×
27.11.2014
216.013.0be5

Результат интеллектуальной деятельности: СВЕТОИЗЛУЧАЮЩИЙ ДИОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретения относятся к полупроводниковой оптоэлектронике и могут быть использованы при изготовлении различного вида источников излучения. Светоизлучающий диод содержит светоизлучающий кристалл, покрытый оптическим элементом, наружная поверхность которого сферическая и выполнена световыводящей, а в качестве оптического элемента используют полимер класса полиэфироакрилатов, содержание остаточного количества мономеров в котором не более 0,01 массовой части. Также предложен способ изготовления, который включает размещение кристалла на основании, которое закрывают оптическим элементом. Световыводящую наружную поверхность формируют путем заливки определенного объема полимерной матрицы в форму, размеры которой соответствуют требуемой геометрии световыводящей поверхности, при этом заливку осуществляют, по крайней мере, в два этапа, для этого сначала в форму заливают часть полимерной матрицы, объем которой достаточен для формирования световыводящей поверхности, после чего из свободного объема формы удаляют кислород и до окончания полимеризации поверхностного слоя покрывают его недостающей частью полимерной матрицы, в процессе полимеризации которой в нее устанавливают основание с кристаллом, причем полимеризацию различных частей полимерной матрицы осуществляют при одинаковых внешних условиях. Изобретение обеспечивает получение высокоточных параметров светоизлучающего диода путем обеспечения однородности оптического элемента и высокого качества чистоты и точности формы и размеров световыводящей поверхности. 2 н.п. ф-лы, 1 ил.

Изобретение относится к полупроводниковой оптоэлектронике и может быть использовано при изготовлении различного вида источников излучения (излучателей) на основе лазерных диодов.

Задача, на решение которой направлено заявляемое изобретение, состоит в защите светоизлучающего кристалла от физических факторов (механическое воздействие, атмосферные осадки и т.д.) и формирование оптического элемента для получения выходного излучения с требуемыми углами расходимости (требуемой диаграммой направленности излучения светового потока).

Известны конструкции излучателей, в которых используются оптические элементы, форма, размеры и материал которых выбирают таким образом, чтобы они обеспечивали формирование заданных световых характеристик устройства.

Так, например, известен светодиод [патент RU 2207663, публик. 27.06.2003], включающий полупроводниковые светоизлучающие кристаллы, покрытые оптическим элементом, содержащим конусообразный отражатель бокового излучения и собирающую излучение линзу, представляющую собой полусферу с цилиндрическим основанием. Форма и геометрические размеры отражателя и линзы подобраны таким образом, чтобы оптический элемент обеспечивал повышение эффективности использования бокового излучения кристаллов, за счет чего увеличивается мощность излучения светодиода.

Известен также светодиод с оптическим элементом [патент RU 2055420, публик. 27.02.1996], содержащий светоизлучающий кристалл, покрытый выполненным из светопрозрачного материала оптическим элементом, часть наружной поверхности которого представляет собой плоскость и является световыводящей поверхностью, а другая часть является невыводящей излучение поверхностью и имеет асферическую форму, образованную вращением вокруг оси симметрии кривой второго порядка f(x), уравнение которой удовлетворяет условиям полного внутреннего отражения света, излучаемого кристаллом в любой точке данной поверхности. При этом кривая f(x) получена с учетом оптических свойств кристалла и оптического элемента, а именно с учетом значений их показателей преломления. В данной конструкции оптический элемент собирает и выводит через световыводящую поверхность практически все излучение, испускаемое кристаллом, что обуславливает повышение выходной мощности излучения светодиода.

Однако с помощью такого устройства не удается получить требуемое распределение светового потока в заданном пространственном угле.

В качестве ближайшего аналога заявляемому изобретению по количеству сходных признаков и решаемой задаче, заключающейся в создание светоизлучающего диода, обеспечивающего формирование требуемой диаграммы направленности излучения светового потока, выбрана конструкция светоизлучающего диода, известная из описания к патенту на изобретение RU 2265916 [описание публик. 10.12.2005]. Из данного описания также известен и способ его изготовления. Известный светоизлучающий диод, в частности светодиод, содержит светоизлучающий кристалл, покрытый выполненным из светопрозрачного материала оптическим элементом, который имеет асферическую форму наружной поверхности, полученную вращением вокруг оси симметрии светодиода кривой второго порядка f(x), построенной с учетом оптических свойств светоизлучающего кристалла и материала оптического элемента, при этом указанная поверхность является световыводящей. Кривая f(x) в системе координат, точка начала которой совпадает с геометрическим центром активной области светоизлучающего кристалла, имеет начальную точку A0, расположенную на оси ординат на расстоянии, соответствующем характеристическому размеру светодиода (заданное значение высоты оптического элемента или заданное значение его диаметра), и образована множеством точек Ai (i=1, 2 …, n), за координаты каждой из которых приняты координаты точки пересечения прямой, исходящей из точки начала координат под углом к оси ординат, с прямой, исходящей из предыдущей точки Ai-1, под углом Gi к оси абсцисс, приведенной в точку Ai-1, при этом угол - это угол, под которым распространяется iBX луч света, принадлежащий множеству лучей, испускаемых светоизлучающим кристаллом, который выбирается из диапазона углов от 0 до 90 град, а угол Gi определяется исходя из предложенной зависимости.

Способ изготовления описанной выше конструкции светоизлучающего диода заключается в следующем. Используют полупроводниковый светоизлучающий кристалл, например, на основе твердых растворов элементов III и V групп периодической системы Д.И. Менделеева. Кристалл размещают на основании и закрывают оптическим элементом, изготовленным из светопрозрачного материала, например из органического или неорганического оптически прозрачного компаунда, путем заливки указанного компаунда в заливочную форму, размеры которой соответствуют требуемой геометрии световыводящей поверхности. Таким образом, формирование световыводящей поверхности осуществляют одновременно с изготовлением оптического элемента путем заливки в форму единой массой полимерного материала с последующей его объемной полимеризацией.

Недостатки такого способа и устройства заключаются в возникновении в оптическом элементе пузырчатости из-за большой массы полимерного материала. Кроме того, в процессе полимеризации возникают большие внутренние напряжения, способные нарушить электрические контакты светоизлучающего кристалла, и происходит усадка полимерного материала, предварительный расчет которой из-за одновременной заливки большой массы может привести к погрешности, а следовательно, искажению формы световыводящей поверхности. Также, в связи с выполнением асферической поверхности, существенно повышаются технологические трудности и затраты на изготовление оптического элемента светодиода.

Техническим результатом заявляемого изобретения является получение высокоточных параметров светоизлучающего диода с требуемой длиной волны, пропускающей способностью, повышенными температурами разрушения и механического воздействия путем обеспечения однородности оптического элемента и высокого качества чистоты и точности формы и размеров световыводящей поверхности.

Указанный технический результат достигается за счет того, что в светоизлучающем диоде, содержащем с наиболее близким аналогом общие признаки, а именно: светоизлучающий кристалл, покрытый выполненным из светопрозрачного полимерного материала оптическим элементом, наружная поверхность которого выполнена световыводящей, содержаться отличительные признаки, а именно:

- световыводящая поверхность выполнена сферической;

- в качестве оптического элемента используют полимер класса полиэфиракрилатов;

- содержание остаточного количества мономеров в полимере не более 0,01 массовой части.

Способ изготовления светоизлучающего диода, включающий следующие операции: размещение светоизлучающего кристалла на основании, которое закрывают оптическим элементом со световыводящей наружной поверхностью; изготовление оптического элемента осуществляют путем заливки определенного объема полимерной матрицы в форму, размеры которой соответствуют требуемой геометрии световыводящей поверхности, включает в себя следующие отличительные признаки:

- заливку осуществляют, по крайней мере, в два этапа;

- сначала в форму заливают часть полимерной матрицы, объем которой достаточен для формирования световыводящей поверхности;

- из свободного объема формы удаляют кислород;

- до окончания полимеризации поверхностного слоя покрывают его недостающей частью полимерной матрицы;

- в процессе полимеризации долитой на последнем этапе части полимерной матрицы в нее устанавливают основание с кристаллом;

- причем полимеризацию залитых в разное время частей полимерной матрицы осуществляют при одинаковых внешних условиях.

Использование в качестве оптического элемента полимера класса полиэфироакрилатов, содержание остаточного количества мономеров в котором не более 0,01 массовой части, обеспечивает получение требуемых характеристик по пропускающей способности оптического элемента лазерного диода и получение максимально гладкой световыводящей поверхности.

Осуществление заливки, по крайней мере, в два этапа, при первом из которых формируют световыводящую поверхность путем заливки в форму части полимерной матрицы, объем которой достаточен для ее формирования, позволяет уйти от пузырчатости и неоднородности среды оптического элемента, по сравнению с заливкой всей массы одновременно, и уменьшить напряженность материала, возникающую в процессе его усадки.

Удаление из свободного объема заливочной формы кислорода после заливки части полимерной матрицы позволяет обеспечить условия, при которых происходит послойная полимеризация залитой части в направлении от поверхности заливочной формы, формирующей световыводящую поверхность, к свободной поверхности полимерной матрицы, что обеспечивает формирование идеальной формы световыводящей поверхности и позволяет на этапе полимеризации поверхностного слоя добавить недостающее количество, объем которого достаточен для формирования оптического элемента требуемых размеров.

Доливка в заливочную форму до окончания полимеризации поверхностного слоя недостающей части полимерной матрицы, в процессе полимеризации которой в нее устанавливают основание с кристаллом, позволяет уменьшить искажение геометрии оптического элемента путем устранения усадки материала непосредственно в процессе сборки.

Осуществление полимеризации обеих частей полимерной матрицы при одинаковых внешних условиях позволяет получить однородность оптического элемента.

Предпочтительный вариант исполнения светоизлучающего диода, в частности лазерного диода, согласно предлагаемому изобретению, представлен на фиг.1, где 1 - излучающий кристалл, 2 - основание, 3 - оптический элемент, 4 - часть оптического элемента, которая заливается в первую очередь и формирует световыводящую поверхность, 5 - часть оптического элемента, которая заливается во вторую очередь, 6 - световыводящая поверхность.

Лазерный диод содержит излучающий кристалл на основе твердых растворов элементов III и V групп периодической системы Д.И. Менделеева, представляющий собой полупроводниковую гетероструктуру, слои которой выращены методом МОС-гидридной эпитаксии на GaAs подложке. Кристалл размещен на основании, выполняющем функцию теплоотвода и электроподвода. Кристалл покрыт оптическим элементом, изготовленным из светопрозрачного материала, который имеет световыводящую сферическую наружную поверхность. В качестве оптического элемента используют полимер класса полиэфиракрилатов / CH2(CX)O(COR), где X и R арильные и алкильные радикалы, содержание остаточного количества мономеров в котором порядка 0,008 массовой части.

Для изготовления лазерного диода светоизлучающий кристалл 1 размещают на основании 2 и закрывают оптическим элементом 3 со световыводящей наружной поверхностью 6, которую формируют при изготовлении оптического элемента путем заливки определенного объема полимерной матрицы 4 в форму, размеры которой соответствуют требуемой геометрии световыводящей поверхности. Заливку осуществляют в два этапа. Сначала в форму заливают часть полимерной матрицы 4, объем которой достаточен для формирования световыводящей поверхности и составляет ~70% от общего предварительно рассчитанного объема. После чего заливочную форму закрывают, оставляя свободный объем между открытой поверхностью полимерной матрицы 4 и верхом формы. Из образовавшегося свободного объема удаляют кислород, обеспечивая тем самым условия, при которых происходит послойная полимеризация залитой части в направлении от поверхности заливочной формы, формирующей световыводящую поверхность 6, к свободной поверхности полимерной матрицы, что обеспечивает формирование требуемой формы световыводящей поверхности. Далее, до окончания полимеризации поверхностного слоя, когда он еще находится в полужидком состоянии, доливают в форму недостающую часть полимерной матрицы 5, покрывая ею полностью поверхность полужидкого слоя. Для получения однородности оптического элемента 3 доливку и дополимеризацию осуществляют при тех же внешних условиях, при которых была осуществлена первичная заливка 4. В процессе полимеризации долитой части полимерной матрицы 5 в нее устанавливают основание 2 с излучающим кристаллом 1.

Работа лазерного диода осуществляется следующим образом. При подаче электропитания светоизлучающий кристалл 1 излучает световой поток, который проходит через световыводящую поверхность 6 оптического элемента 3. При этом лазерный диод с оптическим элементом обеспечивает получение требуемого светового потока в заданном угле излучения, а энергетическая сила света и выходная мощность больше, чем у конструкции, принятой в качестве ближайшего аналога. По предлагаемой конструкции были изготовлены предлагаемым способом опытные образцы и проведены испытания.

Т.о. заявляемое изобретение обеспечивает получение высокоточных параметров светоизлучающего диода с требуемой длиной волны, пропускающей способностью, повышенными температурами разрушения и механического воздействия путем обеспечения однородности оптического элемента и высокого качества чистоты и точности формы и размеров световыводящей поверхности.


СВЕТОИЗЛУЧАЮЩИЙ ДИОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 11-16 of 16 items.
10.05.2016
№216.015.3d94

Система и способ обнаружения вредоносных файлов определенного типа

Изобретение относится к антивирусным технологиям, а более конкретно к системам обнаружения вредоносных файлов определенного типа. Технический результат заключается в обеспечении возможности обнаружения вредоносного кода в файлах определенного типа с помощью соответствующих сигнатур. Настоящий...
Тип: Изобретение
Номер охранного документа: 0002583712
Дата охранного документа: 10.05.2016
12.01.2017
№217.015.605d

Устройство передачи информации для бесконтактного программирования режимов работы инициатора газодинамического импульсного устройства

Устройство передачи информации для бесконтактного программирования режимов работы инициатора газодинамического импульсного устройства относится к взрывным работам, в частности к устройствам бесконтактного программирования и передаче данных инициатору газодинамического импульсного устройства с...
Тип: Изобретение
Номер охранного документа: 0002590270
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.69bf

Способ приведения в действие инициатора газодинамического импульсного устройства

Изобретение относится к области вооружений и может быть использовано в неконтактных взрывателях боеприпасов. Способ приведения в действие инициатора газодинамического импульсного устройства включает обнаружение объекта. Обнаружение осуществляется с помощью датчика, реагирующего на сближение с...
Тип: Изобретение
Номер охранного документа: 0002591293
Дата охранного документа: 20.07.2016
25.08.2017
№217.015.bd8a

Регулятор расхода сыпучего материала

Изобретение относится к оборудованию для технологических процессов, где требуется непрерывная регулируемая с высокой точностью подача сыпучего мелкодисперсного материала, и может быть использовано в порошковой металлургии, в химической и атомной промышленности, в частности в производстве...
Тип: Изобретение
Номер охранного документа: 0002616351
Дата охранного документа: 14.04.2017
26.08.2017
№217.015.ed9e

Способ определения похожести составных файлов

Изобретение относится к области обработки данных, а именно к способам определения похожести составных файлов. Технический результат настоящего изобретения заключается в обнаружении похожих составных файлов, который достигается путем признания составных файлов похожими, если вычисленные хеши...
Тип: Изобретение
Номер охранного документа: 0002628922
Дата охранного документа: 22.08.2017
20.01.2018
№218.016.1256

Способ обнаружения вредоносных составных файлов

Изобретение относится к области защиты вычислительных устройств, а именно к способам обнаружения вредоносных составных файлов. Технический результат заключается в обеспечении защиты вычислительного устройства от вредоносных программ за счет обнаружения составного вредоносного файла. Способ...
Тип: Изобретение
Номер охранного документа: 0002634178
Дата охранного документа: 24.10.2017
Showing 11-20 of 22 items.
10.05.2016
№216.015.3d94

Система и способ обнаружения вредоносных файлов определенного типа

Изобретение относится к антивирусным технологиям, а более конкретно к системам обнаружения вредоносных файлов определенного типа. Технический результат заключается в обеспечении возможности обнаружения вредоносного кода в файлах определенного типа с помощью соответствующих сигнатур. Настоящий...
Тип: Изобретение
Номер охранного документа: 0002583712
Дата охранного документа: 10.05.2016
12.01.2017
№217.015.605d

Устройство передачи информации для бесконтактного программирования режимов работы инициатора газодинамического импульсного устройства

Устройство передачи информации для бесконтактного программирования режимов работы инициатора газодинамического импульсного устройства относится к взрывным работам, в частности к устройствам бесконтактного программирования и передаче данных инициатору газодинамического импульсного устройства с...
Тип: Изобретение
Номер охранного документа: 0002590270
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.69bf

Способ приведения в действие инициатора газодинамического импульсного устройства

Изобретение относится к области вооружений и может быть использовано в неконтактных взрывателях боеприпасов. Способ приведения в действие инициатора газодинамического импульсного устройства включает обнаружение объекта. Обнаружение осуществляется с помощью датчика, реагирующего на сближение с...
Тип: Изобретение
Номер охранного документа: 0002591293
Дата охранного документа: 20.07.2016
25.08.2017
№217.015.bd8a

Регулятор расхода сыпучего материала

Изобретение относится к оборудованию для технологических процессов, где требуется непрерывная регулируемая с высокой точностью подача сыпучего мелкодисперсного материала, и может быть использовано в порошковой металлургии, в химической и атомной промышленности, в частности в производстве...
Тип: Изобретение
Номер охранного документа: 0002616351
Дата охранного документа: 14.04.2017
26.08.2017
№217.015.ed9e

Способ определения похожести составных файлов

Изобретение относится к области обработки данных, а именно к способам определения похожести составных файлов. Технический результат настоящего изобретения заключается в обнаружении похожих составных файлов, который достигается путем признания составных файлов похожими, если вычисленные хеши...
Тип: Изобретение
Номер охранного документа: 0002628922
Дата охранного документа: 22.08.2017
20.01.2018
№218.016.1256

Способ обнаружения вредоносных составных файлов

Изобретение относится к области защиты вычислительных устройств, а именно к способам обнаружения вредоносных составных файлов. Технический результат заключается в обеспечении защиты вычислительного устройства от вредоносных программ за счет обнаружения составного вредоносного файла. Способ...
Тип: Изобретение
Номер охранного документа: 0002634178
Дата охранного документа: 24.10.2017
09.06.2018
№218.016.5f4a

Головной взрыватель

Изобретение относится к области взрывной техники, к взрывателям зарядов взрывчатого вещества (ВВ) с неконтактной функцией срабатывания, и может быть использовано в автоматических и подствольных гранатометах. Устройство включает инерционный контактный датчик с перемещаемым под воздействием...
Тип: Изобретение
Номер охранного документа: 0002656651
Дата охранного документа: 06.06.2018
05.07.2018
№218.016.6c77

Способ контроля доступа к составным файлам

Изобретение относится к защите вычислительных устройств, а именно к контролю доступа к составным файлам. Технический результат – обеспечение защиты вычислительного устройства при доступе пользователя к составным файлам. Способ контроля доступа к составному файлу, в котором определяют, является...
Тип: Изобретение
Номер охранного документа: 0002659739
Дата охранного документа: 03.07.2018
10.04.2019
№219.017.033b

Способ измерения расхода газа в трубопроводах и устройство для его осуществления

Изобретение предназначено для измерения расхода в магистральных трубопроводах. Возбуждают продольные ультразвуковые волны по и против потока газа за счет возбуждения в стенке трубы волн Лэмба. Выделяют нестационарную составляющую полезного сигнала, прошедшего через газ, путем компенсации...
Тип: Изобретение
Номер охранного документа: 0002313068
Дата охранного документа: 20.12.2007
18.05.2019
№219.017.5912

Предохранительно-взводящий механизм взрывателя

Предохранительно-взводящий механизм (ПВМ) взрывателя относится к взрывной технике. ПВМ содержит корпус с электродетонатором (ЭД), поперечно перемещаемую перегородку, расположенную в направляющем пазу корпуса, инерционный блокирующий механизм с центробежным фиксатором конечного положения...
Тип: Изобретение
Номер охранного документа: 0002413176
Дата охранного документа: 27.02.2011
+ добавить свой РИД