×
27.11.2014
216.013.0bd5

Результат интеллектуальной деятельности: ГЕТЕРОСТРУКТУРНЫЙ МОДУЛИРОВАНО-ЛЕГИРОВАННЫЙ ПОЛЕВОЙ ТРАНЗИСТОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний. Гетероструктурный модулировано-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты. Пьедестал имеет толщину 30-200 мкм и выполнен из теплопроводящего слоя CVD поликристаллического алмаза с имплантированным Ni и с отожженными приповерхностными слоями с двух сторон. Поверх пьедестала расположена подложка из монокристаллического кремния толщиной 10-20 мкм, буферный слой. На поверхности гетероэпитаксиальной структуры, между истоком, затвором и стоком, последовательно размещены дополнительные слои теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и барьерный слой из оксида алюминия. При этом барьерные слои выполнены с суммарной толщиной 1,0-4,0 нм. Кроме того, в области затвора барьерные слои размещены под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN. Технический результат заключается в повышении теплоотвода от пьедестала и активной области транзистора, обеспечении минимальных утечек тока затвора и достижении наименьшего коэффициента шума в ГГц-диапазоне частот. 3 з.п. ф-лы, 6 ил.

Изобретение относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний.

Гетероструктурные полевые транзисторы с модулированным легированием (ПТМЛ, MODFET) на основе соединений полупроводниковых материалов групп AIIIBV в настоящее время являются самыми быстродействующими полевыми транзисторами, позволяя одновременно достигать наименьшие коэффициенты шума в ГГц-диапазоне частот. Высокое быстродействие достигается за счет эффекта увеличения дрейфовой скорости электронов, образующих двумерный электронный газ у интерфейса модулировано-легированной гетероструктуры (МЛГС).

Из "Уровня техники" известен полевой СВЧ-транзистор, содержащий подложку, на которой сформирован буферный слой из широкозонного полупроводника, на котором расположен активный слой из узкозонного полупроводника с электродами истока, стока и затвора. Кроме того, активный слой под электродом затвора выполнен неравномерно-легированным. При этом концентрация легирующей примеси в направлении электрод истока - электрод стока монотонно возрастает от значения, соответствующего концентрации остаточных примесей, до значения, соответствующего концентрации примесей в буферном слое, а концентрация примесей в буферном слое на 4-5 порядков превышает концентрацию остаточных примесей в активном слое (см. А.С. СССР №1118245, опубл. 19.06.1995).

Недостатками известного устройства являются низкое значение СВЧ-мощности, низкое значение теплоотвода от активной части транзистора и наличие низкочастотных шумов.

Кроме того, известен полевой транзистор на основе нитридов галлия и алюминия, структура которого последовательно включает: подложку, слой GaN, барьерный слой, выполненный из двух подслоев: Al0,2Ga0,8N, на нем GaN. На структуре выполнены контакты: сток, исток и затвор с соответствующими промежутками между ними; далее выполнено диэлектрическое покрытие из MgO, Sc2O3 или SiNx. Между контактами диэлектрическое покрытие находится на барьерном слое и служит для защиты открытых поверхностей барьерного слоя от внешних воздействий, см. В. Luo et al. The role of cleaning conditions and epitaxial layer structure on reliability of Sc2O3 and MgO passivation on AlGaN/GaN HEMTS, Solid-State Electronics, 46, pp.2185-2190, 2002.

Недостатками известного устройства являются высокий уровень деградации, обусловленный низким значением теплоотвода от активной части транзистора.

Задачей настоящего изобретения является устранение всех вышеуказанных недостатков.

Технический результат заключается в повышении теплоотвода от пьедестала и активной области транзистора, обеспечении минимальных утечек тока затвора и достижении наименьшего коэффициента шума в ГГц-диапазоне частот.

Технический результат обеспечивается тем, что гетероструктурный модулировано-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты. Пьедестал имеет толщину 30-200 мкм и выполнен из теплопроводящего слоя CVD поликристаллического алмаза с имплантированным Ni и с отожженными приповерхностными слоями с двух сторон. Поверх пьедестала расположена подложка из монокристаллического кремния толщиной 10-20 мкм, буферный слой. На поверхности гетероэпитаксиальной структуры, между истоком, затвором и стоком, последовательно размещены дополнительные слои теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и барьерный слой из оксида алюминия. При этом барьерные слои выполнены с суммарной толщиной 1,0-4,0 нм. Кроме того, в области затвора барьерные слои размещены под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN.

В соответствии с частными случаями выполнения устройство имеет следующие особенности.

Буферный слой может быть выполнен из AlN или из HfN.

Транзистор содержит дополнительный нелегированный слой, выполненный из твердого раствора AlGaN.

Сущность настоящего изобретения поясняется следующими иллюстрациями:

фиг.1 - отображает настоящее устройство;

фиг.2 - отображает зависимость доли DX-центров в общем числе введенных доноров от уровня легирования слоя AlXGal-XN:Si в МЛГС AlGaN/GaN;

фиг.3 - отображает схематическое изображение энергетических зон у модулировано-легированного гетероперехода n-AlGaN/GaN;

фиг.4 - приведены экспериментально измеренные зависимости температуры разогрева активной области СВЧ транзистора от времени;

фиг.5 - приведены вольт-амперные характеристики мощного транзистора СВЧ без дополнительных слоев на поверхности кристалла транзистора;

фиг.6 - приведены вольт-амперные характеристики мощного транзистора СВЧ с дополнительными слоями.

На иллюстрации отображены следующие конструктивные элементы:

1 - фланец марки МД-40;

2 - слой припоя из AuSn;

3 - пьедестал из теплопроводящего слоя CVD поликристаллического алмаза с имплантированными Ni и отожженными приповерхностными слоями с двух сторон;

4 - подслой из AuGe;

5. - монокристаллический слой кремния;

6. - теплопроводящий слой CVD поликристаллического алмаза;

7 - слой монокристаллического кремния;

8 - буферный слой AlN или HfN;

9 - нелегированный слой из GaN;

10 - слой твердого раствора из AlGaN (спейс);

11 - слой твердого раствора из AlGaN n+-типа проводимости;

12 - слой твердого раствора из AlGaN (крыша);

13 - низкоомные контактные слои из твердого раствора AlGaN n+-типа проводимости, под истоком и стоком;

14 - исток;

15 - затвор;

16 - сток;

17 - омические контакты;

18 - дополнительный теплопроводящий слой поликристаллического алмаза;

19 - дополнительный барьерный слой из двуокиси гафния;

20 - дополнительный барьерный слой из оксида алюминия.

Настоящее устройство производят следующим образом.

На фланце марки МД-40 1 толщиной 1600 мкм размещен слой припоя состава AuSn 2 толщиной 25 мкм, затем в заготовленный в качестве пьедестала слой теплопроводящего CVD поликристаллического алмаза 3 толщиной ~150 мкм, в обе приповерхностные области которого, предварительно, способом имплантации введен никель и проведен отжиг. Затем после размещения на поверхности теплопроводящего слоя CVD поликристаллического алмаза размещают подслой из AuGe 4 с содержанием Ge до 12%, толщиной ~25 мкм. Затем на поверхности подслоя AuGe 4 последовательно размещают: базовую подложку 5, состоящую из монокристаллического кремния p-типа проводимости, ориентированного по плоскости (III), толщиной менее 10 мкм, и теплопроводящий CVD поликристаллический слой алмаза 6 толщиной 150 мкм, слой монокристаллического кремния 7 толщиной 0,5-20 мкм, буферный слой из AlN 8 (по другому частному случаю выполнения из HfN) толщиной 0,1 мкм.

После размещения слоя CVD поликристаллического алмаза 6 базовая подложка 5 утоняется методами мокрого и сухого травления до толщины 10 мкм.

Поверх буферного слоя 8 размещена эпитаксиальная структура на основе широкозонных III-нитридов в виде слоев 9-12, состоящих из нелегированного буферного слоя GaN 9, слоя твердого раствора AlGaN (спейс) 10, слоя твердого раствора AlGaN n+-типа проводимости 11, слоя твердого раствора AlGaN (крыша) 12.

Между слоем CVD поликристаллического алмаза 6 и слоем GaN 9 располагается переходная область, которая служит для уменьшения рассогласования параметров решетки инородной подложки и растущих на ней эпитаксиальных слоев нитрида галлия (и далее - всей гетероструктуры). Слой из GaN 9 предназначен для образования в его приповерхностном слое проводящего канала (двумерного электронного газа (ДЭГ) с высокой подвижностью носителей заряда), возникающего за счет разрыва зон и поляризационных эффектов при образовании гетероперехода AlGaN/GaN. Основным требованием к этому слою является структурное совершенство, достаточное для обеспечения высокой подвижности электронов и высокого сопротивления. Поэтому канальный слой не легируется, а в ряде случаев используются специальные приемы для обеспечения необходимого высокого удельного сопротивления. Толщина GaN слоя 9 для структур, получаемых методом МПЭ, составляет обычно 1-3 мкм. Система AlGaN слоев 10-12 образует с нижележащим слоем GaN 9 гетеропереход, служащий для создания на границе двумерного электронного газа (ДЭГ) с высокой подвижностью. Более широкозонный по сравнению с нитридом галлия и имеющий меньший параметр решетки слой AlGaN создает необходимый разрыв зон и упругие напряжения на границе раздела, необходимые для создания высокой плотности носителей заряда в ДЭГ.

После размещения низкоомных подконтактных слоев твердого раствора AlGaN n+-типа проводимости формируют исток 14, затвор 15, сток 16 и омические контакты 17. Кроме того, устройство снабжают дополнительными слоями, размещенными между истоком 14, затвором 15 и стоком 16. Дополнительные слои выполняют в виде теплопроводящего CVD поликристаллического алмаза 18, барьерного слоя из двуокиси гафния 19 и дополнительного барьерного слоя из оксида алюминия 20. При этом слои из двуокиси гафния 19 и оксида алюминия 20 имеют общую толщину 1,0-4,0 нм. В области затвора дополнительные барьерные слои размещены под затвором 15, непосредственно на эпитаксиальной структуре в виде слоя 12 из твердого раствора AlGaN n-типа проводимости.

В настоящем устройстве обеспечивается оптимизация отвода тепла из активной области кристалла и в целом из транзистора и минимизация утечек тока затвора. Это обеспечивается с помощью использования теплопроводящего поликристаллического слоя алмаза (3, 6, 18) и дополнительных барьерных слоев из двуокиси гафния 19 и оксида алюминия 20, которые позволяют минимизировать утечки тока и увеличить значение напряжения пробоя.

Исходя из вышеизложенного наиболее приемлемой для создания малошумящего НЕМТ на основе AlGaN/GaN авторами была выбрана следующие конструкции гетероструктур:

AlGaN - S.I AlGaN - S.I
AlGaN - n+ AlGaN - n+
AlGaN - S.I AlGaN - S.I
GaN - S.I GaN - S.I
AlGaNзap.слой (AlGaN-AlN)зар.слой
Si - p Si - p
CVD поликристалл. алмаза CVD поликристалл. алмаза

На фигурах 5, 6 приведены вольт-амперные характеристики: фиг.5 - без слоя изолирующего поликристаллического алмаза, на поверхности кристалла СВЧ транзистора, между истоком, затвором и стоком и дополнительных барьерных слоев под затвором; фиг.6 - со слоями изолирующего поликристаллического алмаза на поверхности кристалла транзистора, между истоком, затвором и стоком, а также дополнительными слоями (масками) из двуокиси гафния и оксида алюминия под затвором транзистора и поверх изолирующего поликристаллического алмаза.

Размещение слоя изолирующего поликристаллического алмаза на поверхности кристалла СВЧ транзистора, между истоком, затвором и стоком, уменьшает тепловое сопротивление транзисторной структуры более чем в 1,5 раза, и благодаря наличию на поверхности кристалла транзистора слоя теплопроводящего поликристаллического алмаза одновременно с барьерными слоями двуокиси гафния и оксида алюминия, размещенными под затвором, повышает величину пробивного напряжения более 20%, что обеспечивает повышение эффективности предложенного изобретения.


ГЕТЕРОСТРУКТУРНЫЙ МОДУЛИРОВАНО-ЛЕГИРОВАННЫЙ ПОЛЕВОЙ ТРАНЗИСТОР
ГЕТЕРОСТРУКТУРНЫЙ МОДУЛИРОВАНО-ЛЕГИРОВАННЫЙ ПОЛЕВОЙ ТРАНЗИСТОР
ГЕТЕРОСТРУКТУРНЫЙ МОДУЛИРОВАНО-ЛЕГИРОВАННЫЙ ПОЛЕВОЙ ТРАНЗИСТОР
ГЕТЕРОСТРУКТУРНЫЙ МОДУЛИРОВАНО-ЛЕГИРОВАННЫЙ ПОЛЕВОЙ ТРАНЗИСТОР
ГЕТЕРОСТРУКТУРНЫЙ МОДУЛИРОВАНО-ЛЕГИРОВАННЫЙ ПОЛЕВОЙ ТРАНЗИСТОР
ГЕТЕРОСТРУКТУРНЫЙ МОДУЛИРОВАНО-ЛЕГИРОВАННЫЙ ПОЛЕВОЙ ТРАНЗИСТОР
Источник поступления информации: Роспатент

Showing 11-20 of 22 items.
27.11.2014
№216.013.0bda

Способ изготовления мощного свч-транзистора

Изобретение относится к области полупроводниковой техники. Способ изготовления мощного СВЧ-транзистора включает нанесение на фланец слоя припоя, формирование пьедестала, нанесение подслоя, обеспечивающего крепление кристалла транзистора к пьедесталу, формирование на базовой подложке из...
Тип: Изобретение
Номер охранного документа: 0002534442
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0bdf

Псевдоморфный гетеростуктурный модулировано-легированный полевой транзистор

Изобретение относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний. Гетероструктурный модулировано-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток,...
Тип: Изобретение
Номер охранного документа: 0002534447
Дата охранного документа: 27.11.2014
27.01.2015
№216.013.2072

Модулированно-легированный полевой транзистор

Изобретение относится к электронной технике. Модулированно-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты. Пьедестал изготовлен из теплопроводящего слоя поликристаллического алмаза. Поверх...
Тип: Изобретение
Номер охранного документа: 0002539754
Дата охранного документа: 27.01.2015
10.08.2015
№216.013.69d4

Способ определения толщины металлических пленок

Изобретение относится к измерительной технике. Способ контроля состава материала при формировании структуры заключается в том, что в процессе формирования слоя осуществляют измерение эллипсометрических параметров Δ и ψ. Предварительно определяют эллипсометрическим методом с использованием...
Тип: Изобретение
Номер охранного документа: 0002558645
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69d8

Органичитель мощности свч

Использование: для изготовления полупроводниковых изделий. Сущность изобретения заключается в том, что ограничитель мощности СВЧ включает электроды и емкостные элементы. Емкостные элементы представляют собой конденсаторы, ограничитель мощности СВЧ включает подложку из сапфира, на которой...
Тип: Изобретение
Номер охранного документа: 0002558649
Дата охранного документа: 10.08.2015
20.09.2015
№216.013.7cc0

Мощный переключатель свч

Изобретение относится к области создания полупроводниковых изделий, а именно к мощному переключателю СВЧ на основе соединения галлия, содержащему подложку, поверх которой размещена эпитаксиальная гетероструктура и барьер Шоттки. Технический результат заключается в уменьшении теплового...
Тип: Изобретение
Номер охранного документа: 0002563533
Дата охранного документа: 20.09.2015
10.02.2016
№216.014.c1cc

Коммутирующее устройство свч

Изобретение относится к технике СВЧ. Технический результат - повышение надежности и скорости переключения, увеличение уровня выходной мощности и уровня радиационной стойкости. Для этого коммутирующее устройство СВЧ содержит электроды и емкостной элемент, представляющий собой конденсатор, при...
Тип: Изобретение
Номер охранного документа: 0002574811
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c2a0

Мощный переключатель свч

Изобретение относится к области полупроводниковых изделий. Технический результат - повышение надежности устройства путем снижения влияния DX центров, повышения плотности электронов и устранения деградации в гетероструктуре. Для этого переключатель СВЧ содержит подложку, на которой...
Тип: Изобретение
Номер охранного документа: 0002574810
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c300

Мощный псевдоморфный переключатель свч

Изобретение относится к области полупроводниковых изделий. Технический результат - повышение надежности устройства путем снижения влияния DX центров, повышения плотности электронов и устранения деградации в гетероструктуре. Для этого переключатель СВЧ содержит подложку, на которой...
Тип: Изобретение
Номер охранного документа: 0002574808
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c398

Псевдоморфный переключатель свч

Изобретение относится к области полупроводниковых изделий, Технический результат - повышение надежности устройства путем снижения влияния DX центров, повышения плотности электронов и устранения деградации в гетероструктуре. Для этого переключатель СВЧ содержит подложку из сапфира, на которой...
Тип: Изобретение
Номер охранного документа: 0002574809
Дата охранного документа: 10.02.2016
Showing 11-20 of 24 items.
27.11.2014
№216.013.0bdf

Псевдоморфный гетеростуктурный модулировано-легированный полевой транзистор

Изобретение относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний. Гетероструктурный модулировано-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток,...
Тип: Изобретение
Номер охранного документа: 0002534447
Дата охранного документа: 27.11.2014
27.01.2015
№216.013.2072

Модулированно-легированный полевой транзистор

Изобретение относится к электронной технике. Модулированно-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты. Пьедестал изготовлен из теплопроводящего слоя поликристаллического алмаза. Поверх...
Тип: Изобретение
Номер охранного документа: 0002539754
Дата охранного документа: 27.01.2015
10.08.2015
№216.013.69d4

Способ определения толщины металлических пленок

Изобретение относится к измерительной технике. Способ контроля состава материала при формировании структуры заключается в том, что в процессе формирования слоя осуществляют измерение эллипсометрических параметров Δ и ψ. Предварительно определяют эллипсометрическим методом с использованием...
Тип: Изобретение
Номер охранного документа: 0002558645
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69d8

Органичитель мощности свч

Использование: для изготовления полупроводниковых изделий. Сущность изобретения заключается в том, что ограничитель мощности СВЧ включает электроды и емкостные элементы. Емкостные элементы представляют собой конденсаторы, ограничитель мощности СВЧ включает подложку из сапфира, на которой...
Тип: Изобретение
Номер охранного документа: 0002558649
Дата охранного документа: 10.08.2015
20.09.2015
№216.013.7cc0

Мощный переключатель свч

Изобретение относится к области создания полупроводниковых изделий, а именно к мощному переключателю СВЧ на основе соединения галлия, содержащему подложку, поверх которой размещена эпитаксиальная гетероструктура и барьер Шоттки. Технический результат заключается в уменьшении теплового...
Тип: Изобретение
Номер охранного документа: 0002563533
Дата охранного документа: 20.09.2015
10.02.2016
№216.014.c1cc

Коммутирующее устройство свч

Изобретение относится к технике СВЧ. Технический результат - повышение надежности и скорости переключения, увеличение уровня выходной мощности и уровня радиационной стойкости. Для этого коммутирующее устройство СВЧ содержит электроды и емкостной элемент, представляющий собой конденсатор, при...
Тип: Изобретение
Номер охранного документа: 0002574811
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c2a0

Мощный переключатель свч

Изобретение относится к области полупроводниковых изделий. Технический результат - повышение надежности устройства путем снижения влияния DX центров, повышения плотности электронов и устранения деградации в гетероструктуре. Для этого переключатель СВЧ содержит подложку, на которой...
Тип: Изобретение
Номер охранного документа: 0002574810
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c300

Мощный псевдоморфный переключатель свч

Изобретение относится к области полупроводниковых изделий. Технический результат - повышение надежности устройства путем снижения влияния DX центров, повышения плотности электронов и устранения деградации в гетероструктуре. Для этого переключатель СВЧ содержит подложку, на которой...
Тип: Изобретение
Номер охранного документа: 0002574808
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c398

Псевдоморфный переключатель свч

Изобретение относится к области полупроводниковых изделий, Технический результат - повышение надежности устройства путем снижения влияния DX центров, повышения плотности электронов и устранения деградации в гетероструктуре. Для этого переключатель СВЧ содержит подложку из сапфира, на которой...
Тип: Изобретение
Номер охранного документа: 0002574809
Дата охранного документа: 10.02.2016
20.01.2018
№218.016.1d9e

Псевдоморфное коммутирующее устройство на основе гетероструктуры algan/ingan

Изобретение относится к области изготовления полупроводниковых изделий. Коммутирующее устройство является псевдоморфным, изготовленным на базе гетероструктуры AlGaN/InGaN, а емкостный элемент представляет собой конденсатор. Кроме того, коммутирующее устройство включает подложку из сапфира, на...
Тип: Изобретение
Номер охранного документа: 0002640966
Дата охранного документа: 12.01.2018
+ добавить свой РИД