×
10.12.2014
216.013.0e0e

Результат интеллектуальной деятельности: СПОСОБ ОБНАРУЖЕНИЯ ЗАГРЯЗНЕНИЯ ТИТАНОВЫХ СПЛАВОВ ДВУХФАЗНОГО ТИПА С АЛЬФА-ФАЗОЙ И БЕТА-ФАЗОЙ

Вид РИД

Изобретение

Правообладатели

№ охранного документа
0002535015
Дата охранного документа
10.12.2014
Аннотация: Изобретение относится к исследованию титановых сплавов. Способ включает следующие этапы: (а) отрезают образец от детали из упомянутого сплава; (b) подготавливают область поверхности среза упомянутого образца вблизи кромки упомянутого образца, причем упомянутая кромка является общей с наружной поверхностью детали, таким образом, чтобы позволить обследовать упомянутую область поверхности среза; (с) обследуют альфа-фазу данной области при более чем 5000-кратном увеличении; (d) решают, присутствуют ли или отсутствует зернистость в альфа-фазе первой зоны, смежной с упомянутой кромкой образца; (е) делают вывод о существовании загрязнения упомянутого сплава газом, если установлено отсутствие зернистости в альфа-фазе упомянутой смежной зоны, но зернистость (зерна) присутствует(ют) в альфа-фазе вне упомянутой смежной зоны. Достигается повышение точности и надежности исследования. 4 з.п. ф-лы, 8 ил.

Настоящее изобретение относится к способу исследования титанового сплава двухфазного типа с альфа-фазой и бета-фазой.

Альфа-фаза представляет собой одну из фаз, присутствующих в большинстве титановых (Ti) сплавов, и соответствует компактной гексагональной кристаллической решетке атомов Ti.

Титановые сплавы, содержащие альфа-фазу, легко загрязняются другими химическими элементами, с которыми они приходят в контакт. Например, они загрязняются газами (такими как кислород, азот, водород, галогены). По причинам химической кинетики такое загрязнение обычно становится заметным, когда материал подвергают воздействию температуры, близкой к 500°С или выше. Такое загрязнение ведет к охрупчиванию титанового сплава от его открытой поверхности, что обусловливает ухудшение его механических характеристик.

Этим объясняется то, почему термические обработки, которым подвергают титановый сплав во время его изготовления, проводят в вакууме, то есть при достаточно малом воздействии газа для того, чтобы не загрязнять поверхность титанового сплава.

Несмотря на такие предосторожности, загрязнение поверхности сплава все же может происходить. Поэтому важно проверить присутствие или отсутствие загрязнения. В настоящее время используют несколько методов обнаружения загрязнения поверхности.

Первым методом обнаружения является химический анализ сплава. Такой химический анализ выполняют, как известно, с помощью микрозонда. Этот метод обременителен и не очень надежен, а также является качественным (он дает меру степени загрязненности).

Второй метод представляет собой механическое испытание. В качестве примера, известным образом используют сделанный из этого сплава образец с надрезом, который испытывают до разрушения в условиях испытания на растяжение. Этот метод является обременительным, ненадежным и качественным. Альтернативно, можно известным образом использовать тонкий лист из этого сплава, который сгибают до появления трещин. Этот метод является только качественным.

Третий метод представляет собой исследование микроструктуры титанового сплава. Этапы этого известного метода схематически показаны на фигуре 5. Отрезают образец от детали из этого сплава (этап (а)) таким образом, чтобы поверхность 2 среза проходила до наружной поверхности 1 детали. Затем проводят полирование области 4 упомянутой поверхности 2 среза, причем упомянутая область 4 находится вблизи кромки 50 упомянутого образца, причем кромка 50 является общей с наружной поверхностью 1 детали, и на упомянутую область 4 последовательно наносят первый химический реагент, а затем второй химический реагент (этап (b)). Эти химические травления упомянутыми реагентами служат для выявления микроструктуры сплава. Затем кромку образца обследуют в оптическом микроскопе, чтобы выявить присутствие или отсутствие в нем белого краевого поля 10 (этап (с)).

Фигура 6 представляет собой полученную с помощью оптического микроскопа при 500-кратном увеличении микрофотографию поверхности среза детали из титанового сплава TA6Zr4DE, загрязненного кислородом. Можно видеть присутствие белого краевого поля 10 вдоль кромки 50 образца. Известно, что такое белое краевое поле 10 является показателем загрязнения сплава газами от его поверхности. Глубина загрязнения определяется шириной этого белого краевого поля 10.

Тем не менее, этот метод металлографического исследования иногда оказывается относительно неточным. Фактически, обнаружение загрязнения, основывающееся исключительно на визуальной оценке контраста между белым краевым полем и смежными более серыми участками, и меняющийся размер зерен препятствуют точному измерению толщины белого краевого поля, так что этот метод не всегда обеспечивает возможность точного выяснения степени загрязнения.

Кроме того, этот метод неприменим к определенным титановым сплавам, таким как TA5CD4. Так, на фигуре 2, которая представляет собой полученную с помощью оптического микроскопа микрофотографию поверхности среза титанового сплава TA5CD4, загрязненного кислородом, не наблюдается никакого белого краевого поля вдоль кромки 50 образца.

Настоящее изобретение стремится устранить эти недостатки.

Изобретение нацелено на то, чтобы предложить способ, который позволяет определить, был ли титановый сплав загрязнен посторонними газообразными химическими элементами, который применим ко всем титановым сплавам двухфазного типа с альфа-фазой и бета-фазой и который позволяет с большей точностью измерять это загрязнение.

Эта цель достигается за счет того, что способ включает следующие этапы:

(а) отрезают образец от детали из упомянутого сплава;

(b) подготавливают область поверхности среза образца, находящуюся вблизи кромки этого образца, причем кромка является общей с наружной поверхностью детали, таким образом, чтобы позволить обследовать упомянутую область;

(с) обследуют альфа-фазу упомянутой области при более чем 5000-кратном увеличении;

(d) решают, присутствует ли или отсутствует зернистость в альфа-фазе первой зоны, смежной с кромкой образца;

(е) делают вывод о существовании загрязнения сплава газом, если установлено отсутствие зернистости в альфа-фазе упомянутой смежной зоны, тогда как зернистость присутствует в альфа-фазе вне упомянутой смежной зоны.

С помощью этих действий можно надежно определить, был ли титановый сплав двухфазного типа с альфа-фазой и бета-фазой загрязнен посторонними газообразными химическими элементами, причем независимо от титанового сплава. Кроме того, большее увеличение, при котором выполняют обследование, позволяет провести точное измерение такого загрязнения, поскольку тем самым хорошо определяется граница между зоной без зернистости и зоной с зернистостью.

Преимущественно, приготовление области образца титанового сплава включает полирование упомянутой области, а затем химическое травление упомянутой области единственным реагентом.

Тем самым больше нет необходимости применять два реагента, чтобы подготовить поверхность образца титанового сплава. Поэтому исследование образца является более простым и более надежным.

Изобретение может быть более понятным, а его преимущества лучше проявятся по прочтении нижеследующего подробного описания варианта реализации, приведенного в качестве неограничивающего примера. Описание приводится с привлечением сопроводительных чертежей, на которых:

- фигура 1 является схематическим представлением этапов способа согласно изобретению;

- фигура 2 представляет собой полученную с помощью оптического микроскопа микрофотографию поверхности среза титанового сплава TA5CD4, загрязненного кислородом;

- фигура 3 представляет собой полученную с помощью сканирующего электронного микроскопа микрофотографию поверхности среза титанового сплава TA5CD4 по фигуре 2 при большем увеличении;

- фигура 4 является схематическим представлением микроструктуры, показанной на фигуре 3;

- фигура 5 является схематическим представлением этапов способа исследования микроструктуры титанового сплава согласно уровню техники;

- фигура 6 представляет собой полученную с помощью оптического микроскопа микрофотографию поверхности среза титанового сплава TA6Zr4DE, загрязненного кислородом, с 500-кратным увеличением;

- фигура 7 представляет собой полученную с помощью сканирующего электронного микроскопа микрофотографию поверхности среза титанового сплава TA6Zr4DE по фигуре 6 при большем увеличении; и

- фигура 8 является схематическим представлением микроструктуры, показанной на фигуре 7.

До сих пор, когда обследовали деталь из титанового сплава двухфазного типа с альфа-фазой и бета-фазой, если нельзя было различить белое краевое поле вдоль кромки образца, общей с поверхностью упомянутой детали, то делали вывод, что эта деталь не была загрязнена. Таким образом, если механические характеристики этой детали оказывались неудовлетворительными, то приходили к выводу, что эти плохие характеристики были результатом, например, производственного дефекта, плохого состояния поверхности, наклепа, плохих условий эксплуатации. Фактически, объяснением плохих механических характеристик могло бы быть любое из этих обстоятельств.

Авторы изобретения собрали большое число образцов разнообразных титановых сплавов двухфазного типа с альфа-фазой и бета-фазой и подумали, неочевидным образом, обследовать эти образцы при увеличении гораздо большем, чем обычное, примерно 500-кратное увеличение, которое является достаточным для обследования белых краевых полей в сплавах, загрязненных на поверхности газообразными элементами. Так, с увеличением, большим или равным 5000-кратному, авторы изобретения неожиданно обнаружили, что определенные зоны альфа-фазы не обладают зернистостью, тогда как другие зоны альфа-фазы обладают ею.

Фигура 1 является схематическим представлением этапов способа согласно изобретению, которые обеспечивают возможность обследования зернистости.

Сначала отрезают образец от детали из титанового сплава двухфазного типа с альфа-фазой и бета-фазой (этап (а)) таким образом, чтобы поверхность 2 среза проходила до наружной поверхности 1 детали.

После этого подготавливают область 4 поверхности 2 среза, причем упомянутая область 4 находится вблизи кромки 50 образца (этап (b)), причем эта кромка 50 является общей с наружной поверхностью 1 детали. Цель этого приготовления состоит в обеспечении возможности обследования данной области 4.

Например, это приготовление включает полирование упомянутой области 4, а затем химическое травление упомянутой области 4 единственным реагентом. Фактически, в отличие от способа согласно уровню техники, в котором необходимо применять два реагента последовательно и с различной продолжительностью, в способе согласно изобретению можно использовать один единственный реагент. Результатом этого является упрощение способа и снижение опасности плохого приготовления.

Например, полирование представляет собой полирование до зеркального блеска.

Например, реагент представляет собой водный раствор фтористоводородной кислоты HF с концентрацией 0,5%. Этот реагент наносят на поверхность образца на период времени, составляющий между 15 секундами и 30 секундами.

Альтернативно, можно использовать более чем один реагент.

После этого обследуют альфа-фазу области при увеличении, по меньшей мере равном 5000-кратному (этап (с)).

Эти обследования выполняют с помощью сканирующего электронного микроскопа (СЭМ).

Альтернативно, эти обследования могут быть проведены с помощью другого микроскопа, который способен обеспечивать более чем 5000-кратное увеличение. Тем не менее, эти обследования не могут быть выполнены с помощью современного оптического микроскопа, поскольку его максимальное увеличение составляет около одной тысячи раз.

В качестве примера, используемое увеличение является более чем 10000-кратным.

Затем решают, присутствует ли или отсутствует зернистость в альфа-фазе зоны 11, смежной с кромкой образца (этап (d)).

После этого делают вывод о существовании загрязнения сплава газом, если установлено отсутствие зернистости в альфа-фазе упомянутой смежной зоны 11, в то время как зернистость (зерна) 22 присутствует(ют) в альфа-фазе вне упомянутой смежной зоны 11 (этап (е)).

Таким образом, как показано на фигуре 7, которая представляет собой СЭМ-микрофотографию с 5000-кратным увеличением поверхности среза образца загрязненного кислородом титанового сплава TA6Zr4DE, микрофотография которого в оптическом микроскопе также показана на фигуре 6, установлено, что в первой зоне 11, смежной с кромкой 50 образца, альфа-фаза А не включает зернистости, тогда как во второй зоне 20, более удаленной от кромки 50, зернистость 22 действительно присутствует внутри альфа-фазы А.

Таким образом, авторы изобретения наблюдали отсутствие зернистости в первой смежной зоне 11, которая соответствует белому краевому полю 10, наблюдаемому на фигуре 6.

Фигура 8 схематически иллюстрирует структуру, наблюдаемую на фигуре 7.

Чтобы подтвердить гипотезу, согласно которой отсутствие зернистости 22 в альфа-фазе смежной с кромкой образца зоны 11 согласуется с загрязнением (упомянутой смежной зоны 11) упомянутого образца газом, авторы изобретения обследовали кромки незагрязненных титановых сплавов TA6Zr4DE, которые были подвергнуты модифицированию поверхности (например, наклепу, полированию). Авторы изобретения установили присутствие зернистости 22 в альфа-фазе зоны 11, смежной с кромкой 50 детали одного из этих сплавов, тем самым подтвердив вышеуказанную гипотезу.

Преимущественно, способ согласно изобретению позволяет определить, был ли или не был титановый сплав TA5CD4 загрязнен с поверхности, тогда как эта информация является недоступной при способе обследования согласно уровню техники. Так, фигура 3 представляет собой СЭМ-микрофотографию при 5000-кратном увеличении поверхности среза титанового сплава TA5CD4, микрофотография которого в оптическом микроскопе также показана на фигуре 2. Установлено, что в первой зоне 11, смежной с кромкой 50 образца, альфа-фаза А не имеет зернистости, тогда как во второй зоне 20, более удаленной от кромки 50 (то есть зоне вне смежной зоны 11), зернистость 22 присутствует внутри альфа-фазы А.

Фигура 4 схематически иллюстрирует структуру, наблюдаемую на фигуре 3.


СПОСОБ ОБНАРУЖЕНИЯ ЗАГРЯЗНЕНИЯ ТИТАНОВЫХ СПЛАВОВ ДВУХФАЗНОГО ТИПА С АЛЬФА-ФАЗОЙ И БЕТА-ФАЗОЙ
СПОСОБ ОБНАРУЖЕНИЯ ЗАГРЯЗНЕНИЯ ТИТАНОВЫХ СПЛАВОВ ДВУХФАЗНОГО ТИПА С АЛЬФА-ФАЗОЙ И БЕТА-ФАЗОЙ
СПОСОБ ОБНАРУЖЕНИЯ ЗАГРЯЗНЕНИЯ ТИТАНОВЫХ СПЛАВОВ ДВУХФАЗНОГО ТИПА С АЛЬФА-ФАЗОЙ И БЕТА-ФАЗОЙ
СПОСОБ ОБНАРУЖЕНИЯ ЗАГРЯЗНЕНИЯ ТИТАНОВЫХ СПЛАВОВ ДВУХФАЗНОГО ТИПА С АЛЬФА-ФАЗОЙ И БЕТА-ФАЗОЙ
СПОСОБ ОБНАРУЖЕНИЯ ЗАГРЯЗНЕНИЯ ТИТАНОВЫХ СПЛАВОВ ДВУХФАЗНОГО ТИПА С АЛЬФА-ФАЗОЙ И БЕТА-ФАЗОЙ
СПОСОБ ОБНАРУЖЕНИЯ ЗАГРЯЗНЕНИЯ ТИТАНОВЫХ СПЛАВОВ ДВУХФАЗНОГО ТИПА С АЛЬФА-ФАЗОЙ И БЕТА-ФАЗОЙ
СПОСОБ ОБНАРУЖЕНИЯ ЗАГРЯЗНЕНИЯ ТИТАНОВЫХ СПЛАВОВ ДВУХФАЗНОГО ТИПА С АЛЬФА-ФАЗОЙ И БЕТА-ФАЗОЙ
СПОСОБ ОБНАРУЖЕНИЯ ЗАГРЯЗНЕНИЯ ТИТАНОВЫХ СПЛАВОВ ДВУХФАЗНОГО ТИПА С АЛЬФА-ФАЗОЙ И БЕТА-ФАЗОЙ
Источник поступления информации: Роспатент

Showing 41-50 of 928 items.
10.04.2013
№216.012.33d4

Вентиляция и наддув компонентов турбомашины

Двухконтурная турбомашина, по существу, содержит вентилятор, компрессор, камеру сгорания, турбину, выхлопной корпус и вспомогательный воздушный компрессор, приводимый в действие двигателем Стирлинга. Двигатель Стирлинга установлен ниже по потоку от камеры сгорания и имеет горячую камеру в...
Тип: Изобретение
Номер охранного документа: 0002478811
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3414

Стенка камеры сгорания с оптимизированным разжижением и охлаждением, камера сгорания и газотурбинный двигатель, снабженный такой стенкой

Стенка камеры сгорания газотурбинного двигателя содержит, по меньшей мере, один окружной ряд первичных отверстий, по меньшей мере, один окружной ряд отверстий разжижения и отверстия микроперфорации. Все первичные отверстия расположены в одном и том же осевом положении. Первичные отверстия и...
Тип: Изобретение
Номер охранного документа: 0002478875
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3415

Инжекторная система, камера сгорания, содержащая инжекторную систему, и газотурбинный двигатель

Инжекторная система содержит инжектор, с главной осью (А), круглое расширительное кольцо, коаксиальное с упомянутым инжектором, завихритель первичного воздуха, коаксиальный с упомянутым кольцом, размещенный на выходе упомянутого инжектора, и трубку Вентури, размещенную на выходе завихрителя....
Тип: Изобретение
Номер охранного документа: 0002478876
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3417

Система впрыскивания смеси воздуха с топливом в камеру сгорания газотурбинного двигателя

Система впрыскивания смеси воздуха с топливом в камеру сгорания газотурбинного двигателя имеет в своем составе топливный инжектор и трубку Вентури, расположенную по потоку позади инжектора и коаксиально по отношению к нему. Трубка Вентури содержит внутреннюю поверхность, ограничивающую камеру...
Тип: Изобретение
Номер охранного документа: 0002478878
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3419

Камера сгорания газотурбинного двигателя со спиралеобразной циркуляцией воздуха

Камера сгорания газотурбинного двигателя содержит внутреннюю кольцевую стенку с продольной осью (Х-Х), наружную кольцевую стенку, множество систем впрыска топлива. Наружная кольцевая стенка сцентрирована по продольной оси и охватывает внутреннюю стенку таким образом, чтобы ограничить совместное...
Тип: Изобретение
Номер охранного документа: 0002478880
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3448

Изокинетический зонд для анализа загрязнения газов, генерируемых авиационным двигателем

Изобретение относится к изокинетическому зонду, в частности, для анализа загрязнения газов, вырабатываемых авиационным двигателем. Зонд включает трубку для отбора проб воздуха, входной конец которой вставлен в трубопровод, в котором циркулирует газовый поток. На входе трубки для отбора проб...
Тип: Изобретение
Номер охранного документа: 0002478927
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.375b

Ротор вентилятора и турбомашина, содержащая такой ротор

Ротор вентилятора содержит диск с пазами по его периферии и лопатки, прикрепленные к ротору. Каждая лопатка содержит хвостовик, установленный в паз диска, а каждый паз содержит прокладку удлиненной формы, расположенную между хвостовиком лопатки и дном паза. Прокладка выполнена из...
Тип: Изобретение
Номер охранного документа: 0002479724
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3768

Регулируемое сопло вентилятора и двухконтурный турбореактивный двигатель

Регулируемое сопло вентилятора содержит поддающиеся деформации створки, установленные вблизи его задней кромки. Каждая створка имеет конструкцию типа биметаллической пластинки, содержащей внутреннюю тонкую пластинку, изготовленную из теплоизоляционного материала, и, по меньшей мере, одну...
Тип: Изобретение
Номер охранного документа: 0002479737
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3769

Система управления множеством функций турбореактивного двигателя

Изобретение относится к системе для управления множеством различных функций турбореактивного двигателя, причем каждая функция связана с соответствующим исполнительным устройством, при этом упомянутая система содержит электродвигатель, выполненный с возможностью подачи механической энергии в...
Тип: Изобретение
Номер охранного документа: 0002479738
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.39e4

Промежуточный корпус для реактивного двигателя летательного аппарата, усовершенствованной конструкции

Изобретение относится к области авиации, более конкретно к промежуточному корпусу (21) для реактивного двигателя летательного аппарата. Корпус содержит наружный кожух (23), а также передний и задний фланцы (25, 27), которые расположены радиально внутри относительно наружного кожуха. Корпус (21)...
Тип: Изобретение
Номер охранного документа: 0002480381
Дата охранного документа: 27.04.2013
Showing 41-50 of 667 items.
10.04.2013
№216.012.33d4

Вентиляция и наддув компонентов турбомашины

Двухконтурная турбомашина, по существу, содержит вентилятор, компрессор, камеру сгорания, турбину, выхлопной корпус и вспомогательный воздушный компрессор, приводимый в действие двигателем Стирлинга. Двигатель Стирлинга установлен ниже по потоку от камеры сгорания и имеет горячую камеру в...
Тип: Изобретение
Номер охранного документа: 0002478811
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3414

Стенка камеры сгорания с оптимизированным разжижением и охлаждением, камера сгорания и газотурбинный двигатель, снабженный такой стенкой

Стенка камеры сгорания газотурбинного двигателя содержит, по меньшей мере, один окружной ряд первичных отверстий, по меньшей мере, один окружной ряд отверстий разжижения и отверстия микроперфорации. Все первичные отверстия расположены в одном и том же осевом положении. Первичные отверстия и...
Тип: Изобретение
Номер охранного документа: 0002478875
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3415

Инжекторная система, камера сгорания, содержащая инжекторную систему, и газотурбинный двигатель

Инжекторная система содержит инжектор, с главной осью (А), круглое расширительное кольцо, коаксиальное с упомянутым инжектором, завихритель первичного воздуха, коаксиальный с упомянутым кольцом, размещенный на выходе упомянутого инжектора, и трубку Вентури, размещенную на выходе завихрителя....
Тип: Изобретение
Номер охранного документа: 0002478876
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3417

Система впрыскивания смеси воздуха с топливом в камеру сгорания газотурбинного двигателя

Система впрыскивания смеси воздуха с топливом в камеру сгорания газотурбинного двигателя имеет в своем составе топливный инжектор и трубку Вентури, расположенную по потоку позади инжектора и коаксиально по отношению к нему. Трубка Вентури содержит внутреннюю поверхность, ограничивающую камеру...
Тип: Изобретение
Номер охранного документа: 0002478878
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3419

Камера сгорания газотурбинного двигателя со спиралеобразной циркуляцией воздуха

Камера сгорания газотурбинного двигателя содержит внутреннюю кольцевую стенку с продольной осью (Х-Х), наружную кольцевую стенку, множество систем впрыска топлива. Наружная кольцевая стенка сцентрирована по продольной оси и охватывает внутреннюю стенку таким образом, чтобы ограничить совместное...
Тип: Изобретение
Номер охранного документа: 0002478880
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3448

Изокинетический зонд для анализа загрязнения газов, генерируемых авиационным двигателем

Изобретение относится к изокинетическому зонду, в частности, для анализа загрязнения газов, вырабатываемых авиационным двигателем. Зонд включает трубку для отбора проб воздуха, входной конец которой вставлен в трубопровод, в котором циркулирует газовый поток. На входе трубки для отбора проб...
Тип: Изобретение
Номер охранного документа: 0002478927
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.375b

Ротор вентилятора и турбомашина, содержащая такой ротор

Ротор вентилятора содержит диск с пазами по его периферии и лопатки, прикрепленные к ротору. Каждая лопатка содержит хвостовик, установленный в паз диска, а каждый паз содержит прокладку удлиненной формы, расположенную между хвостовиком лопатки и дном паза. Прокладка выполнена из...
Тип: Изобретение
Номер охранного документа: 0002479724
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3768

Регулируемое сопло вентилятора и двухконтурный турбореактивный двигатель

Регулируемое сопло вентилятора содержит поддающиеся деформации створки, установленные вблизи его задней кромки. Каждая створка имеет конструкцию типа биметаллической пластинки, содержащей внутреннюю тонкую пластинку, изготовленную из теплоизоляционного материала, и, по меньшей мере, одну...
Тип: Изобретение
Номер охранного документа: 0002479737
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3769

Система управления множеством функций турбореактивного двигателя

Изобретение относится к системе для управления множеством различных функций турбореактивного двигателя, причем каждая функция связана с соответствующим исполнительным устройством, при этом упомянутая система содержит электродвигатель, выполненный с возможностью подачи механической энергии в...
Тип: Изобретение
Номер охранного документа: 0002479738
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.39e4

Промежуточный корпус для реактивного двигателя летательного аппарата, усовершенствованной конструкции

Изобретение относится к области авиации, более конкретно к промежуточному корпусу (21) для реактивного двигателя летательного аппарата. Корпус содержит наружный кожух (23), а также передний и задний фланцы (25, 27), которые расположены радиально внутри относительно наружного кожуха. Корпус (21)...
Тип: Изобретение
Номер охранного документа: 0002480381
Дата охранного документа: 27.04.2013
+ добавить свой РИД