится к области неорганического синтеза и может быть использовано для получения чистого кремния. Способ включает получение силицида магния смешиванием диоксида кремния с магнием, термическое разложение силицида магния в кислородсодержащей атмосфере при температуре выше 650°C и...
Тип: Изобретение
Номер охранного документа: 0002549410
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.45f4

Способ переработки монацитового концентрата

Изобретение относится к технологии редких и радиоактивных элементов и может быть использовано для получения концентратов редких и редкоземельных элементов из монацита. Способ переработки монацитового концентрата включает обработку исходного сырья смесью серной кислоты и фторида аммония при...
Тип: Изобретение
Номер охранного документа: 0002549412
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.467d

Устройство для бесконтактного определения коэффициента температуропроводности твердых тел

Изобретение относится к бесконтактным методам исследований теплофизических характеристик твердых тел и может быть использовано для исследований теплофизических характеристик изделий, используемых в авиакосмической, машиностроительной и энергетической промышленности. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002549549
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.4682

Способ определения платины в рудах методом хронопотенциометрии

Изобретение может быть использовано в гидрометаллургии, в различных геологических разработках при поиске и разведке. Способ определения платины в руде методом хронопотенциометрии заключается в том, что платину (IV) переводят в раствор и проводят хронопотенциометрическое определение. При этом...
Тип: Изобретение
Номер охранного документа: 0002549554
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.47e0

Способ определения деформации материала в зоне стружкообразования при резании

Способ относится к исследованиям деформации материала в процессе механической обработки резанием. Деформируемую в процессе резания поверхность образца освещают когерентным монохроматическим излучением. Процесс деформации регистрируют цифровой монохроматической камерой. Формируют опорные точки...
Тип: Изобретение
Номер охранного документа: 0002549907
Дата охранного документа: 10.05.2015
Showing 91-100 of 244 items.
10.03.2014
№216.012.a8f4

Опора для дорнования с дополнительным растяжением

Изобретение относится к металлообработке и направлено на сокращение времени на установку заготовки и упрощение конструкции опоры для дорнования с дополнительным растяжением глубоких отверстий малого диаметра, осуществляемого путем проталкивания дорнов. Опора содержит полый корпус, размещенную...
Тип: Изобретение
Номер охранного документа: 0002508967
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa3f

Способ рентгенометрической оценки температурных условий эксплуатации трубных элементов котлов

Использование: для неразрушающего исследуемую поверхность контроля температурных условий эксплуатации и разрушения трубных элементов паровых и водогрейных котлов. Сущность заключается в том, что подготавливают образец трубного элемента и эталон из не работавшего в котле участка трубы, имеющей...
Тип: Изобретение
Номер охранного документа: 0002509298
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa41

Способ активного одностороннего теплового контроля скрытых дефектов в твердых телах

Изобретение относится к области неразрушающего контроля материалов и может быть использовано для контроля скрытых дефектов. Согласно заявленному способу активного одностороннего теплового контроля скрытых дефектов в твердых телах нагревают одну из поверхностей объекта контроля в течение...
Тип: Изобретение
Номер охранного документа: 0002509300
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa69

Сенсорное устройство ввода данных

Изобретение относится к устройствам ввода информации в электронные технические устройства, такие как банкоматы, платежные терминалы, электронные кодовые замки и другие многопользовательские электромеханические системы и электроприборы. Техническим результатом является повышение секретности...
Тип: Изобретение
Номер охранного документа: 0002509340
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ad0d

Способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами серебра

Изобретение относится к электроаналитической химии, направлено на определение глутатиона и может быть использовано в анализе в модельных водных растворах методом циклической вольтамперометрии по высоте анодного максимума на анодной кривой. Способ определения глутатиона заключается в определении...
Тип: Изобретение
Номер охранного документа: 0002510016
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad0f

Способ определения аскорбата лития в лекарственной форме методом вольтамперометрии

Изобретение относится к области количественного определения аскорбата лития в лекарственной форме с целью контроля качества выпускаемых на рынок препаратов на основе аскорбата лития. Способ определения аскорбата лития в лекарственной форме включает стадию пробоподготовки и вольтамперометическое...
Тип: Изобретение
Номер охранного документа: 0002510018
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad22

Устройство обнаружения узкополосных шумовых гидроакустических сигналов на основе непрерывного вейвлет-преобразования

Использование: изобретение относится к области гидроакустики, а именно к устройствам обнаружения узкополосных шумовых сигналов со спектральной плотностью мощности в виде отдельных дискретных составляющих или их звукорядов на фоне аддитивной помехи. Сущность: устройство обнаружения узкополосных...
Тип: Изобретение
Номер охранного документа: 0002510037
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad75

Однофазный асинхронный электродвигатель

Изобретение относится к электротехнике и может быть использовано при создании однофазных асинхронных электродвигателей с пусковой обмоткой для электроинструмента и бытовой техники, имеющих существенную нагрузку на валу в момент пуска и работающих в условиях низкого напряжения питающей сети....
Тип: Изобретение
Номер охранного документа: 0002510120
Дата охранного документа: 20.03.2014
27.03.2014
№216.012.ae67

Способ получения высокочистого водорода

Изобретение относится к области химии. Горячий водород, образующийся в результате реакции термохимического окисления алюминия водой, пропускают через слой пленки сверхвысокомолекулярного полиэтилена при давлении 1 атм. Изобретение позволяет повысить чистоту водорода. 2 ил.
Тип: Изобретение
Номер охранного документа: 0002510362
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.af7b

Способ получения мета-хлорбензофенона как полупродукта противосудорожного препарата "галодиф"

Изобретение относится к области органической химии, в частности к способу получения мета-хлорбензофенона, являющегося промежуточным продуктом в синтезе оригинального антиконвульсанта «галодиф». Согласно предлагаемому способу мета-хлорбензофенон получают диазотированием 2-aмино-5-хлорбензофенона...
Тип: Изобретение
Номер охранного документа: 0002510638
Дата охранного документа: 10.04.2014
+ добавить свой РИД