×
20.11.2014
216.013.0789

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к электронике. В способе формирования нанопроводов из коллоидного естественно-природного материала, основанном на самоорганизованном формировании линейно-упорядоченных наноразмерных токопроводящих структур со строго заданной ориентацией для соединения отдельных микро- и наноэлектронных элементов и/или формирования нанокомпонентов электронной элементной базы, формирование структур и/или элементов проводят в одном процессе в течение не более 3 минут под действием только электрического постоянного поля с напряженностью не более 5×10 В/м, конфигурация которого непосредственно задает как размеры и формы, так и ориентацию наноразмерных токопроводящих углеродных структур, которые стабильно сохраняются без нанесения каких-либо защитных слоев на подложке из любого материала, в том числе содержащей отдельные микро- и наноэлектронные элементы для их соединения и/или для формирования нанокомпонентов электронной элементной базы. Изобретение позволяет упростить процесс управления формой и расположением синтезируемых частиц. 9 ил.
Основные результаты: Способ формирования нанопроводов из коллоидного естественно-природного материала, основанный на самоорганизованном формировании линейно-упорядоченных наноразмерных токопроводящих структур со строго заданной ориентацией для соединения отдельных микро- и наноэлектронных элементов и/или формирования нанокомпонентов электронной элементной базы, отличающийся тем, что формирование структур и/или элементов происходит в одном процессе в течение не более 3 минут под действием только электрического постоянного поля с напряженностью не более 5×10 В/м, конфигурация которого непосредственно задает как размеры и формы, так и ориентацию наноразмерных токопроводящих углеродных структур, которые стабильно сохраняются без нанесения каких-либо защитных слоев на подложке из любого материала, в том числе содержащей отдельные микро- и наноэлектронные элементы для их соединения и/или для формирования нанокомпонентов электронной элементной базы.

Изобретение относится к электронике и методам подключения в микро- и наноинтегральных схемах.

Одним из аналогов предлагаемого изобретения выступает способ формирования проводящего элемента нанометровых размеров /1/, заключающийся в том, что проводящий элемент нанометровых размеров формируют сканированием анода, расположенного на расстоянии от 2 до 100 нм от поверхности катода, покрытого углеродной проводящей средой. В электрической цепи анод-катод используется отрицательная обратная связь, с помощью которой при сканировании анода обнаруживается первая случайная точка на поверхности катода, отличающаяся скачком проводимости (максимум U0), по которому устанавливается и поддерживается напряжение (в диапазоне от 2 до 0 В), что и обеспечивает формирование элемента нанометровых размеров.

Недостатки данного способа заключаются в том, что длина создаваемой нанопроволоки ограничена диапазоном сканирования, ее местоположение и размер определяются случайным образом, а формирование происходит в течение достаточно большого времени и носит нелинейный, неоднозначный характер, вызванный динамической самоорганизацией, лежащей в основе процесса формообразования.

В соответствии с другим способом /2/ для формирования упорядоченных одномерных проводящих наноструктур без радиуса изгиба используется монокристаллическая подложка, имеющая ступени скола и/или другие линейные дефекты. Способ включает вакуумную конденсацию, осуществляемую в заданном диапазоне температур подложки, скоростей конденсации и в течение времени формирования, при которых на линейных дефектах подложки образуется как минимум одна нанопроволока, а на остальной части подложки коэффициент заполнения подложки должен иметь значение, исключающее коалесценцию островков.

Недостатки данного способа заключаются в том, что оптимальное расстояние между ступенями, исключающее образование островков на бездефектных участках подложки, необходимо устанавливать экспериментально. С помощью данного способа сложно создать нанопроволоку с заданной регулярной структурой, так как поверхность подложки специально не обрабатывается: сколы носят случайный характер, возможно присутствие различных линейных дефектов.

Наиболее близким по технической сущности и решаемым задачам является способ управления формой синтезируемых частиц и получения материалов и устройств, содержащих ориентированные анизотропные частицы и наноструктуры /3/. В данном способе многостадийно с использованием как электрических, так и магнитных полей производится синтез наночастиц в реакционной смеси из металлосодержащих или лигандных соединений, формируются ленгмюровские монослои, которые затем управляемо и с заданной ориентацией переносятся на магнитомягкую подложку и покрываются защитным слоем.

Недостатками данного способа является многостадийность и сложность как процесса управления формой и расположением синтезируемых из реакционной смеси частиц в виде ленгмюровских полимеризованных монослоев из металлосодержащих или лигандных соединений, так и синтеза материалов и создания устройств, построенных переносом на магнитомягкую подложку ориентированных анизотропных частиц и наноструктур, для стабилизации обязательно покрываемых защитным слоем, с использованием на всех этапах и электрических, и магнитных полей.

Решение технической задачи устранения выявленных недостатков прототипа достигается путем помещения коллоидного естественно-природного углеродсодержащего материала, в виде ансамбля наночастиц с от 30 нм до 70 нм, обеспечивающего формирование в течение не более 3 минут линейно-упорядоченных наноразмерных токопроводящих структур со строго заданной ориентацией под действием только электрического постоянного поля с напряженностью не более 5×103 В/м, что позволяет осуществлять как подключение отдельных микро- и наноэлектронных элементов, так и формировать нанокомпонентную элементную базу для создания электронных устройств новых поколений.

В результате проведенных испытаний способа формирования нанопроводов из коллоидного естественно-природного материала в электрических постоянных полях с напряженностью не более 5×103 В/м установлена совокупность существенных отличий от прототипа /3/, заключающихся в том, что линейно-упорядоченные наноразмерные токопроводящие структуры со строго заданной ориентацией, для соединения отдельных микро- и наноэлектронных элементов и/или формирования нанокомпонентов электронной элементной базы, отличающиеся тем, что формирование структур и/или элементов происходит в одном процессе в течение не более 3 минут под действием только электрического постоянного поля с напряженностью не более 5×103 В/м, конфигурация которого непосредственно задает как размеры и формы, так и ориентацию наноразмерных токопроводящих углеродных структур, которые стабильно сохраняются без нанесения каких-либо защитных слоев на подложке из любого материала, в том числе содержащей отдельные микро- и наноэлектронные элементы для их соединения и/или для формирования нанокомпонентов электронной элементной базы.

Для формирования линейно-упорядоченных наноразмерных токопроводящих структур из коллоидного естественно-природного углеродсодержащего материала применена конструкция, представленная на Фиг.1, с расстоянием между электродами: 0.1, 0.25, 0.5 и 1.0 мм. Происходящие процессы упорядочения иллюстрируются схемами, представленными на Фиг.2 - для иллюстрации первого этапа и на Фиг.3 - для иллюстрации второго этапа. На Фиг.1-3 и Фиг.6: 1 - коллоидный естественно-природный углеродсодержащий материал, 2 - электроды, 3 - подложка; на Фиг.3: 4 - дипольно-поляризованные частицы, 5 - заряженные цепочки из наночастиц. Создание отдельных электронных нанокомпонентов производится согласно схеме, представленной на Фиг.6: 9 - система остроконечных катодов, 10 - подложка-анод, 11 - сформированный нанокомпонент, изображение которого приведено на Фиг.7. Коллоидный естественно-природный углеродсодержащий материал наносится методом из капли на поверхность подложки, содержащей отдельные микро- и наноэлектронные элементы и/или без них с целью формирования нанокомпонентов электронной элементной базы. Далее, в соответствии с решаемой задачей по формированию нанокомпонентов и/или соединений между отдельными микро- и наноэлектронными элементами на схему, представленную на Фиг.2 и/или Фиг.6, подается электрическое постоянное поле с напряженностью не более 5×103 Вт/м. Продолжительность процесса формирования составляет не более 3 минут.

В основе качественной физической модели способа формирования нанопроводов из коллоидного естественно-природного материала, структур и/или элементов, соединяющих отдельные микро- и наноэлектронные элементы, учтены выводы о том, что именно наносистемы с органическими включениями являются идеальным материалом /5/ для изучения процессов как самоорганизации - в диффузионно-ограниченных условиях, когда поток частиц, поступающих в систему, превышает величину их диффузии, так и самосборки - при выполнении условия: Eb>Einter≥Ekin>Ed - энергия связи частиц с подложкой превышает энергию межмолекулярного взаимодействия и кинетическую, а также энергию их диффузии. При этом наносистемы с доминирующим органическим составом склонны к процессам самосборки, тогда как для неорганических наночастиц характерны процессы самоорганизации с формированием дендритных наноструктур. Линейно-упорядоченные наноразмерные токопроводящие структуры, ориентируемые преимущественно вдоль направления, заданного электрическим постоянным полем, формируются под действием электрофоретической силы, величина которой, согласно /6/, пропорциональна квадрату градиента амплитуды электрического поля - ∇E2 и кубу радиуса частицы - R3 (объем частицы):

где

Re|K(ω)|=[(ε21)/(ε2+2ε1)]+{3(ε1σ22σ1/[τMW2+2σ1)2(1+ω2τMW2)]} - реальная часть функции Клаусиса-Массоти; ε1 и σ1, а также ε2 и σ2 - диэлектрическая проницаемость и проводимость среды и частиц соответственно, ω - частота переменного электрического поля. Важной является величина времени перезарядки в переменных электрических полях: τMW=(ε2+2ε1)/(σ2+2σ1) - время релаксации зарядов Максвелла-Вагнера. В соответствии с (1), на первом этапе /6/, действие FЭФС вызывает перераспределение коллоидных частиц в электрическом поле (Фиг.1), так как FЭФС~∇Е2. Как показывают проведенные исследования /4/ на коллоидном естественно-природном углеродсодержащем материале формирование линейно-упорядоченных наноразмерных токопроводящих наноструктур начинается через примерно 15 с, что по аналогии с /6/ соответствует второму этапу (Фиг.3), когда наночастицы 4 в электрическом поле дипольно-поляризуются и под действием сил взаимодействия кулоновской природы:

выстраиваются в самоорганизованные токопроводящие структуры 5. Здесь С - числовой коэффициент, зависящий от расстояний между частицами 4 и длины цепочек из них 5. Из (2) следует, что дипольно-поляризованные частицы одного размера ориентируются вдоль линий напряженности электрического поля 6, которые видны на фотографии Фиг.4. Наряду с этим недостаточно поляризованные частицы 7, в частности имеющие большие размеры или другой фазовый состав, могут выстраиваться перпендикулярно к линиям напряженности электрического поля 6, как это демонстрирует Фиг.4, а, тогда как дипольно-поляризованные частицы одного малого размера ориентируются вдоль линий напряженности электрического поля, образуя дендритные структуры 7 (Фиг.4, б), что согласуется с выводами /6/.

Таким образом, формируются заряженные цепочки 5, схематично изображенные на Фиг.3, что опытно подтверждено их конфокальными микроскопическими изображениями 8, представленными на Фиг.5.

Пример 1.

Определение характеристик способа формирования нанопроводов из коллоидного естественно-природного материала линейно-упорядоченных наноразмерных токопроводящих структур выполнено в 4 конструкциях, вид которых схематично изображен на Фиг.1 без предлагаемого материала и с ним Фиг.2 и 3. Расстояние между электродами («+/-» и «-/+») - l, обозначенных на Фиг.1-3 цифрой 2, составляет: 0.1, 0.25, 0.5 и 1.0 мм. Возникающие микро- и наноразмерные структуры из коллоидного естественно-природного углеродсодержащего материала представлены на фотографиях Фиг.4, а-б и Фиг.5.

Время начала формирования линейно-упорядоченных наноразмерных токопроводящих структур от момента включения электрического поля и до начала формирования структур τ практически пропорционально расстоянию между электродами, как это подтверждается полученной зависимостью τ(l), представленной на Фиг.8. Так для расстояния 0.5 мм это время составляет 15 с.

На Фиг.9 приведена временная зависимость формирования дендритных структур S(t) под действием постоянного электрического поля с напряженностью более 4×104 В/м, построенная на основе анализа фотографий дендритных структур из коллоидного естественно-природного углеродсодержащего материала, представленных на Фиг.4, а-б. Анализ показывает, что S(t) состоит из двух участков: на первом с незначительным изменением размеров дендритов с постоянной скоростью 10-5 м/с, когда происходит их поляризация, а на втором отмечается быстрый рост дендритных структур с ускорением 6×10-5 м/с2. На этой основе установлена напряженность постоянного электрического поля 5×103 В/м, при которой происходит формирование линейно-упорядоченных наноразмерных токопроводящих структур из коллоидного естественно-природного углеродсодержащего материала.

Пример 2.

В способе формирования нанопроводов из коллоидного естественно-природного материала он наносится методом из капли на поверхность подложки, содержащей отдельные микро- и наноэлектронные элементы. На Фиг.1-3 показаны: 1 - коллоидный естественно-природный углеродсодержащий материал, 2 - электроды, 3 - подложка; на Фиг.3: 4 - дипольно-поляризованные частицы, 5 - заряженные цепочки из наночастиц. На Фиг.1 расстояние между электродами («+/-» и «-/+») - 2, обозначенное l, равняется 0.1, 0.25, 0.5 или 1.0 мм соответственно. Это позволяет после включения постоянного электрического поля с напряженностью не более 5×103 В/м через 15 с структурировать коллоидный естественно-природный углеродсодержащий материал, как это показано на Фиг.2, что соответствует первому этапу. После этого начинается формирование линейно-упорядоченных наноразмерных токопроводящих структур в виде заряженных цепочек разных размеров из наночастиц 5, микрофотографические конфокальные изображения которых приведены на Фиг.5, что соответствует второму этапу. Таким образом, происходит формообразование линейно-упорядоченных наноразмерных токопроводящих структур в виде заряженных цепочек разных размеров при постоянном электрическом поле с напряженностью не более 5×103 B/м, которое продолжается порядка 3 минут.

Пример 3.

В способе формирования нанопроводов из коллоидного естественно-природного материала он наносится методом из капли на поверхность подложки с целью формирования нанокомпонентов электронной элементной базы. Создание отдельных электронных нанокомпонентов производится согласно схеме, представленной на Фиг.6. Для этого к системе из остроконечных катодов, один из которых для иллюстрации представлен на Фиг.6, прикладывается постоянное электрическое поле с напряженностью не более 5×103 В/м. На ней 9 - система остроконечных катодов, 10 - подложка-анод, 11 - сформированный нанокомпонент. Его микрофотографическое конфокальное изображение представлено на Фиг.7. На Фиг.6-7 показаны: 1 - коллоидный естественно-природный углеродсодержащий материал, 2 - электроды, 3 - подложка; на Фиг.3: 4 - дипольно-поляризованные частицы, 5 - заряженные цепочки из наночастиц. Таким образом, происходит формообразование системы точечных микро- и нанокомпонентов под действием постоянного электрического поля с напряженностью не более 5×103 В/м.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Мордвинцев В.М., Кудрявцев С.Е., Левин В.Л. / Способ формирования проводящего элемента нанометровых размеров // Патент РФ №2194334, опубл. 10.12.2002.

2. Омороков Д.Б., Козленко Н.И., Шведов Е.В. / Способ формирования проводящего элемента нанометрового размера // Патент РФ №2401246, опубл. 10.10.2010.

3. Губин С.П., Обыденов А.Ю., Солдатов Е.С., Трифонов А.С., Ханин В.В., Хомутов Г.Б. / Способ управления формой синтезируемых частиц и получения материалов и устройств, содержащих ориентированные анизотропные частицы и наноструктуры (варианты) // Патент РФ №2160697, опубл. 20.12.2000.

4. Кузьменко А.П., Добрица В.П., Чан Ньйен Аунг, Абакумов П.В., Тимаков Д.И. / Процессы формирования фракталов в диффузионно-ограниченных условиях на примере торфов // Известия Юго-Западного государственного университета. 2011. №6(39). Ч.2. С.17-24.

5. Jrlin D. Velev and Ketan H. Bhatt / On-chip micromanipulation and assembly of colloidal particles by electric fields // Soft Matter. 2006. №2. P.738-750.

6. Angelika Kiihnie / Self-assembly of organic molecules at metal surfaces // Current Opinion in Colloid and Interface Science 2009. №14. P.157-168.

Способ формирования нанопроводов из коллоидного естественно-природного материала, основанный на самоорганизованном формировании линейно-упорядоченных наноразмерных токопроводящих структур со строго заданной ориентацией для соединения отдельных микро- и наноэлектронных элементов и/или формирования нанокомпонентов электронной элементной базы, отличающийся тем, что формирование структур и/или элементов происходит в одном процессе в течение не более 3 минут под действием только электрического постоянного поля с напряженностью не более 5×10 В/м, конфигурация которого непосредственно задает как размеры и формы, так и ориентацию наноразмерных токопроводящих углеродных структур, которые стабильно сохраняются без нанесения каких-либо защитных слоев на подложке из любого материала, в том числе содержащей отдельные микро- и наноэлектронные элементы для их соединения и/или для формирования нанокомпонентов электронной элементной базы.
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
СПОСОБ ФОРМИРОВАНИЯ НАНОПРОВОДОВ ИЗ КОЛЛОИДНОГО ЕСТЕСТВЕННО-ПРИРОДНОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Showing 31-40 of 64 items.
10.07.2015
№216.013.61dc

Ограждающий элемент с солнечным коллектором

Изобретение относится к строительству, а именно к конструкциям ограждающих элементов с солнечным коллектором, и может быть использовано в строительстве различных отапливаемых зданий, преимущественно сельскохозяйственных. Технический результат: поддержание заданных теплоизоляционных свойств...
Тип: Изобретение
Номер охранного документа: 0002556594
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.630f

Сироп плодово-растительный функциональный

Изобретение относится к пищевой промышленности, в частности к производству сиропов функционального назначения, и может быть использовано в пищевой и перерабатывающей промышленности. Сироп содержит сок прямого отжима из яркоокрашенных плодов или ягод, сахар, растительные компоненты, в качестве...
Тип: Изобретение
Номер охранного документа: 0002556906
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6ab4

Трехслойная ресурсосберегающая железобетонная панель

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Технический результат - обеспечение энергосберегающих условий эксплуатации промышленных зданий и сооружений, особенно в условиях отрицательных температур окружающей среды. Трехслойная...
Тип: Изобретение
Номер охранного документа: 0002558874
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c23

Санитарно-утилизационная приставка для теплогенератора крышной котельной

Изобретение относится к теплоэнергетике, а именно к теплоснабжению, и может быть использовано для очистки и утилизации тепла и конденсата дымовых газов теплогенераторов систем автономного теплоснабжения с одновременным получением электричества. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002559241
Дата охранного документа: 10.08.2015
27.11.2015
№216.013.9451

Экструдер пресса для производства макаронных изделий улучшенного качества

Экструдер включает содержащийся в корпусе шнек с выходным валом привода экструдера с одной стороны и с формующим устройством с другой стороны. Винтовая поверхность шнека разделена на три ступени, первая из которых связана с тестосмесителем, вторая ступень является зоной дозированной подачи...
Тип: Изобретение
Номер охранного документа: 0002569588
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9523

Система оборотного водоснабжения

Изобретение относится к теплоэнергетике, в частности к системам оборотного водоснабжения промышленных предприятий. Система оборотного водоснабжения, содержащая теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой...
Тип: Изобретение
Номер охранного документа: 0002569798
Дата охранного документа: 27.11.2015
20.12.2015
№216.013.9b02

Способ экспериментального определения градиента изменения длительной прочности нагруженного и корродирующего бетона и устройство для его осуществления

Изобретение относится к области строительства, в частности к определению изменения длительной прочности бетона во времени эксплуатируемых под нагрузкой в условиях внешней агрессивной среды бетонных и железобетонных конструкций. Сущность: отслеживается разница между деформациями, получаемыми в...
Тип: Изобретение
Номер охранного документа: 0002571307
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9b04

Способ и устройство для определения абсолютной удельной активности содержимого контейнера с радиоактивными отходами и парциальных удельных активностей отдельных радионуклидов

Изобретение относится к технике измерения ионизирующих излучений и предназначено для определения радионуклидного состава и активности упакованных в контейнеры РАО. Способ определения абсолютной удельной активности содержимого контейнера и парциальных удельных активностей отдельных радионуклидов...
Тип: Изобретение
Номер охранного документа: 0002571309
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9b0f

Водоотвод для скатной крыши многоэтажного дома

Изобретение относится к области строительства, в частности к водоотводу для скатной крыши многоэтажного здания. Техническим результатом изобретения является ресурсосберегающая эксплуатация здания за счет использования для освещения в темное время суток подъездов и вспомогательных помещений...
Тип: Изобретение
Номер охранного документа: 0002571320
Дата охранного документа: 20.12.2015
10.03.2016
№216.014.bf61

Вентиляторная градирня

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вентилятор, на нижнюю и верхнюю поверхности каждой из лопастей вентилятора наносят наноматериал в виде стекловидной пленки, причем нанопокрытие выполнено...
Тип: Изобретение
Номер охранного документа: 0002576948
Дата охранного документа: 10.03.2016
Showing 31-40 of 161 items.
10.07.2013
№216.012.538d

Способ и устройство охлаждения режущего инструмента для повышения точности при обработке деталей на оборудовании с чпу

Способ включает определение температуры в зоне резания. Для повышения точности обработки при охлаждении используют термоэлемент, выполненный в виде пластины, которую размещают в державке резца и соединяют с генератором постоянного тока. При этом в качестве устройства для определения температуры...
Тип: Изобретение
Номер охранного документа: 0002486992
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.546d

Устройство управления подъемно-копающими механизмами

Изобретение относится к пневматическим системам управления экскаваторами и кранами, работающими в условиях отрицательных температур. Устройство управления подъемно-копающими механизмами содержит компрессор, масловлагоотделитель и ресивер, пневматически последовательно соединенные между собой....
Тип: Изобретение
Номер охранного документа: 0002487216
Дата охранного документа: 10.07.2013
27.07.2013
№216.012.5a22

Устройство для борьбы с туманом на рудниках

Изобретение относится к горному делу и может быть использовано для безопасности ведения горных работ. Техническим результатом является повышение эффективности удаления тумана в горной выработке. Устройство содержит вихревую трубу с патрубком выхода теплого воздушного потока и трубопроводом...
Тип: Изобретение
Номер охранного документа: 0002488695
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a55

Абонентский ввод системы теплоснабжения здания

Изобретение относится к централизованному теплоснабжению жилых общественных и промышленных зданий. Абонентский ввод системы теплоснабжения здания содержит подающий и обратный трубопроводы, элеватор, задвижки, расположенные до и после элеватора, нагревательные приборы. Элеватор установлен на...
Тип: Изобретение
Номер охранного документа: 0002488746
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5dd1

Газораспределительная станция

Изобретение относится к газовой технике, в частности к газораспределительным станциям для снижения давления газа в газопроводе. Газораспределительная станция содержит блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, соединенную с...
Тип: Изобретение
Номер охранного документа: 0002489638
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5de5

Шахтная печь для обжига сыпучего материала

Изобретение относится к технологии производства сахара, а именно к оборудованию по получению сатурационного газа, используемого для очистки диффузионного сока, и может найти применение при получении извести в шахтных печах в промышленности строительных материалов, химической и металлургической...
Тип: Изобретение
Номер охранного документа: 0002489658
Дата охранного документа: 10.08.2013
10.10.2013
№216.012.7457

Измеритель параметров многоэлементных пассивных двухполюсников

Изобретение относится к измерительной технике и, в частности, к области измерения параметров объектов, имеющих схемы замещения в виде многоэлементных пассивных двухполюсников. Измеритель параметров многоэлементных пассивных двухполюсников содержит генератор импульсов напряжения, имеющий форму...
Тип: Изобретение
Номер охранного документа: 0002495440
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7458

Измеритель параметров двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и промышленной электронике. Устройство содержит последовательно соединенные генератор импульсов с изменением напряжения в течение их длительности по закону степенных функций, измерительную цепь, аналоговый сумматор и...
Тип: Изобретение
Номер охранного документа: 0002495441
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7459

Мостовой измеритель параметров двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и промэлектронике, в частности, оно позволяет определять параметры четырехэлементных двухполюсников или параметры датчиков с четырехэлементной схемой замещения. Мостовой измеритель параметров двухполюсников содержит...
Тип: Изобретение
Номер охранного документа: 0002495442
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.78cd

Способ переработки органических и полимерных отходов

Изобретение относится к методам термической деполимеризации природных и вторичных органических ресурсов, например твердых бытовых отходов (ТБО). Способ переработки органических и полимерных отходов включает загрузку сырья с предварительной сепарацией, измельчение с подсушкой, отличается тем,...
Тип: Изобретение
Номер охранного документа: 0002496587
Дата охранного документа: 27.10.2013
+ добавить свой РИД