×
20.11.2014
216.013.0896

Результат интеллектуальной деятельности: ТЕРМОКОМПРЕССИОННОЕ УСТРОЙСТВО

Вид РИД

Изобретение

№ охранного документа
0002533599
Дата охранного документа
20.11.2014
Аннотация: Изобретение относится к холодильной технике, а точнее к термокомпрессорам. В термокомпрессионном устройстве, содержащем источник газа высокого давления с подключенными к нему баллонами-компрессорами, источник холода и объединенную магистраль заправки баллонов-компрессоров, снабженную первым теплообменником-охладителем, на входе в который параллельно включены баллоны-компрессоры, согласно изобретению каждый баллон-компрессор выполнен в виде теплоизолированной двустенной емкости с оребрением внутреннего сосуда, размещенным в межстенной полости, подключенной к источнику холода. Внутренний сосуд в каждой теплоизолированной двустенной емкости снабжен подогревателем, а межстенная полость на выходе сообщена с охлаждаемым экраном, установленным под слоями теплоизоляции. Объединенная магистраль заправки баллонов-компрессоров и подачи газа потребителю снабжена регулирующими дроссельными вентилями, установленными непосредственно на входе в каждый баллон-компрессор, и вторым теплообменником-охладителем, установленным на выходе из источника газа высокого давления. Межтрубная полость второго теплообменника-охладителя подключена к выходу из охлаждаемого экрана каждого баллона-компрессора. Изобретение направлено на повышение компактности и эффективности устройства, а также обеспечение непрерывной заправки баллонов потребителя газом, исключающей его загрязнение. 1 ил.
Основные результаты: Термокомпрессионное устройство, содержащее источник газа высокого давления с подключенными к нему баллонами-компрессорами, источник холода и объединенную магистраль заправки баллонов-компрессоров и подачи газа потребителю, снабженную первым теплообменником-охладителем, на входе в который параллельно включены баллоны-компрессоры, отличающееся тем, что каждый баллон-компрессор выполнен в виде теплоизолированной двустенной емкости с оребрением внутреннего сосуда, размещенным в межстенной полости, подключенной к источнику холода, при этом внутренний сосуд в каждой теплоизолированной двустенной емкости снабжен подогревателем, а межстенная полость на выходе сообщена с охлаждаемым экраном, установленным под слоями теплоизоляции, при этом объединенная магистраль заправки баллонов-компрессоров и подачи газа потребителю снабжена регулирующими дроссельными вентилями, установленными непосредственно на входе в каждый баллон-компрессор, и вторым теплообменником-охладителем, установленным на выходе из источника газа высокого давления, причем межтрубная полость второго теплообменника-охладителя подключена к выходу из охлаждаемого экрана каждого баллона-компрессора.

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств (термокомпрессоров), используемых, например, при заполнении газом баллонов высокого давления с соблюдением высоких требований по чистоте как закачиваемого газа, так и внутренних объемов и поверхностей заправляемой системы.

Принцип работы термокомпрессионного устройства широко известен. Основу его составляет емкость (баллон-компрессор), которую вначале охлаждают, желательно до температуры конденсации газа, и заполняют ее газом из стендовых баллонов. Затем стендовые баллоны отсекают, емкость нагревают, давление газа в ней растет, и он перекачивается в заправляемую емкость. Таких циклов всасывания-нагнетания совершается столько, сколько необходимо для достижения заданного давления в заправляемой емкости.

Известно компрессионное устройство для регенерации хладагентов (см., например, патент США №5379607, МПК: P25B 49/00, от 12.10.1993), содержащее компрессор, ресивер, емкости высокого давления, теплообменники и магистрали заправки и подачи газа потребителю. Устройство обеспечивает регенерацию хладагентов типа CFC (фреон-11, фреон-12, фреон-113) для откачки в транспортный баллон потребителю.

Наличие в них механического компрессора, использующего смазку для вращающихся и перемещающихся узлов и деталей, не исключает загрязнения газа парами масла (смазки), что недопустимо при перекачке (заправке) газа в баллоны потребителя, применяющего данный газ в качестве рабочего компонента. Кроме того, усложнена конструкция и эксплуатация устройства.

Недостатками аналога являются загрязнение газа при заправке баллонов потребителя, низкая эффективность и сложность конструкции устройства.

Известно также термокомпрессионное устройство по патенту России №2351840, МПК: P17C 5/06, с приоритетом от 07.08.2007, выбранное в качестве прототипа и содержащее источник газа высокого давления с подключенными к нему баллонами-компрессорами, источник холода и объединенную магистраль заправки баллонов-компрессоров и подачи газа потребителю, снабженную первым теплообменником-охладителем, на входе в который параллельно включены баллоны-компрессоры. В состав устройства входят модули термоциклирования баллонов-компрессоров, теплоизолированные емкости которых заполнены теплоносителем с погруженными в него баллонами-компрессорами, подключенными к источнику газа высокого давления, и снабжены каждая нагревателем и теплообменником-охладителем, подключенными к источнику холода. Данное устройство позволяет обеспечить непрерывную заправку баллонов потребителя газом, исключающую его загрязнение, но использование модулей термоциклирования баллонов-компрессоров, использующих жидкий теплоноситель, делает конструкцию термокомпрессионного устройства громоздкой и имеет низкую эффективность.

Недостатками прототипа являются громоздкость конструкции и низкая эффективность.

Техническим результатом, достигаемым настоящим изобретением, является повышение компактности и эффективности устройства, а также обеспечение непрерывной заправки баллонов потребителя газом, исключающей его загрязнение.

Технический результат достигается тем, что в термокомпрессионном устройстве, содержащем источник газа высокого давления с подключенными к нему баллонами-компрессорами, источник холода и объединенную магистраль заправки баллонов-компрессоров и подачи газа потребителю, снабженную первым теплообменником-охладителем, на входе в который параллельно включены баллоны-компрессоры, в отличие от известного, каждый баллон-компрессор выполнен в виде теплоизолированной двустенной емкости с оребрением внутреннего сосуда, размещенным в межстенной полости, подключенной к источнику холода, при этом внутренний сосуд в каждой теплоизолированной двустенной емкости снабжен подогревателем, а межстенная полость на выходе сообщена с охлаждаемым экраном, установленным под слоями теплоизоляции, при этом объединенная магистраль заправки баллонов-компрессоров и подачи газа потребителю снабжена регулирующими дроссельными вентилями, установленными непосредственно на входе в каждый баллон-компрессор, и вторым теплообменником-охладителем, установленным на выходе из источника газа высокого давления, причем межтрубная полость второго теплообменника-охладителя подключена к выходу из охлаждаемого экрана каждого баллона-компрессора.

Использование предлагаемого термокомпрессионного устройства, например, при заправке баллонов потребителя, устанавливаемых на космических летательных аппаратах, таких как спутники связи, позволит получить значительный экономический эффект за счет обеспечения непрерывной заправки баллонов потребителя газом, исключающей его загрязнение, повышение компактности и эффективности работы устройства.

Сущность изобретения поясняется чертежом.

Термокомпрессионное устройство состоит из следующих основных узлов и деталей: источника газа высокого давления 1, например стендовых баллонов высокого давления, заправленных чистым газом, например ксеноном, и подключенных к нему двух баллонов-компрессоров 2, 3, источника холода 4, например сосуда Дьюара с жидким азотом, и объединенной магистрали 5 заправки баллонов-компрессоров и подачи газа потребителю, снабженной первым теплообменником-охладителем 7, на входе 8 в который включены параллельно и автономно работающие баллоны-компрессоры 2, 3. Каждый баллон-компрессор 2 (3) выполнен в виде теплоизолированной емкости с двумя стенками - двустенной емкости с оребрением 9 (10) внутреннего сосуда 11 (12), размещенным в образованной стенками емкости полости - межстенной полости 13 (14) соответственно, подсоединенной к источнику холода 4, при этом в каждой теплоизолированной двустенной емкости внутренний сосуд 11, 12 снабжен соответственно подогревателем 15 (16), например электронагревателем из угольной ткани, закрепленным на внешней стенке внутреннего сосуда и подключенным к внешнему источнику электропитания, а межстенная полость 13 (14) на выходе 17 (18) сообщена с охлаждаемым экраном 19 (20), установленным под слоями теплоизоляции 21 (22). Объединенная магистраль 5 заправки баллонов-компрессоров и подачи газа потребителю снабжена регулирующими дроссельными вентилями 23 (24), установленными непосредственно на входе 25 (26) в каждый баллон-компрессор 2 (3), и дополнительно - вторым теплообменником-охладителем 27, установленным на выходе из источника газа высокого давления 1, причем межтрубная полость 28 второго теплообменника-охладителя 27 подключена к выходам 29 (30) из охлаждаемых экранов 19 (20) соответственно каждого баллона-компрессора 2 (3).

В качестве подогревателя 15 (16) используют, например, выполненный в виде чехла кожух из угольной ткани, в качестве которой используют угольную ткань ТУ 1916-155-05763346-95, который закрепляют с тепловым контактом на внешней поверхности стенки 16 внутреннего сосуда 11(12). Тепловой контакт обеспечивают, например, посредством стяжек (шнуровок) из стеклонити или клеями марки К-300; ВК-9 по ОСТ92-0949-74.

Охлаждаемые экраны 19, 20 выполнены, например, в виде обечаек 31, 32 из теплопроводного материала с закрепленными на их поверхности трубчатыми змеевиками 33 и 34, скрепленными соответственно с обечайками посредством пайки.

В качестве теплоизоляции 21, 22 используют, например, пенополиуретан или многослойную экранно-вакуумную изоляцию, закрепленную на охлаждаемых экранах 19, 20.

Объединенная магистраль 5 снабжена вентилями 35 и 36. Подачу хладагента в межстенную полость 13 (14), например жидкого азота, от источника холода 4, например из сосуда Дьюара, производят по теплоизолированному трубопроводу 37, снабженному вентилями 38, 39. Поясним эксплуатацию термокомпрессионного устройства. Перед началом функционирования термокомпрессионного устройства производят очистку внутренних полостей объединенной магистрали 5 заправки баллонов-компрессоров и подачи газа потребителю, включая баллоны-компрессоры 2 (3) и баллоны потребителей 6 от влаги и воздуха. Очистка производится способом вакуумирования с последующей продувкой чистым азотом и ксеноном. Источником закачиваемого газа, например ксенона, в баллоны потребителя 6 являются стендовые баллоны 1, заполненные чистым ксеноном высокого давления 80 кг/см2. В закачиваемом ксеноне должно быть кислорода не более 4·10-5 объемных долей, а водяных паров не более 6·10-5 объемных долей.

Работа устройства основана на использовании принципа термокомпрессора, в котором необходимое для заправки (закачки) давление ксенона достигается в баллонах-компрессорах 2 (3) по изохорическому процессу. После проведения очистки внутренних полостей объединенной магистрали 5, баллонов-компрессоров 2 (3) и баллонов потребителя 6 производят захолаживание баллонов-компрессоров 2, 3, для этого открывают вентили 38 и 39 и подают, например, парообразный или жидкий азот от источника холода 4, например из сосуда Дьюара, в межстенные полости 13, 14, захолаживают баллоны-компрессоры 2, 3 до температуры порядка минус 80°C, при этом пары азота, образующиеся в межстенных полостях 13, 14, через выходы 17, 18 поступают в змеевики 33, 34 охлаждаемых экранов 19, 20 соответственно, охлаждают экраны 19, 20, снимают теплопритоки, поступающие из окружающей среды к баллонам-компрессорам 2, 3, и затем через выходы 29, 30 соответственно подаются в межтрубную полость 28 второго теплообменника-охладителя 27, в котором происходит предварительное охлаждение ксенона перед его подачей в баллоны-компрессоры 2, 3. Из межтрубной полости 28 пары азота сбрасываются в атмосферу.

В захоложенные внутренние сосуды 11, 12 из стендового баллона 1 подают ксенон, для чего устанавливают (настраивают) регулирующие дроссельные вентили 23(24) на режим дросселирования и открывают вентиль 35. Ксенон, попадая во второй теплообменник-охладитель 27, предварительно охлаждается и поступает в регулирующие дроссельные вентили 23, 24, в процессе дросселирования доохлаждается и заполняет внутренние сосуды 11, 12 до заданного давления, при этом происходит конденсация ксенона во внутреннем сосуде 11, 12 (цикл всасывания). После заполнения внутренних сосудов 11, 12 баллонов-компрессоров 2, 3 ксеноном и охлаждения его до температуры порядка минус 80°C стендовый баллон 1 отсекают (закрывают) вентилями 23, 24 и 35 и закрытием вентилей 38, 39 прекращают подачу хладагента в межстенные полости 13, 14. Одновременно включают подогреватели 15, 16 и нагревают внутренние сосуды 11, 12 до температуры порядка плюс 90°C, при этом давление ксенона во внутренних сосудах 11, 12 растет, а при сообщении его с баллонами потребителя 6 посредством открытия вентилей 23, 24 и 36 на объединенной магистрали 5, ксенон, проходя через теплообменник-охладитель 7, охлаждается до заданной температуры (температуры охлаждающей среды) и поступает в баллоны потребителя 6 (цикл нагнетания). После выравнивания давления между внутренними сосудами 11, 12 баллонов-компрессоров 2, 3 и баллонами потребителя 6 вентили 23, 24 и 36 закрывают, а также выключают подогреватели 15, 16.

Таких последовательных процессов (температурных циклов) всасывания-нагнетания совершают столько, сколько необходимо для достижения заданного давления ксенона в баллонах потребителя 6, например до 180 кг/см2.

Выполнение устройства с одинаковыми автономно работающими баллонами-компрессорами 2, 3, которые параллельно включены в объединенную магистраль заправки баллонов-компрессоров и подачи газа в баллоны потребителя на входе 8 первого теплообменника-охладителя 7, позволяет обеспечить непрерывную заправку баллонов потребителя 6 газом, исключающую загрязнение газа, т.к. такая конструкция дает возможность производить заправку (цикл нагнетания), например, от баллона-компрессора 2, в то время как баллон-компрессор 3 находится в состоянии подготовки к заправке (цикл всасывании), т.е. одновременно, когда баллон-компрессор 2 находится в состоянии цикла нагнетания, баллон-компрессор 3 находится в состоянии цикла всасывания и наоборот.

Такое смещение режимов работы баллонов-компрессоров позволяет попеременно, а в целом бесперебойно пополнять баллоны потребителя закачиваемым газом (ксеноном), при этом обеспечивается заданная чистота ксенона. Кроме того, объединенная магистраль заправки баллонов-компрессоров и подачи газа потребителю снабжена регулирующими дроссельными вентилями 23 и 24, установленными непосредственно на входе 25, 26 соответственно в каждый баллон-компрессор, и вторым теплообменником-охладителем 27, установленным на выходе из источника газа высокого давления, причем межтрубная полость 28 второго теплообменника-охладителя подключена к выходам 29, 30 из охлаждаемого экрана соответственно каждого баллона-компрессора, что позволяет значительно повысить эффективность и сократить время захолаживания газа (ксенона) путем предварительного охлаждения в процессе прохождения его через второй теплообменник-охладитель (за счет охлаждения отходящими парами азота) и регулирующие дроссельные вентили 23, 24 (за счет эффекта Джоуля-Томсона при дросселировании газа). Также повышается эффективность и экономичность предлагаемого устройства за счет дополнительного использования выбрасываемых (отходящих) холодных паров азота из охлаждаемых экранов 19, 20 баллонов-компрессоров. При этом обеспечивается непрерывная заправка баллонов потребителя 6 газом, исключающая его загрязнение, при повышении компактности.

Термокомпрессионное устройство, содержащее источник газа высокого давления с подключенными к нему баллонами-компрессорами, источник холода и объединенную магистраль заправки баллонов-компрессоров и подачи газа потребителю, снабженную первым теплообменником-охладителем, на входе в который параллельно включены баллоны-компрессоры, отличающееся тем, что каждый баллон-компрессор выполнен в виде теплоизолированной двустенной емкости с оребрением внутреннего сосуда, размещенным в межстенной полости, подключенной к источнику холода, при этом внутренний сосуд в каждой теплоизолированной двустенной емкости снабжен подогревателем, а межстенная полость на выходе сообщена с охлаждаемым экраном, установленным под слоями теплоизоляции, при этом объединенная магистраль заправки баллонов-компрессоров и подачи газа потребителю снабжена регулирующими дроссельными вентилями, установленными непосредственно на входе в каждый баллон-компрессор, и вторым теплообменником-охладителем, установленным на выходе из источника газа высокого давления, причем межтрубная полость второго теплообменника-охладителя подключена к выходу из охлаждаемого экрана каждого баллона-компрессора.
ТЕРМОКОМПРЕССИОННОЕ УСТРОЙСТВО
Источник поступления информации: Роспатент

Showing 181-190 of 373 items.
10.05.2016
№216.015.2b0c

Способ тарировки датчика микроускорений в космическом полете

Изобретение относится к космической технике и может быть использовано при определении погрешности датчика микроускорений на космическом аппарате (КА). Технический результат - обеспечение тарировки датчика микроускорений в космическом полете. Способ тарировки датчика микроускорений в космическом...
Тип: Изобретение
Номер охранного документа: 0002583882
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.2b0d

Способ определения параметров двухполюсника

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах. Техническим...
Тип: Изобретение
Номер охранного документа: 0002583879
Дата охранного документа: 10.05.2016
20.07.2016
№216.015.2b21

Космическая двухрежимная ядерно-энергетическая установка транспортно-энергетического модуля

Изобретение относится к космической технике и может быть использовано при создании энергетических и двигательных установок для решения двух задач: для доставки космических аппаратов (КА) на орбиту и последующего длительного энергообеспечения аппаратуры КА. Космическая двухрежимная...
Тип: Изобретение
Номер охранного документа: 0002592071
Дата охранного документа: 20.07.2016
20.07.2016
№216.015.2b22

Космическая двухрежимная ядерно-энергетическая установка транспортно-энергетического модуля

Изобретение относится к космическим энергодвигательным установкам мегаваттного класса. Двухрежимная ядерно-энергетическая установка (ЯЭУ) транспортно-энергетического модуля (ТЭМ) содержит термоэмиссионный реактор-преобразователь (ТРП). Активная зона набрана из электрогенерирующих сборок (ЭГС)...
Тип: Изобретение
Номер охранного документа: 0002592069
Дата охранного документа: 20.07.2016
10.07.2016
№216.015.2b23

Защитный экран космического аппарата от ударов техногенных частиц и метеороидов

Изобретение относится к защите космического аппарата от высокоскоростных частиц естественного или техногенного типа. Защитный экран выполнен из композиционного материала в виде эластичного полимерного связующего с внедренными в него частицами по крайней мере одного порошка тяжелого металла....
Тип: Изобретение
Номер охранного документа: 0002591127
Дата охранного документа: 10.07.2016
10.04.2016
№216.015.3021

Устройство для мажоритарного выбора сигналов (3 варианта)

Изобретение относится к области построения высоконадежных резервированных устройств и систем. Технический результат заключается в повышении надежности за счет формирования сигналов неисправности каждого канала (блока с число-импульсным выходом) и интегрировании сигнала неисправности каждого...
Тип: Изобретение
Номер охранного документа: 0002580791
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3034

Способ разгрузки силовых гироскопов космического аппарата с создаваемым магнитным моментом

Изобретение относится к управлению угловым движением космических аппаратов. Для разгрузки системы силовых гироскопов от накопленного кинетического момента используют токовые контуры фазированной антенной решетки (ФАР). По магнитным моментам этих контуров определяют суммарное значение магнитного...
Тип: Изобретение
Номер охранного документа: 0002580593
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30ad

Устройство формирования сигналов управления (2 варианта)

Предлагаемая группа изобретений относится к области электронной техники и может быть использована в системах управления, где требуется высокая надежность выполнения заданного режима, например, в системах управления космическими аппаратами, в авиационной технике и в других системах. Технический...
Тип: Изобретение
Номер охранного документа: 0002580476
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.319b

Устройство обеспечения чистоты объектов космической головной части (2 варианта)

Изобретение относится к ракетно-космической технике и может быть использовано при подготовке к старту ракеты космического назначения (РКН). Устройство обеспечения чистоты объектов космической головной части содержит побудитель расхода газового компонента, газовод, фильтр, рассекатель потока...
Тип: Изобретение
Номер охранного документа: 0002580602
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3212

Спасательный модуль

Изобретение относится к спасательной технике. Спасательный модуль включает жесткий корпус с носовой и кормовой частями, внутренней камерой, закрепленный на жестком корпусе салон с такелажным устройством. Он снабжен раскладываемыми опорами для установки на сушу. Жесткий корпус выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002580592
Дата охранного документа: 10.04.2016
Showing 181-190 of 292 items.
27.01.2016
№216.014.bdc2

Многослойная трансформируемая герметичная оболочка

Изобретение относится к трансформируемым космическим структурам. Многослойная трансформируемая герметичная оболочка (МТГО) включает ЭВТИ с защитой от атомарного кислорода, противометеороидную защиту в виде защитных противометеороидных экранов с межэкранными разделителями, армирующий слой,...
Тип: Изобретение
Номер охранного документа: 0002573684
Дата охранного документа: 27.01.2016
20.06.2016
№217.015.042a

Устройство для определения параметров двухполюсника

Изобретение относится к электроизмерительной технике, а именно к измерению электрических параметров двухполюсников. Устройство содержит первый блок задания схемы замещения, преобразователь ток-напряжение, масштабный усилитель, аналогово-цифровой преобразователь, блок управления измерением,...
Тип: Изобретение
Номер охранного документа: 0002587647
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.0500

Способ определения тензора инерции космического аппарата

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает измерение острого угла между направлением на Солнце и плоскостью орбиты КА. При достижении этим углом максимального значения выставляют строительную ось КА, отвечающую максимальному...
Тип: Изобретение
Номер охранного документа: 0002587663
Дата охранного документа: 20.06.2016
10.05.2016
№216.015.2b0c

Способ тарировки датчика микроускорений в космическом полете

Изобретение относится к космической технике и может быть использовано при определении погрешности датчика микроускорений на космическом аппарате (КА). Технический результат - обеспечение тарировки датчика микроускорений в космическом полете. Способ тарировки датчика микроускорений в космическом...
Тип: Изобретение
Номер охранного документа: 0002583882
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.2b0d

Способ определения параметров двухполюсника

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах. Техническим...
Тип: Изобретение
Номер охранного документа: 0002583879
Дата охранного документа: 10.05.2016
20.07.2016
№216.015.2b21

Космическая двухрежимная ядерно-энергетическая установка транспортно-энергетического модуля

Изобретение относится к космической технике и может быть использовано при создании энергетических и двигательных установок для решения двух задач: для доставки космических аппаратов (КА) на орбиту и последующего длительного энергообеспечения аппаратуры КА. Космическая двухрежимная...
Тип: Изобретение
Номер охранного документа: 0002592071
Дата охранного документа: 20.07.2016
20.07.2016
№216.015.2b22

Космическая двухрежимная ядерно-энергетическая установка транспортно-энергетического модуля

Изобретение относится к космическим энергодвигательным установкам мегаваттного класса. Двухрежимная ядерно-энергетическая установка (ЯЭУ) транспортно-энергетического модуля (ТЭМ) содержит термоэмиссионный реактор-преобразователь (ТРП). Активная зона набрана из электрогенерирующих сборок (ЭГС)...
Тип: Изобретение
Номер охранного документа: 0002592069
Дата охранного документа: 20.07.2016
10.07.2016
№216.015.2b23

Защитный экран космического аппарата от ударов техногенных частиц и метеороидов

Изобретение относится к защите космического аппарата от высокоскоростных частиц естественного или техногенного типа. Защитный экран выполнен из композиционного материала в виде эластичного полимерного связующего с внедренными в него частицами по крайней мере одного порошка тяжелого металла....
Тип: Изобретение
Номер охранного документа: 0002591127
Дата охранного документа: 10.07.2016
10.04.2016
№216.015.3021

Устройство для мажоритарного выбора сигналов (3 варианта)

Изобретение относится к области построения высоконадежных резервированных устройств и систем. Технический результат заключается в повышении надежности за счет формирования сигналов неисправности каждого канала (блока с число-импульсным выходом) и интегрировании сигнала неисправности каждого...
Тип: Изобретение
Номер охранного документа: 0002580791
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3034

Способ разгрузки силовых гироскопов космического аппарата с создаваемым магнитным моментом

Изобретение относится к управлению угловым движением космических аппаратов. Для разгрузки системы силовых гироскопов от накопленного кинетического момента используют токовые контуры фазированной антенной решетки (ФАР). По магнитным моментам этих контуров определяют суммарное значение магнитного...
Тип: Изобретение
Номер охранного документа: 0002580593
Дата охранного документа: 10.04.2016
+ добавить свой РИД