×
10.12.2014
216.013.0ce1

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЭРОЗИОННОСТОЙКИХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии. Способ получения эрозионностойких теплозащитных покрытий включает плазменное напыление подслоя нихрома и последующее напыление керметной композиции из механической порошковой смеси, содержащей 50÷80 мас.% диоксида циркония и 50÷20 мас.% порошка никеля, плакированного алюминием, дисперсностью 63÷125 мкм. Керметную композицию подают в плазменную струю под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности. Используют порошок диоксида циркония, содержащий в качестве стабилизирующей добавки 8÷12 мас.% оксида иттрия. Обеспечивается повышение в 1,5-2 раза адгезионной стойкости покрытия. 1 табл., 1 пр.
Основные результаты: Способ получения эрозионностойких теплозащитных покрытий, включающий плазменное напыление подслоя нихрома и последующее напыление керметной композиции из механической порошковой смеси, содержащей 50÷80 мас.% диоксида циркония и 50÷20 мас.% никельсодержащего материала, подачу которой в плазменную струю осуществляют под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности, отличающийся тем, что в качестве никельсодержащего материала в керметной композиции используют порошок никеля, плакированный алюминием, с содержанием алюминия 10÷15 мас.%, дисперсностью 63÷125 мкм, при этом используют порошок диоксида циркония, содержащий в качестве стабилизирующей добавки 8÷12 мас.% оксида иттрия.

Изобретение относится к области порошковой металлургии и может быть использовано для защиты теплонагруженных узлов и элементов конструкции двигательных установок, том числе камер сгорания (КС) жидкостных ракетных двигателей (ЖРД), от теплового и эрозионного разрушения в струе высокотемпературных продуктов сгорания топлива путем нанесения методом плазменного напыления эрозионностойких теплозащитных покрытий (ЭТЗП).

Одной из актуальных задач, связанных с повышением работоспособности плазменных теплозащитных покрытий, является задача увеличения их адгезионной прочности и термостойкости, что обеспечивает работоспособность теплонапряженных узлов в условиях многоразового воздействия высокотемпературных газовых потоков продуктов сгорания топлива.

Известен способ получения ЭТЗП с повышенными значениями отрывной прочности и термостойкости (см. «Порошковая металлургия и напыленные покрытия». Под редакцией Б.О. Митина, М.: Металлургия, 1987 г., стр.560), в котором повышение технических характеристик плазменных покрытий достигается за счет добавок в покрытие пластичного материала, например нихрома, и использование между основой и покрытием переходных слоев, имеющих переменное, уменьшающееся от подложки к основному покрытию содержание пластичной добавки. Такими слоями, например, могут быть:

- 1-й слой 95-65% вес. NiCr ÷ 5÷35% вес. ZrO2;

- 2-й слой 65-35% вес. NiCr ÷ 35÷65% вес. ZrO2;

- 3-й слой 5-35% вес. NiCr ÷ 95÷65% вес. ZrO2.

Таким образом, в данном способе реализуется решение по созданию зоны фазового перехода от подложки к покрытию.

Описанный способ позволяет повысить адгезионную прочность ЭТЗП до величины σA≈7,0÷8,0 МПа и получить термостойкость n≈8÷10 циклов. Недостатком способа является то, что приведенные характеристики не обеспечивают работоспособность в условиях воздействия высокотемпературных газовых потоков КС ЖРД перспективных образцов ракетной техники. Недостатком способа также являются значительные трудности в обеспечении стабильности и воспроизводимости нанесения многослойных покрытий на сложные внутренние поверхности КС ракетных двигателей. Кроме того, нанесение покрытий за несколько проходов нетехнологично и ухудшает когезионные характеристики пакета теплозащитного покрытия в целом.

Известен также способ получения ЭТЗП (см. патент РФ на изобретение №2283363), принятый за прототип, в котором повышение характеристик плазменных покрытий достигается за счет напыления подслоя нихрома и керметной композиции, содержащей 50÷80 масс.% диоксида циркония и 50÷20 масс.% нихрома, при этом керметную композицию готовят из порошков диоксида циркония и нихрома с размером частиц 10÷40 мкм и 40÷100 мкм соответственно, а ее подачу в плазменную струю осуществляют под срез сопла плазматрона в направлении его перемещения относительно напыляемой поверхности, при этом в качестве стабилизирующей добавки в порошке диоксида циркония используют оксид кальция, содержание которого составляет величину 4÷6% масс.

Данный способ позволяет за один проход формировать зону фазового перехода от металлического подслоя к исходному составу ЭТЗП и, как следствие, повысить адгезионную прочность теплозащитных покрытий и их термостойкость до средних значений σA≈12,0÷17,0 МПа и n≈0÷30 циклов.

Приведенные характеристики ЭТЗП достигаются при подводимой к плазмотрону мощности N≈32÷34 кВт, дистанции напыления L≈(100±10) мм и угле напыления θ≈(90±5)°.

Недостатком способа является то, что в случае нанесения ЭТЗП на КС перспективных ЖРД, имеющих малый диаметр критического сечения, необходимо снижать подводимую к плазменному распылителю мощность, увеличивать дистанцию напыления при малых углах оси плазменной струи к напыляемой поверхности, что приводит к снижению степени проплавления порошковых частиц композиционных смесей, уменьшению их кинетической энергии и, как следствие, к снижению уровня свойств ЭТЗП в целом.

Техническим результатом настоящего изобретения является повышение характеристик плазменных ЭТЗП, формируемых из механических керметных смесей методом плазменного напыления при пониженных значениях энтальпии плазменной струи, при увеличенной дистанции напыления под малыми углами.

Указанный технический результат достигается тем, что в способе, включающем плазменное напыление подслоя нихрома и последующее напыление керметной композиции из механической порошковой смеси, содержащей 50÷80 масс.% диоксида циркония и 50÷20 масс.% никельсодержащего материала, подачу которой в плазменную струю осуществляют под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности, согласно изобретению в качестве никельсодержащей металлической составляющей керметной композиции используют порошок никеля, плакированный алюминием с содержанием алюминия 10÷15 масс.% дисперсностью 63÷125 мкм, при этом в качестве стабилизирующей добавки в порошке диоксида циркония используют оксид иттрия, содержание которого составляет величину 8÷12 масс.%.

Разработанный способ получения покрытий обеспечивает повышение характеристик ЭТЗП за счет дополнительного выделения тепла в пятне напыления в ходе экзотермической реакции образования алюминидов NiAl, Ni3Al:

Полнота протекания реакций (1) и (2) зависит от температуры и времени нахождения напыляемых частиц в реакционном состоянии. Максимальный тепловой эффект реакций достигается в диапазоне температур от 600 до 800°C и зависит от способа изготовления композиционного порошка.

Энтальпия напыляемых частиц при завершении реакции может достигать 150÷300 кДж/моль, что позволяет значительно повысить адгезионные и когезионные характеристики ЭТЗП.

Сущность заявленного способа поясняется таблицей, в которой приведены характеристики ЭТЗП.

Сущность заявленного способа будет ясна из приведенного ниже примера.

Пример

На образцы из медного сплава БрХ08 наносили методом плазменного напыления покрытия, состоящие из нихромового подслоя и кермета. Кермет готовили двух составов: 80 масс.% ZrO2+20 масс.% (Ni-Al) и 50 масс.% ZrO2+50 масс.% (Ni-Al).

Использовали порошок диоксида циркония грануляцией 10-40 мкм, стабилизированный 8÷12 масс.% оксида иттрия (Y2O3), и порошок никеля, плакированный алюминием, грануляции 63÷125 мкм. Содержание алюминия в порошке никеля составляло величину 10÷15 масс.%.

Выбор в качестве стабилизирующей добавки Y2O3 с указанным массовым содержанием обусловлен необходимостью обеспечения полной стабилизации ZrO2 с сохранением кубической модификации вплоть до комнатной температуры.

Диоксид циркония с содержанием оксида кальция (CaO) 4÷6 масс %, а также ZrO2 с содержанием стабилизирующей добавки Y2O3 менее 8 масс.% является частично стабилизированным (содержится до 10% моноклинной фазы), что отрицательно сказывается на термостойкости ЭТЗП.

Экспериментально было установлено, что увеличение содержания стабилизирующей добавки Y2O3 более 12 масс.% не приводит к повышению уровня служебных характеристик ЭТЗП, однако стоимость порошка ZrO2 при этом существенно возрастает.

Также экспериментально было получено, что при содержании алюминия в порошке никеля 20 масс.% и более имеет место снижение термостойкости ЭТЗП, которое обусловлено, по-видимому, увеличением количества хрупких алюминидов в покрытии.

Гранулометрический размер частиц порошка никеля, плакированного алюминием 63÷125 мкм определен на основании расчетных исследований по изучению нагрева и траектории движения порошковых частиц в плазменной струе с целью получения неравномерного распределения компонентов механической керметной смеси по сечению плазменной струи и, как следствие, формированию зоны фазового перехода.

Подачу механической керметной смеси в плазменную струю осуществляли под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности.

Режим напыления: подводимая к плазмотрону мощность N=21,6 кВт (ток дуги Jд=360 А, напряжение на дуге Uд=60 В); дистанция напыления L=150 мм; угол напыления θ=45°.

Для получения сравнительных данных параллельно проводили нанесение керметных теплозащитных покрытий на образцы из того же медного сплава известным способом.

Контроль фазового состава покрытий и распределение металлической составляющей по толщине выполняли металлографическим способом.

Определение адгезионной прочности и термостойкости покрытий осуществляли в соответствии с требованиями методик, изложенных в ОС 92-1406-68 «Покрытия эрозионностойкие неметаллические».

Полученные физико-механические и теплофизические свойства покрытий сведены в таблицу.

Как следует из таблицы, использование предложенного способа получения эрозионностойких теплозащитных покрытий по сравнению с известным решением позволяет при указанных выше режимах (подводимая к плазмотрону мощность, дистанция и угол напыления) повысить адгезионную прочность и термостойкость ЭТЗП в 1,5÷2 раза за счет дополнительного выделения тепла в пятне напыления в ходе экзотермической реакции при формировании зоны фазового перехода.

Содержание ZrO2 в смеси, масс.% Способ нанесения покрытий Толщина покрытия, мкм Стабилизирующая добавка, масс.% Содержание алюминия, масс.% Адгезионная прочность,
кгс/см2
Термостойкость, циклы
80 Предложенный 120÷150 8÷12% Y2O3 10÷15 120÷150 17÷20
Известный 120÷150 4÷6% CaO - 70÷80 8÷12
50 Предложенный 120÷150 8÷12% Y2O3 10÷15 150÷180 25÷30
Известный 120÷150 4÷6% CaO - 90÷100 15÷18

Способ получения эрозионностойких теплозащитных покрытий, включающий плазменное напыление подслоя нихрома и последующее напыление керметной композиции из механической порошковой смеси, содержащей 50÷80 мас.% диоксида циркония и 50÷20 мас.% никельсодержащего материала, подачу которой в плазменную струю осуществляют под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности, отличающийся тем, что в качестве никельсодержащего материала в керметной композиции используют порошок никеля, плакированный алюминием, с содержанием алюминия 10÷15 мас.%, дисперсностью 63÷125 мкм, при этом используют порошок диоксида циркония, содержащий в качестве стабилизирующей добавки 8÷12 мас.% оксида иттрия.
Источник поступления информации: Роспатент

Showing 41-47 of 47 items.
20.03.2019
№219.016.e2e6

Оправка для ротационной вытяжки полых изделий

Изобретение относится к области обработки металлов давлением, а именно к оснастке станков для ротационной вытяжки, и может быть использовано для закрепления полых заготовок цилиндрической формы при их обработке раскаткой. Оправка содержит корпус, упор и прижимы для фиксации заготовки на корпусе...
Тип: Изобретение
Номер охранного документа: 0002682258
Дата охранного документа: 18.03.2019
04.06.2019
№219.017.72a4

Сварочная головка для автоматической орбитальной аргонодуговой сварки трубопроводов

Изобретение относится к области сварочного производства и может быть использовано в конструкциях сварочных головок для орбитальной сварки трубопроводов. Сварочная головка содержит основание, размещенные на основании планшайбу с приводом ее вращения и механизм фиксации сварочной головки на...
Тип: Изобретение
Номер охранного документа: 0002690388
Дата охранного документа: 03.06.2019
04.10.2019
№219.017.d248

Способ модифицирования жаропрочных сплавов и высоколегированных сталей

Изобретение относится к металлургии и литейному производству и может быть использовано в машиностроении, автомобиле- и тракторостроении при производстве отливок повышенного качества из высоколегированных сталей и жаропрочных сплавов. Смесь наноразмерных порошковых модификаторов предварительно...
Тип: Изобретение
Номер охранного документа: 0002701978
Дата охранного документа: 02.10.2019
06.10.2019
№219.017.d360

Устройство для сварки полым термоэмиссионным катодом

Изобретение может быть использовано для сварки полым катодом агрегатных сборок изделий ракетно-космической техники, в частности полых корпусных деталей и базовых панелей из титановых, ниобиевых и жаропрочных сплавов. Устройство содержит сварочную горелку с полым катодом и электродом, источник...
Тип: Изобретение
Номер охранного документа: 0002702169
Дата охранного документа: 04.10.2019
09.11.2019
№219.017.df9d

Устройство для преобразования вращательного движения в возвратно-поступательное

Изобретение относится к области машиностроения. Устройство для преобразования вращательного движения в возвратно-поступательное содержит корпус, в котором с возможностью возвратно-поступательного перемещения установлен ведомый элемент, кинематически связанный с ведущим элементом, имеющим...
Тип: Изобретение
Номер охранного документа: 0002705441
Дата охранного документа: 07.11.2019
13.11.2019
№219.017.e096

Устройство для регулирования хода рабочего органа

Изобретение относится к области машиностроения. Устройство для регулирования хода рабочего органа содержит ведущий элемент, имеющий возможность соединения с приводом его возвратно-поступательного перемещения и кинематически связанный с рабочим органом, а также регулировочный элемент,...
Тип: Изобретение
Номер охранного документа: 0002705728
Дата охранного документа: 11.11.2019
12.02.2020
№220.018.0191

Способ гибки труб и станок для осуществления способа

Изобретение относится к обработке металлов давлением, в частности к трубогибочному производству, и может быть использовано для изготовления труб многоколенной пространственной формы. Перед гибкой со скручиванием осуществляют нагрев зоны гибки до температуры горячей деформации материала трубы, а...
Тип: Изобретение
Номер охранного документа: 0002713899
Дата охранного документа: 10.02.2020
Showing 41-42 of 42 items.
29.04.2019
№219.017.45ef

Дозатор порошковых материалов

Изобретение относится к области порошковой металлургии, в частности к средствам для дозирования порошков из механических смесей композиционных металлокерамических и металлических материалов, и может быть использовано в комплекте с плазменными установками, предназначенными для плазменного...
Тип: Изобретение
Номер охранного документа: 0002445583
Дата охранного документа: 20.03.2012
13.06.2019
№219.017.81a0

Способ получения эрозионно стойких теплозащитных покрытий

Изобретение относится к области металлургии, в частности способу получения эрозионно стойких теплозащитных покрытий методом плазменного напыления, и может найти применение в ракетной технике при изготовлении камер сгорания ЖРД с металлокерамическим эрозионно стойким теплозащитным покрытием на...
Тип: Изобретение
Номер охранного документа: 0002283363
Дата охранного документа: 10.09.2006
+ добавить свой РИД