×
27.11.2014
216.013.0aa6

Результат интеллектуальной деятельности: СПОСОБ ЗАЩИТЫ НАСОСНО-КОМПРЕССОРНОЙ ТРУБЫ ОТ КАВИТАЦИОННОЙ ЭРОЗИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нефтедобывающей промышленности при добыче нефти с больших глубин, более 500 м, и при содержании в нефти газов. Техническим результатом изобретения является исключения или уменьшения эффекта кавитационной эрозии насосно-компрессорных труб. Сущность изобретения: способ защиты насосно-компрессорной трубы от кавитационной эрозии включает закачивание воды в нефтяной пласт через нагнетательную трубу и отбор скважинной жидкости с растворенными в ней газами через насосно-компрессорную трубу - НКТ. При содержании растворенных газов не менее 100 м на 1 м скважинной жидкости давление на выходе из скважины либо плавно увеличивают от 0,1 до 2 МПа с шагом 0,01-0,003 МПа/неделя, либо это давление плавно поддерживают в 1,1-1,2 раза выше пороговой величины давления вскипания основного компонента жидкого газа, растворенного в нефти. 2 ил.
Основные результаты: Способ защиты насосно-компрессорной трубы от кавитационной эрозии, включающий закачивание воды в нефтяной пласт через нагнетательную трубу и отбор скважинной жидкости с растворенными в ней газами через насосно-компрессорную трубу - НКТ, отличающийся тем, что при содержании растворенных газов не менее 100 м на 1 м скважинной жидкости давление на выходе из скважины либо плавно увеличивают от 0,1 до 2 МПа с шагом 0,01-0,003 МПа/неделя, либо это давление поддерживают в 1,1-1,2 раза выше пороговой величины давления вскипания основного компонента жидкого газа, растворенного в нефти.

Область техники, к которой относится изобретение.

Настоящее изобретение относится к нефтедобыче из подземных месторождений и, в частности, может быть эффективно использовано для продления срока службы насосно-компрессорных труб (НКТ) скважин с глубиной более 500 м и при высоких содержаниях в нефти сжиженного газа, содержание которого зависит от содержания метана и/или диоксида углерода (более 100 м3/1 м3 нефти).

Описание аналога.

Известен способ защиты НКТ от химической/ электрохимической коррозии, включающий покрытие внутренней поверхности НКТ полиэтиленом, полипропиленом или другими некорродируемыми материалами (см. US 3461918 от 29.08.1966, US 6247499 от 19.06.2001), введением ингибитора коррозии (SU 1072549 А1 от 20.04.1999).

Известен способ защиты НКТ с помощью покрытия внутренней поверхности трубы полипропиленом (US 6361841 В1 от 26.03.2002) или силаксаном (RU 2110610 С1 от 10.05.1998).

Однако известный способ не может защитить НКТ от физического разрушения внутренней поверхности трубы при вскипании растворенного в нефти газа, т.к. прочность покрытий меньше прочности стали. Разрушение поверхности происходит вследствие большего давления в паровых пузырьках вскипающего газа. Схема явлений в процессе кавитационной эрозии показана на Фиг.1. Вскипание сжиженного газа происходит из-за уменьшения давления в НКТ до пороговой для данного газа величины по мере подъема скважинной жидкости по этой трубе. При содержании газа не менее 100 м3 на 1 м3 нефти через 40 дней откачки нефти на глубинах 400-600 м в стали толщиной 10 мм образуются ямки глубиной до 3 мм. Точная глубина скважины, где происходит кавитационная эрозия из-за вскипания растворенного газа, не известна, она является величиной переменной, зависящей от природы сжиженного газа, величин давлений в НКТ, производительности глубинного насоса и давления в самом месторождении. Она может быть разная также в разных скважинах одного месторождения нефти. Оператор нефтедобычи вынужден через 40 дней отбор скважинной жидкости (смеси нефти и воды) прекратить и приступить к операции по замене НКТ. В результате за год меняются не менее 9 комплектов труб, каждый из них включает 150-200 труб. На самом деле каждая труба могла бы проработать не менее 0,2-1 года, пока не проявится действие других факторов, определяющих продолжительность работоспособности всей трубы в целом: продолжительность работоспособности глубинного насоса, коррозионная стойкость труб, процесса осаждения на трубах парафина и других возможных факторов.

Достижение технического результата

Продление срока службы насосно-компрессорных труб (НКТ) скважин с глубиной более 500 м и при высоких содержаниях в нефти сжиженного газа, содержание которого зависит от содержания метана и/или диоксида углерода (более 100 м3/1 м3 нефти).

Указанный технический результат достигается тем, что предложен способ защиты насосно-компрессорной трубы (НКТ), включающий закачивание воды в нефтяной пласт через нагнетательную трубу и отбор скважинной жидкости, отличающийся тем, что с целью уменьшения степени кавитационной эрозии НКТ в подземных горизонтах, вариант способа 1 состоит в регулировании давления в скважинной жидкости на выходе из скважины на поверхность Земли до величины давления выше давления, при которой вскипают растворенные в нефти сжиженные газы.

Вариант способа 2 состоит в уменьшении степени эрозии в подземной части НКТ путем распределения (размазывания) такой эрозии по увеличенной (в 10-100 раз) внутренней поверхности НКТ с помощью плавного, постепенного и постоянного (например, каждые 1-10 дней) увеличения давления скважинной жидкости на выходе из НКТ по определенному закону.

Оба варианта способа включают, с целью уменьшения загрязнения окружающей среды, подачу отработанной воды из отстойника нефти и воды в нагнетательную трубу для закачивания в нефтяной пласт.

Изобретение поясняется чертежами.

На Фиг.1 изображена схема явления кавитационной эрозии в НКТ. Здесь:

1 - паровые пузырьки вскипевшего жидкого газа в объеме жидкости;

2 - паровые пузырьки вскипевшего жидкого газа у поверхности НКТ;

3 - пузырек не сжиженного газа, прилипший к поверхности НКТ в зоне эрозии;

4 - вектор взрывных волн множества паровых пузырьков жидкого газа, аккумулированных с помощью пузырька не сжиженного газа;

5 - вид сверху зоны кавитационной эрозии в увеличенном масштабе (разрез по горизонтали);

6 - зона кавитационной эрозии на поверхности НКТ;

7 - поток смеси нефти, воды и газа (скважинной жидкости);

8 - стенка НКТ (вертикальный разрез).

На Фиг.2 представлена структурная схема системы нефтедобычи с использованием варианта 1 защиты от кавитационной эрозии. Здесь:

101 - газгольдер для газов, выделившихся при 0,1 МПа из скважинной жидкой смеси;

102 - отстойник скважинной смеси жидкостей, разделитель нефти и воды;

103 - сепаратор газа и жидкости при 0,1-0,2 МПа;

104 - дроссель сброса давления с 5-6 МПа до 0,1-0,2 МПа;

105 - накопитель жидкой смеси при повышенном давлении (не менее 5 МПа);

106 - выходной дроссель НКТ (давление не менее 5-6 МПа);

107 - обсадная труба;

108 - насосно-компрессорная труба (НКТ);

109 - глубинный насос НКТ;

110 - поток нефти, воды и газа;

111 - дроссель для подачи воды в нагнетательную трубу и подземный пласт;

112 - труба для подачи воды;

113 - поток воды;

114 - компрессор для воды;

115 - камера для воды (обратной и поданной из водоема);

116 - водоем;

117 - нефтеносный пласт;

118 - поверхность Земли;

119 - труба для обратной воды из отстойника для ее подачи в нагнетательную скважину.

На Фиг.3 представлена структурная схема системы нефтедобычи с использованием варианта 2 защиты от кавитационной эрозии. Здесь:

101 - газгольдер для газов, выделившихся при 0,1 МПа из скважинной жидкой смеси;

102 - отстойник скважинной смеси жидкостей, разделитель нефти и воды;

103 - сепаратор газа и жидкости при 0,1-0,2 МПа;

106 - выходной дроссель НКТ (давление от 0,1 до 2 МПа);

107 - обсадная труба;

108 - насосно-компрессорная труба;

109 - глубинный насос НКТ;

110 - поток нефти, воды и газа;

111 - дроссель для подачи воды в нагнетательную трубу и подземный пласт;

112 - труба для подачи воды;

113 - поток воды;

114 - компрессор для воды;

115 - камера для воды (обратной и поданной из водоема);

116 - водоем;

117 - нефтеносный пласт;

118 - поверхность Земли;

119 - труба для обратной воды из отстойника для ее подачи в нагнетательную скважину.

Описание работы.

Целью настоящего изобретения является увеличение продолжительности работоспособности трубы в целом, зависящей от явления кавитационной эрозии. Первым фактором, способствующим кавитационной эрозии (3, Фиг.1), является наличие растворенного не сжиженного газа в скважинной жидкости (110, Фиг.2, 3).

Вариант 1 (см. Фиг.2).

Первым приемом защиты, который устраняет процесс кавитационной эрозии в подземных участках НКТ 108, является повышение давления в выходном дросселе 106 этой трубы до величины несколько (в 1,1-1,2 раза) выше пороговой величины давления вскипания основного компонента жидкого газа, растворенного в нефти 110 (например, CO2,или С2Н6, или С3Н8). Тогда явление вскипания не исключается вообще, но исключается в подземной части НКТ. Это вскипание и кавитационная эрозия будут происходить в горизонтальной части НКТ на поверхности, на участке НКТ между дросселем сброса давления 104 (при давлении не менее 5-6 МПа) и сепаратором газ/жидкость 103 (<0,2 МПа) под контролем оператора нефтедобычи (или АСУ ТП). Возможно дублирование трубы на участке между 103 и 104, позволяющее отключать для замены и ремонта один участок и продолжать без остановки отбор скважинной жидкости из данной скважины по параллельному участку. Для ремонта трубы участка между 103 и 104 достаточно будет заменить отключенный ее отрезок. Схема такого процесса защиты НКТ при откачке из скважины показана на Фиг.2.

Вариант 2 (см. Фиг.3).

Вторым приемом защиты НКТ 108 от кавитационной эрозии является плавное, постепенное и медленное изменение давления на выходном дросселе 106 НКТ по определенному закону (от 0,1 до 1-2 МПа с шагом около 0,01-0,003 МПа/неделя в течение 0,2-1 года). В этом случае после выходного дросселя не требуется устанавливать промежуточную емкость, система упрощается (по сравнению с вариантом 1), но требуется ужесточить контроль (например, с помощью АСУ ТП) за каждым этапом-шагом изменения выходного давления дросселя 106. При этом прогнозируется увеличение ресурса НКТ данной скважины на срок до 0,2-1 года (если на такую продолжительную работу способен глубинный насос и если не повлияют другие факторы). Схема такого процесса защиты НКТ при откачке из скважины показана на Фиг.3.

Способ защиты реализуется устройствами, которые содержат: 1) дроссель НКТ с возможностью регулирования давления выходной скважинной жидкости (или путем увеличения давления до величины более 5-6 МПа; 2) дроссель НКТ с возможностью плавного регулирования давления выходной скважинной жидкости по определенному закону (например, от величины 0,1 до 0,5-2 МПа в течение 0,2-1 года)); 3) трубу для обратной воды из отстойника для ее подачи в нагнетательную скважину с целью уменьшения загрязнения окружающей среды.

Наличие таких признаков и устройств обеспечивает достижение технического результата - уменьшение/исключение влияния кавитационной эрозии на процесс откачки нефти с больших глубин и при значительном содержании в нефти растворенных газов (СО2, или СН4, или С2Н6, или С3Н8).

Заявленное устройство может быть реализовано на предприятиях нефтедобычи в Тюменской области и др., что говорит о его соответствии критерию патентоспособности «промышленная применимость».

Список использованной литературы

1. US 3461918 OT29.08.1966, покрытие полиэтиленом.

2. US 6247499 от 19.06.2001, покрытие полипропиленом.

3. US 6361841 B1 от 26.03.2002, покрытие полипропиленом.

4. RU 2110610 C1 от 10.05.1998, покрытие силоксаном.

5. SU 1072549 А1 от 20.04.1999, введение ингибитора коррозии.

Способ защиты насосно-компрессорной трубы от кавитационной эрозии, включающий закачивание воды в нефтяной пласт через нагнетательную трубу и отбор скважинной жидкости с растворенными в ней газами через насосно-компрессорную трубу - НКТ, отличающийся тем, что при содержании растворенных газов не менее 100 м на 1 м скважинной жидкости давление на выходе из скважины либо плавно увеличивают от 0,1 до 2 МПа с шагом 0,01-0,003 МПа/неделя, либо это давление поддерживают в 1,1-1,2 раза выше пороговой величины давления вскипания основного компонента жидкого газа, растворенного в нефти.
СПОСОБ ЗАЩИТЫ НАСОСНО-КОМПРЕССОРНОЙ ТРУБЫ ОТ КАВИТАЦИОННОЙ ЭРОЗИИ
СПОСОБ ЗАЩИТЫ НАСОСНО-КОМПРЕССОРНОЙ ТРУБЫ ОТ КАВИТАЦИОННОЙ ЭРОЗИИ
СПОСОБ ЗАЩИТЫ НАСОСНО-КОМПРЕССОРНОЙ ТРУБЫ ОТ КАВИТАЦИОННОЙ ЭРОЗИИ
Источник поступления информации: Роспатент

Showing 11-13 of 13 items.
25.08.2017
№217.015.be34

Способ получения смесевого пластичного взрывчатого вещества

Изобретение относится к области производства взрывчатых веществ и может быть использовано для получения пластичных ВВ с уменьшенными критическими размерами детонации, применяющихся для изготовления малогабаритных взрывных устройств различного назначения. Описан способ получения смесевого...
Тип: Изобретение
Номер охранного документа: 0002616729
Дата охранного документа: 18.04.2017
26.08.2017
№217.015.da46

Способ определения параметров взрывчатого превращения

Изобретение относится к области исследования реакционной способности взрывчатых веществ (ВВ) с помощью воздействия тепловых средств, а именно определения времени до начала самоподдерживающейся реакции и может быть использовано для определения прямым экспериментальным путем критических условий...
Тип: Изобретение
Номер охранного документа: 0002623827
Дата охранного документа: 29.06.2017
11.03.2019
№219.016.d7c9

Способ обезвреживания объекта, содержащего взрывное устройство

Изобретение относится к способам ликвидации взрывоопасных объектов без детонации, например автомобилей, начиненных взрывными устройствами. Сущность изобретения заключается в окружении объекта легкоразрушаемым корпусом, перед установкой которого на опорную площадку под объектом или около него...
Тип: Изобретение
Номер охранного документа: 02218552
Дата охранного документа: 10.12.2003
Showing 31-40 of 41 items.
31.07.2019
№219.017.ba52

Способ спектрометрического анализа газообразных продуктов разложения взрывчатых веществ

Данное изобретение относится к области методов анализа механизмов поведения взрывчатых веществ (ВВ) при термических воздействиях и может быть использовано для исследования продуктов терморазложения ВВ. Сущность изобретения заключается в том, что в отличие от известного способа анализа...
Тип: Изобретение
Номер охранного документа: 0002695954
Дата охранного документа: 29.07.2019
31.07.2019
№219.017.ba6a

Способ сварки взрывом металлических листов

Изобретение может быть использовано для получения крупнотолщинных биметаллических деталей сваркой взрывом. Листовую заготовку из бронзы толщиной не менее 30 мм разделяют по меньшей мере на два фрагмента вдоль площади их соприкосновения. Оуществляют сборку пакета из листовой заготовки из...
Тип: Изобретение
Номер охранного документа: 0002695855
Дата охранного документа: 29.07.2019
15.08.2019
№219.017.bff4

Способ автоматического поддержания плотности нестабильного газового конденсата, подаваемого в магистральный конденсатопровод, с применением турбодетандерного агрегата, на установках низкотемпературной сепарации газа в районах крайнего севера

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ предусматривает очистку поступающей газоконденсатной смеси, поступающей из добывающих скважин, от механических примесей в сепараторе первой ступени сепарации. На установке осуществляют...
Тип: Изобретение
Номер охранного документа: 0002697208
Дата охранного документа: 13.08.2019
02.10.2019
№219.017.cdd8

Способ автоматического поддержания плотности нестабильного газового конденсата, подаваемого в магистральный конденсатопровод, на установках низкотемпературной сепарации газа в районах крайнего севера

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту, в частности к автоматическому поддержанию на установке низкотемпературной сепарации газа плотности нестабильного газового конденсата (НГК), подаваемого в магистральный конденсатопровод (МКП) в...
Тип: Изобретение
Номер охранного документа: 0002700310
Дата охранного документа: 16.09.2019
18.12.2019
№219.017.ee24

Способ оптимизации процесса отмывки ингибитора из нестабильного газового конденсата на установках низкотемпературной сепарации газа

Способ предназначен для оптимизации процесса отмывки ингибитора из нестабильного газового конденсата (НТК) на установках низкотемпературной сепарации (НТС) газа, реализуемый автоматизированной системой управления технологическими процессами (АСУ ТП). Способ включает автоматическое управление...
Тип: Изобретение
Номер охранного документа: 0002709119
Дата охранного документа: 16.12.2019
18.12.2019
№219.017.ee50

Способ автоматического управления подачей ингибитора для предупреждения гидратообразования на установках низкотемпературной сепарации газа, эксплуатируемых на крайнем севере

Изобретение относится к горному делу и может быть применено для предупреждения гидратообразования и разрушения гидратов на установках низкотемпературной сепарации (НТС) газа. Ингибитор подают в точки перед защищаемыми участками, комплекс которых представляет собой установку низкотемпературной...
Тип: Изобретение
Номер охранного документа: 0002709048
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee5c

Способ автоматического управления производительностью установки низкотемпературной сепарации газа

Изобретение относится к области добычи, сбора и подготовки природного газа и газового конденсата к транспорту, в частности к автоматическому управлению производительностью установок низкотемпературной сепарации газа. Технический результат заключается в: автоматическом поддержании заданного...
Тип: Изобретение
Номер охранного документа: 0002709045
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee88

Способ автоматического управления производительностью установки низкотемпературной сепарации газа в условиях крайнего севера

Изобретение относится к области добычи, сбора и подготовки природного газа и газового конденсата к дальнему транспорту, в частности к автоматическому управлению производительностью установок низкотемпературной сепарации газа (далее установка). Предложен способ автоматического управления...
Тип: Изобретение
Номер охранного документа: 0002709044
Дата охранного документа: 13.12.2019
01.02.2020
№220.017.fbf5

Способ автоматического управления процессом осушки газа на установках комплексной подготовки газа в условиях севера

Изобретение относится к области подготовки природного газа к дальнему транспорту, в частности к автоматическому управлению осушкой газа на установках комплексной подготовки газа - УКПГ в условиях Севера РФ. Автоматизированная система управления технологическим процессом - АСУ ТП осушки газа...
Тип: Изобретение
Номер охранного документа: 0002712665
Дата охранного документа: 30.01.2020
27.06.2020
№220.018.2b7f

Способ автоматического распределения нагрузки между технологическими линиями осушки газа на установках комплексной подготовки газа, расположенных на севере рф

Изобретение относится к области добычи, сбора и подготовки природного газа и газового конденсата к дальнему транспорту, в частности к ведению процесса осушки газа на установках комплексной подготовки газа (УКПГ) сеноманских залежей нефтегазоконденсатных месторождений (НГКМ). Способ...
Тип: Изобретение
Номер охранного документа: 0002724756
Дата охранного документа: 25.06.2020
+ добавить свой РИД