×
20.11.2014
216.013.0789

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к электронике. В способе формирования нанопроводов из коллоидного естественно-природного материала, основанном на самоорганизованном формировании линейно-упорядоченных наноразмерных токопроводящих структур со строго заданной ориентацией для соединения отдельных микро- и наноэлектронных элементов и/или формирования нанокомпонентов электронной элементной базы, формирование структур и/или элементов проводят в одном процессе в течение не более 3 минут под действием только электрического постоянного поля с напряженностью не более 5×10 В/м, конфигурация которого непосредственно задает как размеры и формы, так и ориентацию наноразмерных токопроводящих углеродных структур, которые стабильно сохраняются без нанесения каких-либо защитных слоев на подложке из любого материала, в том числе содержащей отдельные микро- и наноэлектронные элементы для их соединения и/или для формирования нанокомпонентов электронной элементной базы. Изобретение позволяет упростить процесс управления формой и расположением синтезируемых частиц. 9 ил.
Основные результаты: Способ формирования нанопроводов из коллоидного естественно-природного материала, основанный на самоорганизованном формировании линейно-упорядоченных наноразмерных токопроводящих структур со строго заданной ориентацией для соединения отдельных микро- и наноэлектронных элементов и/или формирования нанокомпонентов электронной элементной базы, отличающийся тем, что формирование структур и/или элементов происходит в одном процессе в течение не более 3 минут под действием только электрического постоянного поля с напряженностью не более 5×10 В/м, конфигурация которого непосредственно задает как размеры и формы, так и ориентацию наноразмерных токопроводящих углеродных структур, которые стабильно сохраняются без нанесения каких-либо защитных слоев на подложке из любого материала, в том числе содержащей отдельные микро- и наноэлектронные элементы для их соединения и/или для формирования нанокомпонентов электронной элементной базы.

Изобретение относится к электронике и методам подключения в микро- и наноинтегральных схемах.

Одним из аналогов предлагаемого изобретения выступает способ формирования проводящего элемента нанометровых размеров /1/, заключающийся в том, что проводящий элемент нанометровых размеров формируют сканированием анода, расположенного на расстоянии от 2 до 100 нм от поверхности катода, покрытого углеродной проводящей средой. В электрической цепи анод-катод используется отрицательная обратная связь, с помощью которой при сканировании анода обнаруживается первая случайная точка на поверхности катода, отличающаяся скачком проводимости (максимум U0), по которому устанавливается и поддерживается напряжение (в диапазоне от 2 до 0 В), что и обеспечивает формирование элемента нанометровых размеров.

Недостатки данного способа заключаются в том, что длина создаваемой нанопроволоки ограничена диапазоном сканирования, ее местоположение и размер определяются случайным образом, а формирование происходит в течение достаточно большого времени и носит нелинейный, неоднозначный характер, вызванный динамической самоорганизацией, лежащей в основе процесса формообразования.

В соответствии с другим способом /2/ для формирования упорядоченных одномерных проводящих наноструктур без радиуса изгиба используется монокристаллическая подложка, имеющая ступени скола и/или другие линейные дефекты. Способ включает вакуумную конденсацию, осуществляемую в заданном диапазоне температур подложки, скоростей конденсации и в течение времени формирования, при которых на линейных дефектах подложки образуется как минимум одна нанопроволока, а на остальной части подложки коэффициент заполнения подложки должен иметь значение, исключающее коалесценцию островков.

Недостатки данного способа заключаются в том, что оптимальное расстояние между ступенями, исключающее образование островков на бездефектных участках подложки, необходимо устанавливать экспериментально. С помощью данного способа сложно создать нанопроволоку с заданной регулярной структурой, так как поверхность подложки специально не обрабатывается: сколы носят случайный характер, возможно присутствие различных линейных дефектов.

Наиболее близким по технической сущности и решаемым задачам является способ управления формой синтезируемых частиц и получения материалов и устройств, содержащих ориентированные анизотропные частицы и наноструктуры /3/. В данном способе многостадийно с использованием как электрических, так и магнитных полей производится синтез наночастиц в реакционной смеси из металлосодержащих или лигандных соединений, формируются ленгмюровские монослои, которые затем управляемо и с заданной ориентацией переносятся на магнитомягкую подложку и покрываются защитным слоем.

Недостатками данного способа является многостадийность и сложность как процесса управления формой и расположением синтезируемых из реакционной смеси частиц в виде ленгмюровских полимеризованных монослоев из металлосодержащих или лигандных соединений, так и синтеза материалов и создания устройств, построенных переносом на магнитомягкую подложку ориентированных анизотропных частиц и наноструктур, для стабилизации обязательно покрываемых защитным слоем, с использованием на всех этапах и электрических, и магнитных полей.

Решение технической задачи устранения выявленных недостатков прототипа достигается путем помещения коллоидного естественно-природного углеродсодержащего материала, в виде ансамбля наночастиц с от 30 нм до 70 нм, обеспечивающего формирование в течение не более 3 минут линейно-упорядоченных наноразмерных токопроводящих структур со строго заданной ориентацией под действием только электрического постоянного поля с напряженностью не более 5×103 В/м, что позволяет осуществлять как подключение отдельных микро- и наноэлектронных элементов, так и формировать нанокомпонентную элементную базу для создания электронных устройств новых поколений.

В результате проведенных испытаний способа формирования нанопроводов из коллоидного естественно-природного материала в электрических постоянных полях с напряженностью не более 5×103 В/м установлена совокупность существенных отличий от прототипа /3/, заключающихся в том, что линейно-упорядоченные наноразмерные токопроводящие структуры со строго заданной ориентацией, для соединения отдельных микро- и наноэлектронных элементов и/или формирования нанокомпонентов электронной элементной базы, отличающиеся тем, что формирование структур и/или элементов происходит в одном процессе в течение не более 3 минут под действием только электрического постоянного поля с напряженностью не более 5×103 В/м, конфигурация которого непосредственно задает как размеры и формы, так и ориентацию наноразмерных токопроводящих углеродных структур, которые стабильно сохраняются без нанесения каких-либо защитных слоев на подложке из любого материала, в том числе содержащей отдельные микро- и наноэлектронные элементы для их соединения и/или для формирования нанокомпонентов электронной элементной базы.

Для формирования линейно-упорядоченных наноразмерных токопроводящих структур из коллоидного естественно-природного углеродсодержащего материала применена конструкция, представленная на Фиг.1, с расстоянием между электродами: 0.1, 0.25, 0.5 и 1.0 мм. Происходящие процессы упорядочения иллюстрируются схемами, представленными на Фиг.2 - для иллюстрации первого этапа и на Фиг.3 - для иллюстрации второго этапа. На Фиг.1-3 и Фиг.6: 1 - коллоидный естественно-природный углеродсодержащий материал, 2 - электроды, 3 - подложка; на Фиг.3: 4 - дипольно-поляризованные частицы, 5 - заряженные цепочки из наночастиц. Создание отдельных электронных нанокомпонентов производится согласно схеме, представленной на Фиг.6: 9 - система остроконечных катодов, 10 - подложка-анод, 11 - сформированный нанокомпонент, изображение которого приведено на Фиг.7. Коллоидный естественно-природный углеродсодержащий материал наносится методом из капли на поверхность подложки, содержащей отдельные микро- и наноэлектронные элементы и/или без них с целью формирования нанокомпонентов электронной элементной базы. Далее, в соответствии с решаемой задачей по формированию нанокомпонентов и/или соединений между отдельными микро- и наноэлектронными элементами на схему, представленную на Фиг.2 и/или Фиг.6, подается электрическое постоянное поле с напряженностью не более 5×103 Вт/м. Продолжительность процесса формирования составляет не более 3 минут.

В основе качественной физической модели способа формирования нанопроводов из коллоидного естественно-природного материала, структур и/или элементов, соединяющих отдельные микро- и наноэлектронные элементы, учтены выводы о том, что именно наносистемы с органическими включениями являются идеальным материалом /5/ для изучения процессов как самоорганизации - в диффузионно-ограниченных условиях, когда поток частиц, поступающих в систему, превышает величину их диффузии, так и самосборки - при выполнении условия: Eb>Einter≥Ekin>Ed - энергия связи частиц с подложкой превышает энергию межмолекулярного взаимодействия и кинетическую, а также энергию их диффузии. При этом наносистемы с доминирующим органическим составом склонны к процессам самосборки, тогда как для неорганических наночастиц характерны процессы самоорганизации с формированием дендритных наноструктур. Линейно-упорядоченные наноразмерные токопроводящие структуры, ориентируемые преимущественно вдоль направления, заданного электрическим постоянным полем, формируются под действием электрофоретической силы, величина которой, согласно /6/, пропорциональна квадрату градиента амплитуды электрического поля - ∇E2 и кубу радиуса частицы - R3 (объем частицы):

где

Re|K(ω)|=[(ε21)/(ε2+2ε1)]+{3(ε1σ22σ1/[τMW2+2σ1)2(1+ω2τMW2)]} - реальная часть функции Клаусиса-Массоти; ε1 и σ1, а также ε2 и σ2 - диэлектрическая проницаемость и проводимость среды и частиц соответственно, ω - частота переменного электрического поля. Важной является величина времени перезарядки в переменных электрических полях: τMW=(ε2+2ε1)/(σ2+2σ1) - время релаксации зарядов Максвелла-Вагнера. В соответствии с (1), на первом этапе /6/, действие FЭФС вызывает перераспределение коллоидных частиц в электрическом поле (Фиг.1), так как FЭФС~∇Е2. Как показывают проведенные исследования /4/ на коллоидном естественно-природном углеродсодержащем материале формирование линейно-упорядоченных наноразмерных токопроводящих наноструктур начинается через примерно 15 с, что по аналогии с /6/ соответствует второму этапу (Фиг.3), когда наночастицы 4 в электрическом поле дипольно-поляризуются и под действием сил взаимодействия кулоновской природы:

выстраиваются в самоорганизованные токопроводящие структуры 5. Здесь С - числовой коэффициент, зависящий от расстояний между частицами 4 и длины цепочек из них 5. Из (2) следует, что дипольно-поляризованные частицы одного размера ориентируются вдоль линий напряженности электрического поля 6, которые видны на фотографии Фиг.4. Наряду с этим недостаточно поляризованные частицы 7, в частности имеющие большие размеры или другой фазовый состав, могут выстраиваться перпендикулярно к линиям напряженности электрического поля 6, как это демонстрирует Фиг.4, а, тогда как дипольно-поляризованные частицы одного малого размера ориентируются вдоль линий напряженности электрического поля, образуя дендритные структуры 7 (Фиг.4, б), что согласуется с выводами /6/.

Таким образом, формируются заряженные цепочки 5, схематично изображенные на Фиг.3, что опытно подтверждено их конфокальными микроскопическими изображениями 8, представленными на Фиг.5.

Пример 1.

Определение характеристик способа формирования нанопроводов из коллоидного естественно-природного материала линейно-упорядоченных наноразмерных токопроводящих структур выполнено в 4 конструкциях, вид которых схематично изображен на Фиг.1 без предлагаемого материала и с ним Фиг.2 и 3. Расстояние между электродами («+/-» и «-/+») - l, обозначенных на Фиг.1-3 цифрой 2, составляет: 0.1, 0.25, 0.5 и 1.0 мм. Возникающие микро- и наноразмерные структуры из коллоидного естественно-природного углеродсодержащего материала представлены на фотографиях Фиг.4, а-б и Фиг.5.

Время начала формирования линейно-упорядоченных наноразмерных токопроводящих структур от момента включения электрического поля и до начала формирования структур τ практически пропорционально расстоянию между электродами, как это подтверждается полученной зависимостью τ(l), представленной на Фиг.8. Так для расстояния 0.5 мм это время составляет 15 с.

На Фиг.9 приведена временная зависимость формирования дендритных структур S(t) под действием постоянного электрического поля с напряженностью более 4×104 В/м, построенная на основе анализа фотографий дендритных структур из коллоидного естественно-природного углеродсодержащего материала, представленных на Фиг.4, а-б. Анализ показывает, что S(t) состоит из двух участков: на первом с незначительным изменением размеров дендритов с постоянной скоростью 10-5 м/с, когда происходит их поляризация, а на втором отмечается быстрый рост дендритных структур с ускорением 6×10-5 м/с2. На этой основе установлена напряженность постоянного электрического поля 5×103 В/м, при которой происходит формирование линейно-упорядоченных наноразмерных токопроводящих структур из коллоидного естественно-природного углеродсодержащего материала.

Пример 2.

В способе формирования нанопроводов из коллоидного естественно-природного материала он наносится методом из капли на поверхность подложки, содержащей отдельные микро- и наноэлектронные элементы. На Фиг.1-3 показаны: 1 - коллоидный естественно-природный углеродсодержащий материал, 2 - электроды, 3 - подложка; на Фиг.3: 4 - дипольно-поляризованные частицы, 5 - заряженные цепочки из наночастиц. На Фиг.1 расстояние между электродами («+/-» и «-/+») - 2, обозначенное l, равняется 0.1, 0.25, 0.5 или 1.0 мм соответственно. Это позволяет после включения постоянного электрического поля с напряженностью не более 5×103 В/м через 15 с структурировать коллоидный естественно-природный углеродсодержащий материал, как это показано на Фиг.2, что соответствует первому этапу. После этого начинается формирование линейно-упорядоченных наноразмерных токопроводящих структур в виде заряженных цепочек разных размеров из наночастиц 5, микрофотографические конфокальные изображения которых приведены на Фиг.5, что соответствует второму этапу. Таким образом, происходит формообразование линейно-упорядоченных наноразмерных токопроводящих структур в виде заряженных цепочек разных размеров при постоянном электрическом поле с напряженностью не более 5×103 B/м, которое продолжается порядка 3 минут.

Пример 3.

В способе формирования нанопроводов из коллоидного естественно-природного материала он наносится методом из капли на поверхность подложки с целью формирования нанокомпонентов электронной элементной базы. Создание отдельных электронных нанокомпонентов производится согласно схеме, представленной на Фиг.6. Для этого к системе из остроконечных катодов, один из которых для иллюстрации представлен на Фиг.6, прикладывается постоянное электрическое поле с напряженностью не более 5×103 В/м. На ней 9 - система остроконечных катодов, 10 - подложка-анод, 11 - сформированный нанокомпонент. Его микрофотографическое конфокальное изображение представлено на Фиг.7. На Фиг.6-7 показаны: 1 - коллоидный естественно-природный углеродсодержащий материал, 2 - электроды, 3 - подложка; на Фиг.3: 4 - дипольно-поляризованные частицы, 5 - заряженные цепочки из наночастиц. Таким образом, происходит формообразование системы точечных микро- и нанокомпонентов под действием постоянного электрического поля с напряженностью не более 5×103 В/м.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Мордвинцев В.М., Кудрявцев С.Е., Левин В.Л. / Способ формирования проводящего элемента нанометровых размеров // Патент РФ №2194334, опубл. 10.12.2002.

2. Омороков Д.Б., Козленко Н.И., Шведов Е.В. / Способ формирования проводящего элемента нанометрового размера // Патент РФ №2401246, опубл. 10.10.2010.

3. Губин С.П., Обыденов А.Ю., Солдатов Е.С., Трифонов А.С., Ханин В.В., Хомутов Г.Б. / Способ управления формой синтезируемых частиц и получения материалов и устройств, содержащих ориентированные анизотропные частицы и наноструктуры (варианты) // Патент РФ №2160697, опубл. 20.12.2000.

4. Кузьменко А.П., Добрица В.П., Чан Ньйен Аунг, Абакумов П.В., Тимаков Д.И. / Процессы формирования фракталов в диффузионно-ограниченных условиях на примере торфов // Известия Юго-Западного государственного университета. 2011. №6(39). Ч.2. С.17-24.

5. Jrlin D. Velev and Ketan H. Bhatt / On-chip micromanipulation and assembly of colloidal particles by electric fields // Soft Matter. 2006. №2. P.738-750.

6. Angelika Kiihnie / Self-assembly of organic molecules at metal surfaces // Current Opinion in Colloid and Interface Science 2009. №14. P.157-168.

Способ формирования нанопроводов из коллоидного естественно-природного материала, основанный на самоорганизованном формировании линейно-упорядоченных наноразмерных токопроводящих структур со строго заданной ориентацией для соединения отдельных микро- и наноэлектронных элементов и/или формирования нанокомпонентов электронной элементной базы, отличающийся тем, что формирование структур и/или элементов происходит в одном процессе в течение не более 3 минут под действием только электрического постоянного поля с напряженностью не более 5×10 В/м, конфигурация которого непосредственно задает как размеры и формы, так и ориентацию наноразмерных токопроводящих углеродных структур, которые стабильно сохраняются без нанесения каких-либо защитных слоев на подложке из любого материала, в том числе содержащей отдельные микро- и наноэлектронные элементы для их соединения и/или для формирования нанокомпонентов электронной элементной базы.
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Showing 41-50 of 64 items.
27.03.2016
№216.014.c8f1

Секционный конденсатор с капиллярной насадкой

Изобретение относится к области энергетики и может быть использовано для конденсации отработанного пара. Секционный конденсатор с капиллярной насадкой включает корпус с верхней и нижней крышками, снабженный патрубками входа отработанного пара и выхода конденсата, воздушным патрубком, внутри...
Тип: Изобретение
Номер охранного документа: 0002578773
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.cbab

Способ переработки прокорродировавших изделий из меди или ее сплава

Изобретение относится к переработке прокорродировавшей меди и бронзы в качестве вторичного сырья для получения химической продукции, а также к оценке устойчивости материалов при попадании в кислые среды и может быть использовано в различных областях практической деятельности, в аналитическом...
Тип: Изобретение
Номер охранного документа: 0002577878
Дата охранного документа: 20.03.2016
20.02.2016
№216.014.ce4b

Вентиляторная градирня

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вытяжную башню с воздуховодными окнами по периметру ее нижней части, воздухоуловитель, водораспределительную систему с суживающимися соплами и расположенную...
Тип: Изобретение
Номер охранного документа: 0002575244
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cedd

Универсальный термоэлектрический преобразователь

Изобретение относится к теплоэнергетике и может быть использовано для утилизации возобновляемых, вторичных тепловых энергоресурсов и низкопотенциальной тепловой энергии природных источников, а именно для трансформации тепловой энергии в электрическую. Технический результат: повышение...
Тип: Изобретение
Номер охранного документа: 0002575769
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cf46

Измеритель параметров многоэлементных пассивных двухполюсников

Изобретение относится к измерительной технике и, в частности, к технике измерения параметров объектов в виде пассивных двухполюсников, имеющих многоэлементную схему замещения. В устройство, которое содержит генератор прямоугольных импульсов напряжения, n последовательно включенных инвертирующих...
Тип: Изобретение
Номер охранного документа: 0002575765
Дата охранного документа: 20.02.2016
27.03.2016
№216.014.dc63

Аэротенк-вытеснитель

Изобретение относится к биологической очистке сточных вод и может быть использовано в промышленности и коммунальном хозяйстве. Аэротенк-вытеснитель включает корпус 1, разделенный перегородками на сообщающиеся последовательно коридоры 3, вводы воды и активного ила, выводы очищенной воды и ила,...
Тип: Изобретение
Номер охранного документа: 0002579134
Дата охранного документа: 27.03.2016
20.02.2016
№216.014.e8ca

Вентиляторная градирня

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержат вытяжную башню, при этом вытяжная башня снабжена вентилятором, расположенным в ее верхней части, регулятором температуры с датчиком температуры атмосферного воздуха,...
Тип: Изобретение
Номер охранного документа: 0002575225
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.e8eb

Мостовой измеритель параметров двухполюсников

Изобретение относится к метрологии, в частности к средствам измерения параметров двухполюсников. Измеритель содержит генератор, четырехплечую мостовую цепь и нуль-индикатор. Генератор состоит из четырех формирователей импульсов, блока синхронизации, коммутатора, усилителя мощности....
Тип: Изобретение
Номер охранного документа: 0002575794
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2b95

Ротационная пульполовушка для очистки диффузионного сока

Изобретение относится к сахарной промышленности, а именно к очистке диффузионного сока от мезги. Предложена ротационная пульполовушка для очистки диффузионного сока, в состав которой входит корытообразный корпус с патрубком для подвода нефильтрованного диффузионного сока и бункер...
Тип: Изобретение
Номер охранного документа: 0002579218
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3274

Устройство для очистки и утилизации тепла дымовых газов группы теплогенераторов систем квартирного отопления

Изобретение относится к теплоэнергетике и может быть использовано для очистки дымовых газов от вредных примесей источников теплоснабжения систем квартирного отопления. Устройство для очистки и утилизации дымовых газов группы теплогенераторов систем квартирного отопления включает короб,...
Тип: Изобретение
Номер охранного документа: 0002581072
Дата охранного документа: 10.04.2016
Showing 41-50 of 161 items.
20.11.2013
№216.012.82a3

Устройство для совмещенного механического и термического расширения скважин

Изобретение относится к горной промышленности, в частности к бурению скважин. Устройство для совмещенного механического и термического расширения скважин содержит электронагреватели с адсорбером, которые последовательно установлены в магистрали подвода воздуха, при этом адсорбер выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002499119
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8333

Мостовой измеритель параметров многоэлементных rlc двухполюсников

Изобретение относится к измерительной технике. Мостовой измеритель параметров многоэлементных RLC двухполюсников содержит генератор импульсов напряжения, выход которого подключен ко входу четырехплечей мостовой цепи, первая ветвь которой состоит из последовательно включенных одиночного...
Тип: Изобретение
Номер охранного документа: 0002499263
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8334

Мостовой измеритель параметров двухполюсников

Изобретение относится к промышленной электронике, автоматике, информационно-измерительной технике. Мостовой измеритель параметров двухполюсников содержит последовательно соединенные генератор питающих импульсов, четырехплечую мостовую цепь и нуль-индикатор. Мост содержит две параллельные ветви,...
Тип: Изобретение
Номер охранного документа: 0002499264
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.85b0

Силовая установка транспортного средства

Изобретение может быть использовано в силовых установках, эксплуатируемых на транспортных средствах, преимущественно на тепловозах. Силовая установка транспортного средства содержит двигатель внутреннего сгорания с турбокомпрессором, снабженным всасывающим и выхлопным патрубками и сообщенным с...
Тип: Изобретение
Номер охранного документа: 0002499902
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.860f

Мостовой измеритель параметров двухполюсников

Изобретение относится к измерительной технике. Мостовой измеритель параметров двухполюсников содержит последовательно соединенные генератор, мостовую цепь и нуль-индикатор. Первый выход генератора подключен ко входу четырехплечей мостовой цепи, который образует общий вывод двух параллельно...
Тип: Изобретение
Номер охранного документа: 0002499997
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.89e8

Цифровой многокомпонентный датчик перемещений

Изобретение относится к измерительной технике, в частности к устройствам для измерения деформаций и перемещений, и предназначено для измерения статических или плавно меняющихся перемещений. Цифровой многокомпонентный датчик перемещений, содержащий корпус, пишущий узел, чувствительный элемент с...
Тип: Изобретение
Номер охранного документа: 0002500986
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a0f

Мостовой измеритель параметров n-элементных двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и промэлектронике, оно может быть использовано для измерения параметров объектов, которые можно представить схемами замещения в виде многоэлементных пассивных двухполюсников, а также его можно использовать для определения...
Тип: Изобретение
Номер охранного документа: 0002501025
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8ac8

Способ (варианты) и устройство диагностики состояний пчелиных семей по их акустическому шуму

Изобретение относится к области пчеловодства и может быть применено в практической работе на индивидуальных и коллективных пасеках. В первом способе диагностики состояний пчелиных семей по их акустическому шуму в течение времени анализа, до 10 минут, осуществляют снятие звукового сигнала с...
Тип: Изобретение
Номер охранного документа: 0002501211
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.901a

Способ обработки при восстановлении некруглого вала трех диаметров

Способ включает долбление фасонным долбяком с линией режущей кромки рабочей части, состоящей из двух секторов и предназначенной для последовательной обработки путем обкатки одной грани обрабатываемого некруглого вала трех диаметров, относящейся к части некруглого вала и участков цилиндрической...
Тип: Изобретение
Номер охранного документа: 0002502583
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9581

Устройство для автоматической поверки стрелочных измерительных приборов

Изобретение относится к вычислительной технике и может быть использовано для автоматизации поверки стрелочных измерительных приборов. Техническим результатом устройства является сокращение времени поверки стрелочных измерительных приборов. Технический результат достигается тем, что в...
Тип: Изобретение
Номер охранного документа: 0002503967
Дата охранного документа: 10.01.2014
+ добавить свой РИД