×
20.11.2014
216.013.0894

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДОСТАТОЧНОСТИ ОХЛАЖДЕНИЯ МАСЛА В ТУРБОРЕАКТИВНОМ ДВИГАТЕЛЕ

Вид РИД

Изобретение

№ охранного документа
0002533597
Дата охранного документа
20.11.2014
Аннотация: Изобретение относится к авиации и может быть использовано при испытаниях самолетов с турбореактивными двигателями с топливо-масляными теплообменниками (ТМТ) для определения достаточности охлаждения масла в расчетных температурных условиях. Способ заключается в том, что выполняют полет на выбранном режиме, в процессе полета измеряют температуру топлива и температуру масла на входе в ТМТ, после полета определяют среднюю температуру топлива и максимальную достигнутую на выполненном режиме температуру масла, определяют температуру топлива при РТУ и начальную температуру масла на входе в ТМТ, после чего методом последовательных приближений вычисляют максимальную температуру масла на входе в ТМТ и сравнивают ее с предельно допустимой температурой, если максимальная температура масла на входе в ТМТ не превышает предельно допустимой температуры, делают вывод о достаточности охлаждения масла. Изобретение позволяет снизить эксплуатационные расходы при определении достаточности охлаждения масла в ТРД.
Основные результаты: Способ определения достаточности охлаждения масла в турбореактивном двигателе с топливно-масляным теплообменником, включающий вычисление максимальной температуры масла на входе теплообменника и сравнение ее с предельно допустимой температурой, отличающийся тем, что выбирают критический в отношении перегрева масла режим полета, выполняют полет на выбранном режиме, в процессе полета измеряют температуру топлива и температуру масла на входе в топливо-масляный теплообменник, после полета определяют среднюю температуру топлива t и максимальную достигнутую на выполненном режиме температуру масла t, определяют температуру топлива на входе в топливо-масляный теплообменник при расчетных температурных условиях t, произвольно определяют начальную температуру масла на входе в топливо-масляный теплообменний t, после чего методом последовательных приближений вычисляют максимальную температуру масла на входе в топливо-масляный теплообменник по формуле , i=0, 1, 2, …,где ϑ(t) и с(t) - соответственно вязкость и теплоемкость топлива при температуре t,ϑ(t) и с(t) - соответственно вязкость и теплоемкость масла при температуре t,ϑ(t) и c(t) - соответственно вязкость и теплоемкость топлива при температуре t,ϑ(t) и c(t) - соответственно вязкость и теплоемкость масла при температуре t,α(t) и α(t) - коэффициенты теплоотдачи от масла к стенкам трубок ТМТ соответственно при температурах t и t,α(t) и α(t) - коэффициент теплоотдачи от стенок трубок ТМТ к топливу соответственно при температурах t и t,до тех пор, пока разница вычисленных температур масла в текущем и предыдущем приближениях не станет меньше предопределенной величины δ.

Изобретение относится к области авиации, в частности к мерам по поддержанию стабильной работы турбореактивного двигателя (ТРД).

Для обеспечения надежной работы силовой установки, в частности ТРД, необходимо поддерживать определенную температуру ее элементов и систем, в том числе масляной системы. Превышение температуры может привести к перегреву ТРД. Во избежание перегрева необходимо отводить некоторое количество тепла посредством системы охлаждения.

Системы охлаждения подразделяются на две группы: воздушные и жидкостные. В первой группе двигательное масло охлаждается атмосферным воздухом в воздушно-масляном теплообменнике (ВМТ). Во второй группе масло охлаждается топливом (авиационным керосином) в топливно-масляном теплообменнике (ТМТ), обычно входящем в состав ТРД.

Проверка достаточности охлаждения масла в ТРД является одной из задач летных испытаний. Так как двигатель должен нормально работать в любых условиях, а наиболее тяжелые условия охлаждения получаются при высоких температурах наружного воздуха и высоких начальных температурах рабочих жидкостей (топлива, масла), то охлаждение рассчитывается и проверяется обычно не в условиях стандартной атмосферы (СА), а в так называемых «расчетных атмосферных температурных условиях» (РАТУ) или тем или иным образом специально назначенных расчетных температурных условиях (РТУ).

В качестве РАТУ иногда применяют следующий закон изменения температуры наружного воздуха с высотой:

tH=tН.СА+15°С,

где tH - принимаемая для расчета температура воздуха на высоте Н, tH.CA - температура воздуха на высоте Н в условиях стандартной атмосферы.

В некоторых случаях принимают, что по РАТУ температура у земли равна 40°C, а затем падает линейно по какому-либо закону. Иногда, наоборот, оценку работоспособности тех или иных агрегатов необходимо производить для низких температур воздуха [1. Ведров B.C., Тайц М.А. Летные испытания самолетов. Государственное издательство оборонной промышленности, Москва, 1951, стр.28-29].

В других случаях для систем жидкостного охлаждения РТУ могут определяться температурой топлива в топливных баках самолета tm.РТУ, равной 45°C [2. Летные испытания специальных устройств и систем силовых установок самолетов и вертолетов. Под ред. Г.П. Долголенко. - М.: Машиностроение, 1984, стр.100-101].

Расчетные температурные условия могут также определяться различными эксплуатационными ограничениями. Например, температура топлива на входе в двигатель, по соображению термической стабильности, не должна превышать 120°C. Для учета этого ограничения tm.РТУ принимают равной 120°C. В общем случае tm.РТУ назначают в зависимости от эксплуатационных ограничений работы агрегатов топливной системы и проверки их работы в экстремальных условиях.

Степень охлаждения масла считается удовлетворительной, если в расчетных атмосферных условиях максимальная температура масла на входе в двигатель не превышает значений, предусмотренных руководством по эксплуатации:

tм.РАТУ≤tпред.ТУ.

Известен способ определения достаточности охлаждения масла с пересчетом в РАТУ, заключающийся в регистрации в процессе полета максимальной температуры масла на входе в двигатель tм, высоты полета Н (измеренной в километрах), температуры наружного воздуха tH и пересчета максимальной температуры масла, измеренной в фактических условиях летных испытаний, в максимальную температуру масла, соответствующую РАТУ по формуле

tм.РАТУ=tм+a м(45-6,5H-tН),

где а м - поправочный коэффициент, зависящий от температуры наружного воздуха и температуры масла, равный 0,3…1,0 [2. стр.101]. Недостатком этого способа является его ограниченное применение только для турбовинтовых двигателей (ТВД), оборудованных ВМТ.

Известен способ [1, стр.448-458] определения достаточности охлаждения масла с пересчетом в РАТУ, заключающийся в регистрации температуры масла на входе в двигатель tм, высоты полета Н (измеренной в километрах), температуры наружного воздуха tH.B и пересчета температуры масла, измеренной в фактических условиях летных испытаний, в максимальную температуру масла, соответствующую РАТУ, по формуле

где А - зависящий от типа двигателя коэффициент, определяемый экспериментально и имеющий значение порядка 200;

tН.РАТУ - значение температуры наружного воздуха, изменяющейся по какому-либо заданному закону, например,

tН.РАТУ=tН.СА+15,

где tH.СА - стандартная температура наружного воздуха на высоте Н.

Недостатком этого способа является то, что он применим только для поршневых двигателей, оборудованных ВМТ.

Известен экспериментальный способ определения достаточности охлаждения масла, при котором температурные характеристики масляной системы силовой установки самолета с двигателем, оборудованным топливо-маслянным теплообменником (ТМТ), определяются путем заправки в баки самолета топлива с температурой 45°C или проведения летных испытаний в климатических условиях, где температура окружающей среды не ниже 38°C [2, стр.99, 102]. Степень охлаждения масла считается удовлетворительной, если температура масла на выходе из двигателя (входе ТМТ) при заданных режимах полета и работы двигателя находятся в пределах, допустимых инструкцией по эксплуатации. Недостатком этого способа является необходимость специальной подготовки топлива (нагрева до 45°C) и поиска заданных климатических условий.

Наиболее близким к изобретению является способ, основанный на составлении дифференциального уравнения теплового баланса между нагревом масла в двигателе и охлаждением его в теплообменнике (в данном случае в ВМТ) [1, стр.459-462]. В результате его решения при заданной зависимости температуры наружного воздуха tH от высоты полета (в частности, при задании изменения tH в РАТУ) и заданных режимах полета и работы двигателя получают функциональную зависимость изменения температуры масла от высоты полета tм=f(Н), т.е. получают кривую разогрева. Для проверки достаточности охлаждения находят максимальную температуру масла на кривой разогрева и сравнивают с предельно допустимой температурой по техническим условиям. Недостатком этого способа является то, что он применим только для поршневых двигателей, оборудованных ВМТ.

Технический результат изобретения состоит в обеспечении возможности определения достаточности охлаждения масла в топливно-масляном теплообменнике (ТМТ) турбореактивного двигателя (ТРД) без специальной подготовки топлива (нагрева до 45°C с последующей заправкой в баки) или проведения летных испытаний в климатических условиях, где температура окружающей среды не ниже 38°C.

Технический результат достигается способом определения достаточности охлаждения масла в турбореактивном двигателе с топливно-масляным теплообменником, включающем вычисление максимальной температуры масла на входе теплообменника и сравнение ее с предельно допустимой температурой, отличающийся тем, что выбирают критический в отношении перегрева масла режим полета, выполняют полет на выбранном режиме, в процессе полета измеряют температуру топлива и температуру масла на входе в топливо-масляный теплообменник, после полета определяют среднюю температуру топлива tm.Э.cp и максимальную достигнутую на выполненном режиме температуру масла tм.макс.Э, определяют температуру топлива на входе в топливо-масляный теплообменник при расчетных температурных условиях tm.РТУ, произвольно определяют начальную температуру масла на входе в топливо-масляный теплообменний tм.РТУ.0, после чего методом последовательных приближений вычисляют максимальную температуру масла на входе в топливо-масляный теплообменник по формуле

где ϑm(tm.РТУ) и сm(tm.РТУ) - соответственно вязкость и теплоемкость топлива при температуре tm.РТУ,

ϑм(tм.РТУ.i) и см(tм.РТУ.i) - соответственно вязкость и теплоемкость топлива при температуре tм.РТУ.i,

ϑm(tm.Э.cp) и cm(tm.Э.cp) - соответственно вязкость и теплоемкость топлива при температуре tm.Э.cp,

ϑм(tм.макс.Э) и cм(tм.макс.Э) - соответственно вязкость и теплоемкость масла при температуре tм.макс.Э.

αм(tм.РТУ.i) и αм(tм.макс.Э) - коэффициенты теплоотдачи от масла к стенкам трубок ТМТ соответственно при температурах tм.РТУ.i и tm.Э.cp,

αm(tm.РТУ) и αm(tm.Э.cp) - коэффициент теплоотдачи от стенок трубок ТМТ к топливу соответственно при температурах tm.РТУ и tм.макс.Э,

до тех пор пока разница вычисленных температур масла в текущем и предыдущем приближениях не станет меньше предопределенной величины δ.

Способ позволяет по экспериментальным данным, полученным в одних условиях, без проведения нового летного эксперимента определить ожидаемую максимальную температуру масла при иной температуре топлива и сделать вывод о достаточности охлаждения масла.

Предлагаемый способ может быть реализован для системы охлаждения турбореактивного двигателя с ТМТ. В такой системе охлаждения нагретое масло из двигателя откачивается маслонасосами и подается в ТМТ для охлаждения, затем вновь поступает в двигатель. Топливо, поданное из топливного бака в двигатель, пройдя ТМТ и охладив масло, поступает в камеру сгорания. В такой системе охлаждения можно считать, что температура масла на входе в двигатель равна температуре масла на выходе из ТМТ, температура масла на выходе из двигателя равна температуре масла на входе в ТМТ. В этой системе принято называть температурой топлива на входе в двигатель температуру топлива на входе в ТМТ.

Предлагаемый способ заключается в следующем.

1. Выбирают режим полета (высоту полета и условия работы двигателя), на котором перегрев масла наиболее возможен (режим является критическим в отношении перегрева масла), который известен из практики летных испытаний.

Выполняют полет на выбранном режиме и в процессе полета периодически измеряют на входе в ТМТ температуру топлива и температуру масла. После полета определяют среднюю температуру топлива tm.Э.ср и максимальную достигнутую на выполненном режиме температуру масла tм.макс.Э.

2. По полученным температурам tm.Э.cp и tм.макс.Э вычисляют для известных марок масла и топлива комплексный параметр КЭ

где ϑm(tm.Э.cp) и cm(tm.Э.cp) соответственно вязкость и теплоемкость топлива при температуре tm.Э.cp,

ϑм(tм.макс.Э) и cм(tм.макс.Э) - соответственно вязкость и теплоемкость масла при температуре tм.макс.Э,

αм(tм.макс.Э) - коэффициент теплоотдачи от масла к стенкам трубок ТМТ при температуре tм.макс.Э,

αm(tm.Э.cp) - коэффициент теплоотдачи от стенок трубок ТМТ к топливу при температуре tm.Э.cp.

3. Исходя из допустимых условий по эксплуатации (эксплуатационных ограничений работы агрегатов топливной системы) определяют (иногда назначают) температуру топлива на входе в ТМТ при РТУ tm.РТУ. Произвольно определяют начальную температуру масла на входе в ТМТ tм.РТУ.0 (i=0).

4. Далее температуру масла на входе в ТМТ вычисляют методом последовательных приближений следующим образом.

Вычисляют комплексный параметр КРТУ.i:

где ϑm(tm.РТУ) и сm(tm.РТУ) - соответственно вязкость и теплоемкость топлива при температуре tm.РТУ,

ϑм(tм.РТУ.i) и см(tм.РТУ.i) - соответственно вязкость и теплоемкость топлива при температуре tм.РТУ.i,

αм(tм.РТУ.i) - коэффициенты теплоотдачи от масла к стенкам трубок ТМТ при температуре tм.РТУ.i,

αm(tm.РТУ) - коэффициент теплоотдачи от стенок трубок ТМТ к топливу при температуре tm.РТУ.

Определяют отношение .

Определяют температуру масла на входе в ТМТ в следующем приближении (i=i+1):

Таким образом, следующее приближение значения температуры масла на входе в ТМТ определяют по формуле:

5. Сравнивают вычисленную таким образом температуру масла с температурой масла, вычисленной в предыдущем приближении. Если расхождение превышает или равно заранее предопределенной величине δ (|tм.РТУ.i+1-tм.РТУ.i|≥δ), вычисляют температуру масла на входе в ТМТ в следующем приближении по формуле (3). Эти действия выполняют до тех пор, пока разница вычисленных температур масла в текущем и предыдущем приближениях не станет меньше заданной величины δ:

|tм.РТУ.i+1-tм.РТУ.i|<δ.

Величина δ не должна быть больше абсолютной погрешности датчика, которую можно определить из паспорта на датчик. Обычно величина абсолютной погрешности датчиков, используемых для измерения температуры топлива и масла, находится в диапазоне 0,5…2.0 градусов).

Начальную температуру масла на входе в ТМТ tм.РТУ.0 рекомендуется выбирать на 10…30 градусов больше максимальной достигнутой на выполненном режиме температуры масла tм.макс.Э.

6. Вычисленную температуру сравнивают с предельно допустимой по техническим (эксплуатационным) условиям tпред.TУ. В случае, если вычисленная температура не превышает предельно допустимую, делают вывод о достаточности охлаждения масла при РТУ.

Обоснование расчетных формул.

В статье [3. Царев В.А. «Теоретические исследования температурного состояния самолетных систем», Отраслевой научно-технический журнал «Техника воздушного флота», Том LXXVII, №3 (662), 2003, стр.20-26] получены системы дифференциальных уравнений, описывающих температурное состояние рабочих жидкостей для различных схем систем охлаждения. В частности, для случая, когда нет перепуска в расходный топливный бак самолета и топливо поступает непосредственно в ТМТ, используется дифференциальное уравнение вида

где t - время,

tм - температура масла на входе в ТМТ (выходе из двигателя), °C;

tm.Э.cp - температура топлива на входе в ТМТ, °C;

см - удельная теплоемкость масла, ккал/кг град;

mм - емкость масляной системы (количество масла в масляной системе), кг;

q - количество тепла, подводимого к маслу в двигателе (теплоотдача двигателя в масло), ккал/с,

k - коэффициент теплопередачи теплообменника, ккал/м2 с град,

F - площадь теплообмена, м2;

Gм; Gm - массовые расходы соответственно масла и топлива через ТМТ, кг/с;

сm - удельная теплоемкость топлива, ккал/кг град.

Так как коэффициент теплопередачи теплообменника

где αм, αm - коэффициенты теплоотдачи от масла к стенкам трубок ТМТ и от стенок ТМТ к топливу соответственно, ккал/м2 с град, то

Общее решение уравнения, выражающего изменение температуры масла в процессе выполнения заданного режима работы двигателя и полета самолета, следующее

где С0 - постоянная интегрирования.

Найдем постоянную интегрирования при начальных условиях tм/t=0=tм0. Температура масла tм0 в начальный момент времени t=0 равна

tм00Эq+tm.Э.ср.

Поэтому С0=tм0-KЭq-tm.Э.cp и

Поскольку рассматривается процесс разогрева, то температура масла в начальный момент tм0 самая низкая в данном процессе. Поэтому первое слагаемое, содержащее экспоненциальную функцию, во времени уменьшается, a tм (t) стремится к своему максимальному значению tм.макс.Э=KЭq+tm.Э.cp.

Таким образом, максимальная температура масла, полученная при выполнении заданного режима работы двигателя и полета самолета, равна

tм.макс.ЭЭq+tm.Э.cp.

Аналогично, для других условий, в частности РТУ, можно записать

tм.РТУРТУq+tm.РТУ.

Выражая q и подставляя в последнее уравнение, получим выражение для определения температуры масла в РТУ

Таким образом, для определения максимальной температуры масла в РТУ нужно вычислить относительное изменение . Для вычисления следует определить каждое слагаемое, входящее в выражение (4), при фактических температурных условиях и при РТУ.

Коэффициенты теплоотдачи определяются из зависимостей:

где Nuм, Num - значения критериев Нуссельта, характеризующих конвективный теплообмен между средой и поверхностью теплообмена;

λм, λm, - теплопроводность масла и топлива;

Dм, Dm, м - наружный (для масла) и внутренний (для топлива) диаметр трубок ТМТ.

Из теории подобия тепловых процессов известно, что критерий Нуссельта есть функция двух критериев: Прандтля ( (по маслу) и (по топливу)) и Рейнольдса ( (по маслу) и (по топливу)),

где ρм, ρm - плотность соответственно масла и топлива, ;

νм, νm - вязкость соответственно масла и топлива, ;

Fм, Fm - площадь проходных сечений в ТМТ соответственно для масла и топлива, м2;

Qм, Qm - объемный расход через ТМТ соответственно масла и топлива, .

Объемные расходы можно определить через перепад давления Δр из соотношений

где dм, lм, dm, lm - диаметр и длина подводящего к ТМТ трубопровода соответственно для масла и топлива.

Так как на установившемся режиме, при постоянных оборотах роторов двигателя, перепад давления Δр практически постоянный (регулирующая аппаратура держит постоянное давление), то на расход влияет только вязкость и плотность жидкости.

Для топлива:

Num=0,17Re Pr - при ламинарном течении топлива внутри трубок ТМТ,

Num=0,021Re Pr - при турбулентном течении топлива внутри трубок.

Для масла:

Nuм=0,41Re Pr - при расположении трубок в шахматном порядке,

Nuм=0,23Re Pr - при коридорном расположении трубок в ТМТ.

По известным значениям Nuм, Num находят с точностью до постоянных, входящих в формулы геометрических параметров, коэффициенты теплоотдачи αм, αm.

[4. Домотенко Н.Т, Кравец А.С и др. «Авиационные силовые установки. Системы и устройства». - М.: Транспорт, 1976, с.100-109, 220-223] Выведем выражение для αм.

.

Критерий Нуссельта при расположении трубок в ТМТ в шахматном порядке следующий

С учетом согласования размерности получим следующее выражение для αм:

Таким образом,

где k1 - коэффициент, учитывающий все постоянные параметры и константы и равный

Аналогично получим

где

Коэффициенты k1, k2, k3, k4, определенные из опыта и учитывающие входящие в формулы постоянные значения и геометрические параметры, примерно равны:

k1=1; k2=1; k3=0,2×10-3; k4=0,45×10-3.

Теплофизические свойства масла и топлива, входящие в формулы (вязкость, плотность, теплоемкость, теплопроводность), зависят от температуры. Их численные значения представлены в справочниках и отраслевых стандартах. Они также могут быть рассчитаны по формулам. Например, для двигательного масла ИПМ-10 применяются следующие расчетные формулы в зависимости от температуры масла :

, м2/с, для определения вязкости;

ρм=(0,8267-5,68×10-4 tм)103, кг/м3, для определения плотности;

см=0,476+8,37×10-4 tм, ккал/кг град, для определения теплоемкости;

, ккал/м с град, для определения теплопроводности.

Для топлива марки ТС-1 известны следующие формулы зависимости параметров топлива от температуры топлива :

для определения вязкости;

ρm=(0,775-(tm-20)(18,310-13,233×0,775)10-4)103, кг/м3, для определения плотности;

, ккал/кг град, для определения теплоемкости;

, ккал/м с град, для определения теплопроводности.

[5. Чертков Я.Б. «Современные и перспективные углеводородные реактивные топлива»; Издательство «Химия»; Москва, 1968, с.58, 96-99, 134]

[6. Шишков И.Н, Белов В.Б. «Авиационные горюче-смазочные материалы и специальные жидкости»; Издательство «Транспорт»; Москва, 1979, с.130]

[7. Дубовкин Н.Ф. «Справочник по углеводородным топливам и их продуктам сгорания». - М.-Л.: Госэнергоиздат, 1962, с.66-68, 111-112]

[8. Отраслевой стандарт. Масла для авиационных газотурбинных двигателей. ОСТ 100148-75]

Теперь можно по теплофизическим параметрам, зависящим от температуры и входящим в расчетные формулы, подсчитать относительное изменение отношения при фактических температурах, полученных при летных испытаниях, и температурах РТУ и рассчитать максимальную температуру масла на входе в ТМТ. При этом геометрические параметры, входящие в формулы, не изменяются, а теплоотдача двигателя в масло и расход топлива при неизменных режимах полета и программах регулирования двигателя изменяются незначительно и на относительное изменение существенно не влияют.

Пример 1.

1. При выполнении заданного режима работы двигателя и полета самолета получена максимальная температура масла на входе в ТМТ tм.макс.Э=133,5°C при средней температуре топлива на входе в ТМТ tm.Э.cp=61°C. Используемое топливо марки ТС-1, используемое масло марки ИПМ-10. Надо определить при выбранных величинах: δ=1°C и tм.РТУ.0=150°C на том же режиме работы двигателя и полета самолета ожидаемую максимальную температуру масла на входе в ТМТ при температуре топлива на входе в ТМТ в РТУ tm.РТУ, равной 72°C, и сравнить ее с предельно допустимой температурой.

2. Вычисляют температуру масла в первом приближении (i=1):

3. Так как |tм.РТУ.1-tм.РТУ.0|=|132,479-150|≥1, то полученное значение tм.РТУ.1=132,479 подставляют в формулу для определения КРТУ.1 и получают температуру масла во втором приближении (i=2):

В третьем приближении (i=3):

В четвертом приближении (i=4):

В пятом приближении (i=5):

В шестом приближении (i=6):

Здесь разница температур меньше 1°C, поэтому принимают расчетную максимальную температуру масла на входе в ТМТ равной 138,6. Температура масла, полученная при этих условиях в эксперименте, равна 140°C. Таким образом, разница между расчетным значением и экспериментальным составила 1,4°C, что является вполне удовлетворительным результатом.

Предельно допустимая температура масла на входе в ТМТ по техническим условиям равна 200°C. Поэтому делают вывод о том, что охлаждение масла является достаточным.

Пример 2.

1. При тех же исходных данных надо определить температуру масла на входе в ТМТ и достаточность охлаждения масла, если температура топлива на входе в ТМТ равна значению при РТУ 120°C.

2. Определяют температуру масла в первом приближении (i=1):

3. Вычисляют температуру масла во втором приближении (i=2):

В третьем приближении (i=3):

В четвертом приближении (i=4):

Предельно допустимая температура масла на входе в ТМТ по техническим условиям равна 200°C. Рассчитанная температура 165,4°C не превышает предельно допустимой, поэтому дают вывод, что система охлаждения масла является достаточной.

Для реализации вычислительной части предлагаемого способа разработана программа в среде математической системы «Mathcad».

Способ определения достаточности охлаждения масла в турбореактивном двигателе с топливно-масляным теплообменником, включающий вычисление максимальной температуры масла на входе теплообменника и сравнение ее с предельно допустимой температурой, отличающийся тем, что выбирают критический в отношении перегрева масла режим полета, выполняют полет на выбранном режиме, в процессе полета измеряют температуру топлива и температуру масла на входе в топливо-масляный теплообменник, после полета определяют среднюю температуру топлива t и максимальную достигнутую на выполненном режиме температуру масла t, определяют температуру топлива на входе в топливо-масляный теплообменник при расчетных температурных условиях t, произвольно определяют начальную температуру масла на входе в топливо-масляный теплообменний t, после чего методом последовательных приближений вычисляют максимальную температуру масла на входе в топливо-масляный теплообменник по формуле , i=0, 1, 2, …,где ϑ(t) и с(t) - соответственно вязкость и теплоемкость топлива при температуре t,ϑ(t) и с(t) - соответственно вязкость и теплоемкость масла при температуре t,ϑ(t) и c(t) - соответственно вязкость и теплоемкость топлива при температуре t,ϑ(t) и c(t) - соответственно вязкость и теплоемкость масла при температуре t,α(t) и α(t) - коэффициенты теплоотдачи от масла к стенкам трубок ТМТ соответственно при температурах t и t,α(t) и α(t) - коэффициент теплоотдачи от стенок трубок ТМТ к топливу соответственно при температурах t и t,до тех пор, пока разница вычисленных температур масла в текущем и предыдущем приближениях не станет меньше предопределенной величины δ.
СПОСОБ ОПРЕДЕЛЕНИЯ ДОСТАТОЧНОСТИ ОХЛАЖДЕНИЯ МАСЛА В ТУРБОРЕАКТИВНОМ ДВИГАТЕЛЕ
Источник поступления информации: Роспатент

Showing 1-10 of 23 items.
20.01.2013
№216.012.1c0a

Самолет с системой дистанционного управления

Изобретение относится к системам дистанционного управления самолетами. Система дистанционного управления содержит два соединительных шкафа (1), в каждом из которых установлены по два однотипных вычислителя (3), в которых реализуются: алгоритмы формирования требуемого положения всех...
Тип: Изобретение
Номер охранного документа: 0002472672
Дата охранного документа: 20.01.2013
20.07.2013
№216.012.56c2

Механизм сдвига и фиксации фонаря

Изобретение относится к системам эксплуатационного открытия-закрытия и аварийного сброса фонаря самолета. Механизм сдвига и фиксации фонаря содержит направляющие для подвижной части фонаря, средства закрепления подвижной части на фюзеляже, привод и замок с корпусом, установленным на подвижной...
Тип: Изобретение
Номер охранного документа: 0002487818
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.5a72

Интегрированный комплекс бортового оборудования многофункционального самолета

Изобретение относится к области авиационной техники, а именно к комплексам управления информационно-исполнительными системами бортового оборудования, общесамолетным оборудованием, летательным аппаратом и индикации информации от систем о внешней обстановке, а также их состояния. Технический...
Тип: Изобретение
Номер охранного документа: 0002488775
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.685f

Цилиндр управления фонарем самолета

Изобретение относится к пневматическим устройствам для перемещения органов из одного положения в другое. Цилиндр управления фонарем содержит цилиндрический корпус, шарнирно соединенный с фюзеляжем, и выдвижной полый шток, размещенный внутри корпуса и шарнирно соединенный с подвижной частью...
Тип: Изобретение
Номер охранного документа: 0002492366
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6cfa

Способ диагностики входного устройства силовой установки самолета

Изобретение относится к авиации и может быть применено для диагностики входных устройств силовых установок с использованием вейвлет-анализа. Способ заключается в регистрации физических параметров с помощью датчиков, преобразовании данных в вейвлет-коэффициенты и последующем анализе. Пульсации...
Тип: Изобретение
Номер охранного документа: 0002493549
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.7709

Ручка управления

Изобретение относится к устройствам управления. Технический результат заключается в исключении возможности самопроизвольного поворота вала при несанкционированном выпуске рукоятки и обеспечении однозначной взаимосвязи между положениями рукоятки и состоянием управляемого органа. Устройство...
Тип: Изобретение
Номер охранного документа: 0002496133
Дата охранного документа: 20.10.2013
10.12.2013
№216.012.8a78

Коммутационно-разделительное устройство

Устройство относится к радиотехнике, а именно к антенно-фидерным устройствам СВЧ бортового радиооборудования самолетов. Техническим результатом является обеспечение кругового обзора пространства приемопередатчиком и тремя радиоприемными устройствами с трехантенной системой и улучшение...
Тип: Изобретение
Номер охранного документа: 0002501130
Дата охранного документа: 10.12.2013
27.12.2013
№216.012.9056

Многофункциональный самолет с пониженной радиолокационной заметностью

Изобретение относится к области авиастроения. Многофункциональный самолет содержит фюзеляж (1), консоли крыла (2), консоли цельноповоротного вертикального оперения (4), консоли цельноповоротного горизонтального оперения (3), фонарь кабины (5), горизонтальные кромки воздухозаборников двигателей...
Тип: Изобретение
Номер охранного документа: 0002502643
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9402

Маневренный самолет

Изобретение относится к авиации и касается маневренных самолетов и систем их управления. Маневренный самолет содержит фюзеляж, стреловидное крыло, передние стреловидные наплывы, органы управления, шасси. Передние наплывы расположены в зоне сочленения головной и средней частей фюзеляжа и...
Тип: Изобретение
Номер охранного документа: 0002503584
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9566

Способ определения запаса устойчивости входного устройства газотурбинного двигателя

Изобретение относится к авиации и может быть применено для определения запаса устойчивости входного устройства газотурбинных двигателей. При постоянной частоте вращения ротора двигателя при перемещении органа механизации воздухозаборника определяют программное и фактическое положения органа...
Тип: Изобретение
Номер охранного документа: 0002503940
Дата охранного документа: 10.01.2014
Showing 1-10 of 26 items.
20.01.2013
№216.012.1c0a

Самолет с системой дистанционного управления

Изобретение относится к системам дистанционного управления самолетами. Система дистанционного управления содержит два соединительных шкафа (1), в каждом из которых установлены по два однотипных вычислителя (3), в которых реализуются: алгоритмы формирования требуемого положения всех...
Тип: Изобретение
Номер охранного документа: 0002472672
Дата охранного документа: 20.01.2013
20.07.2013
№216.012.56c2

Механизм сдвига и фиксации фонаря

Изобретение относится к системам эксплуатационного открытия-закрытия и аварийного сброса фонаря самолета. Механизм сдвига и фиксации фонаря содержит направляющие для подвижной части фонаря, средства закрепления подвижной части на фюзеляже, привод и замок с корпусом, установленным на подвижной...
Тип: Изобретение
Номер охранного документа: 0002487818
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.5a72

Интегрированный комплекс бортового оборудования многофункционального самолета

Изобретение относится к области авиационной техники, а именно к комплексам управления информационно-исполнительными системами бортового оборудования, общесамолетным оборудованием, летательным аппаратом и индикации информации от систем о внешней обстановке, а также их состояния. Технический...
Тип: Изобретение
Номер охранного документа: 0002488775
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.685f

Цилиндр управления фонарем самолета

Изобретение относится к пневматическим устройствам для перемещения органов из одного положения в другое. Цилиндр управления фонарем содержит цилиндрический корпус, шарнирно соединенный с фюзеляжем, и выдвижной полый шток, размещенный внутри корпуса и шарнирно соединенный с подвижной частью...
Тип: Изобретение
Номер охранного документа: 0002492366
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6cfa

Способ диагностики входного устройства силовой установки самолета

Изобретение относится к авиации и может быть применено для диагностики входных устройств силовых установок с использованием вейвлет-анализа. Способ заключается в регистрации физических параметров с помощью датчиков, преобразовании данных в вейвлет-коэффициенты и последующем анализе. Пульсации...
Тип: Изобретение
Номер охранного документа: 0002493549
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.7709

Ручка управления

Изобретение относится к устройствам управления. Технический результат заключается в исключении возможности самопроизвольного поворота вала при несанкционированном выпуске рукоятки и обеспечении однозначной взаимосвязи между положениями рукоятки и состоянием управляемого органа. Устройство...
Тип: Изобретение
Номер охранного документа: 0002496133
Дата охранного документа: 20.10.2013
10.12.2013
№216.012.8a78

Коммутационно-разделительное устройство

Устройство относится к радиотехнике, а именно к антенно-фидерным устройствам СВЧ бортового радиооборудования самолетов. Техническим результатом является обеспечение кругового обзора пространства приемопередатчиком и тремя радиоприемными устройствами с трехантенной системой и улучшение...
Тип: Изобретение
Номер охранного документа: 0002501130
Дата охранного документа: 10.12.2013
27.12.2013
№216.012.9056

Многофункциональный самолет с пониженной радиолокационной заметностью

Изобретение относится к области авиастроения. Многофункциональный самолет содержит фюзеляж (1), консоли крыла (2), консоли цельноповоротного вертикального оперения (4), консоли цельноповоротного горизонтального оперения (3), фонарь кабины (5), горизонтальные кромки воздухозаборников двигателей...
Тип: Изобретение
Номер охранного документа: 0002502643
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9402

Маневренный самолет

Изобретение относится к авиации и касается маневренных самолетов и систем их управления. Маневренный самолет содержит фюзеляж, стреловидное крыло, передние стреловидные наплывы, органы управления, шасси. Передние наплывы расположены в зоне сочленения головной и средней частей фюзеляжа и...
Тип: Изобретение
Номер охранного документа: 0002503584
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9566

Способ определения запаса устойчивости входного устройства газотурбинного двигателя

Изобретение относится к авиации и может быть применено для определения запаса устойчивости входного устройства газотурбинных двигателей. При постоянной частоте вращения ротора двигателя при перемещении органа механизации воздухозаборника определяют программное и фактическое положения органа...
Тип: Изобретение
Номер охранного документа: 0002503940
Дата охранного документа: 10.01.2014
+ добавить свой РИД