×
20.11.2014
216.013.06cb

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СЕРЫ КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ СЕРОВОДОРОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической промышленности. Сероводород окисляют кислородом или воздухом на установке с неподвижным слоем гетерогенного катализатора на любом твердом пористом носителе при температуре 130-200°С и мольном соотношении кислород:сероводород 0,5-5. Катализатор, содержащий 0,5-10 мас.% комплексного соединения формулы MgCl·ZnCl·nEtO (где n=1-4), получают путем пропитки твердого пористого носителя раствором этого комплексного соединения в диэтиловом эфире с последующей сушкой. Изобретение позволяет повысить выход серы и селективность превращения сероводорода в серу.
Основные результаты: Способ получения серы путем прямого окисления содержащегося в газовых потоках сероводорода кислородом или воздухом в реакторе с неподвижным или кипящим слоем катализатора, отличающийся тем, что окисление проводят при мольном соотношении кислород:сероводород, равном 0,5-5,0, при температуре 130-200°С, используют гетерогенный катализатор, содержащий 0,5-10 мас.% комплексного соединения формулой MgCl·ZnCl·nEtO (где n=1-4) на любом твердом пористом носителе.

Изобретение предназначено для использования в газоперерабатывающей, нефтехимической и химической промышленности и относится к процессам получения серы из промышленных газов, содержащих сероводород, путем селективного окисления последнего в серу в присутствии катализатора.

В промышленности перерабатываемые газы довольно часто содержат 1-3 и более об.% H2S и до 40 об.% водяных паров.

Известен способ очистки отходящих газов ["Improved Claus sulphur recovery: Keeping abreast of the regulations". Sulphur, 1994, №231, p.35-59], включающий превращение всех серосодержащих соединений в сероводород на первой стадии и последующую переработку сероводорода на второй стадии согласно реакции:

Реакция (1) протекает в газовой фазе в присутствии твердого катализатора. Практическая реализация этой реакции с достижением высокого выхода серы затрудняется рядом причин. Можно ожидать снижения выхода серы за счет протекания на поверхности катализатора побочных реакций:

Пары воды, присутствующие в перерабатываемых газах, отрицательно влияют на выход серы, способствуя протеканию обратимой реакции Клауса и уменьшению выхода серы:

В условиях окисления сероводорода в серу на оксидных катализаторах возможно образование на их поверхности сульфидов металлов. Последние, согласно литературным данным [Sakaeva N.S., Vamek V.A., Bukhtiyarova G.A., Anufrienko V.F., Sobolev E.A and Zolotovskii B.P. Mossbauer Spectroscopy Study of Alumina-supported Iron-containing Catalysts for Hydrogen Sulfide Oxidation // React. Kinet. Catal. Lett. - V.70. - 1. - 2000. - P.169-176], катализируют реакцию образования SO2 (3), что ведет к снижению выхода серы.

Поверхностные ОН-группы, присутствующие в составе активного катализатора, согласно литературным данным [Berben P.H. Selective oxidation of hydrogen sulfide to sulfur on alumina supported catalysts (Selectieve oxidatie van waterstof sulfide naar zwaler over katalysatoren op basis van aluminium oxide). - Proefschrift. 12 feb., 1992, Nederlands. - 1992], также способствуют протеканию реакции Клауса (4).

Дополнительные трудности возникают при получении серы из попутных нефтяных газов, содержащих, наряду с сероводородом, значительное количество меркаптанов. Окисление последних приводит к образованию жидких диалкилдисульфидов, загрязняющих получаемую серу.

Проблема очистки газов от сероводорода путем селективного окисления его в серу сводится к созданию катализатора, способного селективно окислять сероводород до элементарной серы по реакции (1) и не способствовать протеканию побочных реакций (2-4). В частном случае очистки попутного нефтяного газа с высоким (доли % и выше) содержанием низших меркаптанов требуется дополнительно предварительное извлечение последних из газового потока путем селективного окисления.

Известен способ «BSR/Selectox» для получения серы и очистки отходящих газов процесса Клауса, в котором газ, содержащий сероводород, взаимодействует с кислородом на катализаторе, содержащем в качестве активного компонента оксид и/или сульфид ванадия на нещелочном тугоплавком носителе [Пат. США 4311683, С01В 17/04, 1/1982]. Основным недостатком предлагаемого способа является необходимость уменьшения содержания водяных паров в газовом потоке после стадии гидрирования сернистых соединений до 5 об.% для достижения высокого выхода серы. На практике конденсация воды перед реактором окисления приводит к усложнению процесса (дополнительные процедуры охлаждения и нагрева газовой смеси) и создает проблемы коррозии оборудования - в конденсате растворяется H2S.

Известен также способ получения серы, включающий окисление сероводорода до достижения соотношения H2S:SO2, равного 2:1, при повышенной температуре в присутствии 3-12 мас.% соединения переходного металла, например железа, на нещелочном огнеупорном носителе, предпочтительно в присутствии 0.02-0.9% металла из группы платины, затем реакционная масса проходит реактор каталитического восстановления для устранения избыточного кислорода и подвергается переработке в серу по методу Клауса. Выход серы на первой стадии составляет 37-40%, суммарный - около 93%. Недостатком способа является очень сложная технология, включающая три раздельные каталитические стадии, проводимые в разных условиях и в разных реакторах.

Другой катализатор, используемый для окисления сероводорода кислородом в серу, содержит в качестве активных компонентов оксиды Fe и V, нанесенные оксид Al с Sуд>30 м2/г и Vпор=0,4-0,8 см3/г [Пат. США 4197277, С01В 17/04, 4/1980]. Однако оксид алюминия с такой величиной удельной поверхности все еще содержит некоторое количество фазы γ-Al2O3, которая является активной в реакции Клауса и, таким образом, служит причиной уменьшения выхода серы за счет протекания обратной реакции Клауса (4) и снижения эффективности процесса в целом.

Наиболее близким к предлагаемому является способ получения серы путем прямого окисления сероводорода кислородом или воздухом в неподвижном или кипящем слое при температуре 150-330°С и мольном соотношении О2/H2S, равном 0,5-5,0, в присутствии катализатора, который в качестве активного компонента содержит соединения Fe и Cr в количестве не менее 0,1 мас.% на носителе, в качестве которого могут быть использованы оксиды металлов либо их смеси, характеризующиеся Sуд<20 м2/г и объемом пор с радиусами от 5 до 500 Å, составляющим не более 10% суммарного объема пор [Пат. США 5037629, С01В 17/04, 8/19] - прототип.

Предлагаемое изобретение ставит задачей разработку способа получения серы, обеспечивающего стабильный выход серы до 95% на стадии окисления в интервале температур 130-200°С.

Указанный технический результат достигается способом получения серы путем прямого окисления содержащегося в газовых потоках сероводорода кислородом или воздухом в реакторе с неподвижным или кипящим слоем гетерогенного катализатора, содержащего комплексное соединение формулой MgCl2·ZnCl2·nEt2O (где n=1-4) на любом твердом пористом носителе при температуре 130-200°С и мольном соотношении кислород:сероводород, равном 0,5-5,0. При этом используют катализатор, содержащий 0,5-10 мас.% комплексного соединения формулой MgCl2·ZnCl2·nEt2O (где n=1-4) от общей массы твердого пористого носителя.

В качестве твердого пористого носителя могут быть использованы: активированные угли, силикагели и цеолиты различных марок, а также иные твердые пористые носители, применяемые для нанесения на их поверхность катализаторов.

Указанный способ позволяет обеспечить более высокий и стабильный выход серы на стадии окисления в интервале температур 130-200°С по сравнению с прототипом и другими известными способами. Высокая каталитическая активность комплексного соединения формулой MgCl2·ZnCl2·nEt2O (где n=1-4) в реакции окисления сероводорода кислородом в серу обеспечивает выход серы около 96% при 130-200°С (для прототипа 87-90%).

Сущность предлагаемого изобретения иллюстрируется примерами.

Пример 1

Опоку щербаковского месторождения дробят, отбирают фракцию 2,5-5 мм. Проводят термообработку гранул в муфельной при температуре 600°C в течение 3 часов. Готовят 5-6% р-р NaOH, проводят выщелачивание опоки в течение 24 часов. После выщелачивания опоку промывают в проточной воде до установления нейтрального pH 6,5-7,5. Далее сушат при температуре 105°C в сушильном шкафу до установления постоянной массы. Суммарная площадь поверхности полученного носителя составляет 78 м2/г.

Соль ZnCl2 (безводный) в количестве 100,5 г растворяют в 1500 мл перегнанного диэтилового эфира при перемешивании. Окончание процесса растворения соли определяют по установлению постоянного значения иона Cl- в растворе. После установления равновесия в раствор добавляют безводный MgCl2 в количестве 71,25 г при постоянном перемешивании. Из-за синергетического эффекта растворение солей в растворе продолжается. Окончание процесса растворения солей судят по установлению постоянного значения иона Cl- в растворе. В итоге в прозрачном реакционном растворе образуется комплекс состава MgCl2·ZnCl2·nEt2O (где n=1-4). Содержание Cl- в растворе составляет 3-6% масс.

50 г подготовленной опоки пропитывают 70 мл прозрачным реакционным раствором. Удаление растворителя производят под вакуумом в токе азота. Количество комплекса, высаженного на поверхность носителя, составляет от 3% до 5%.

Пример 2

На 30 г активированного угля марки АР-В (изготовитель ОАО "Сорбент", г. Пермь) наносят 80 мл раствора, содержащего комплексное соединение по примеру 1. Далее высушивают под вакуумом в токе азота. Количество комплекса, высаженного на поверхность носителя, составляет 7-8%. Суммарная площадь поверхности полученного катализатора составляет 325 м2/г.

Пример 3

Получение серы путем прямого окисления сероводорода осуществляют на установке проточного типа с неподвижным слоем гетерогенного катализатора. При этом в стеклянную трубку, диаметром 12,5 мм, засыпают катализатор, приготовленный по примеру 1. Объем катализатора составляет 9 мл. Реактор расположен вертикально, подачу газа производят сверху вниз. Время контакта (н.у.) составляет 0,5 с. Состав модельной смеси: концентрация сероводорода 1 об.%; концентрация кислорода 2 об.%. Необходимое количество кислорода обеспечивают его дозированной подачей в поток атмосферного воздуха. Основа газового потока - метан. Результаты эксперимента представлены в таблице 1.

Как видно из таблицы, эффективность окисления серы снижается после 170°C, с термическим разложением комплексного соединения.

Пример 4

Процесс ведут как в примере 3, но в реактор загружают катализатор, приготовленный по примеру 2. В данном примере температурный режим ограничен в пределах от 140…170°C.

Результаты эксперимента представлены в таблице 2.

Пример 5

Процесс ведут как в примере 3, но в реактор загружают катализатор, приготовленный по примеру 1. Состав газовой смеси отвечает типичному составу попутного нефтяного газа: метан - 94%, пропан-бутановая фракция - 2%, сероводород - 2%, пары воды - 2%. В данном примере температурный режим ограничивают в пределах 140…170°C.

Результаты эксперимента представлены в таблице 3.

Таким образом, заявленный способ получения серы путем прямого окисления сероводорода в присутствии гетерогенного катализатора является промышленно применимым и позволяет обеспечить одноступенчатое, высокотехнологичное получение серы. При этом достигается высокая степень очистки газового потока от сероводорода. Процесс может быть использован для получения серы и очистки газовых потоков на предприятиях нефтехимической промышленности (для отходящих газов Клаус-процесса), в нефтедобывающей (для попутного газа) и газодобывающей (для природного газа) отраслях.

Способ получения серы путем прямого окисления содержащегося в газовых потоках сероводорода кислородом или воздухом в реакторе с неподвижным или кипящим слоем катализатора, отличающийся тем, что окисление проводят при мольном соотношении кислород:сероводород, равном 0,5-5,0, при температуре 130-200°С, используют гетерогенный катализатор, содержащий 0,5-10 мас.% комплексного соединения формулой MgCl·ZnCl·nEtO (где n=1-4) на любом твердом пористом носителе.
Источник поступления информации: Роспатент

Showing 171-180 of 182 items.
19.06.2019
№219.017.8b45

Способ получения мелкодисперсных нитратов целлюлозы

Изобретение относится к области получения нитратцеллюлозных пресс-порошков для изготовления энергетических составов и касается способа получения мелкодисперсных нитратов целлюлозы. Способ включает приготовление водной суспензии нитратцеллюлозных волокон, дозировку этилацетата, добавление...
Тип: Изобретение
Номер охранного документа: 0002441880
Дата охранного документа: 10.02.2012
29.06.2019
№219.017.a000

Устройство для импульсной знакопеременной обработки прискважинной зоны пласта

Изобретение относится к нефтегазодобывающей промышленности. Обеспечивает возможность разработки генератора давления для интенсификации нефтегазодобычи на основе артиллерийских порохов, характеризующегося пониженной массой заряда и сопоставимого по эффективности с наиболее мощными существующими...
Тип: Изобретение
Номер охранного документа: 0002451173
Дата охранного документа: 20.05.2012
29.06.2019
№219.017.a100

Заряд твердого ракетного топлива

Заряд твердого ракетного топлива включает пучок топливных элементов, скрепленных с дном двигателя полимерным крепящим составом и дополнительным клеем. Полимерный крепящий состав представляет собой полиуретан, состоящий из смоляной части и отвердителя аминного типа. Отвердитель наряду с...
Тип: Изобретение
Номер охранного документа: 0002449156
Дата охранного документа: 27.04.2012
03.10.2019
№219.017.d1d3

Футляр для зарядов к миномётным 82-мм выстрелам

Изобретение относится к области военной техники в части упаковки метательных зарядов минометных 82-мм выстрелов. Футляр состоит из корпуса и крышки, в которых содержатся основной и дополнительный заряды, стойки для удержания дополнительных зарядов, штанги для размещения основного заряда,...
Тип: Изобретение
Номер охранного документа: 0002701748
Дата охранного документа: 01.10.2019
24.11.2019
№219.017.e5dc

Флегматизирующий состав для эмульсионной флегматизации сферических порохов

Изобретение относится к производству порохов для стрелкового оружия. Флегматизирующий состав для эмульсионной флегматизации сферических порохов содержит смесь динитрата диэтиленгликоля и динитрата триэтиленгликоля (ЛД-30) 50-90 мас.% и централит II 10-50 мас.%. Применение смеси ЛД-30 в виде...
Тип: Изобретение
Номер охранного документа: 0002707031
Дата охранного документа: 21.11.2019
13.12.2019
№219.017.ed15

Установка для очистки попутного нефтяного и природного газа от серосодержащих соединений

Изобретение относится к газовой и нефтяной промышленности, в частности к установкам для очистки газов от серосодержащих соединений, и может быть использовано при подготовке попутного нефтяного газа (далее ПНГ) и природного газа к потреблению. Установка очистки и осушки попутного нефтяного газа...
Тип: Изобретение
Номер охранного документа: 0002708853
Дата охранного документа: 11.12.2019
17.01.2020
№220.017.f671

Высокоэнергетический пироксилиновый порох для метательных зарядов танковой артиллерии

Изобретение относится к производству пироксилиновых высокоэнергетических порохов и может быть использовано для изготовления порохов к ствольным системам многоразового действия, а именно метательных зарядов (МЗ) выстрела танковой артиллерии. Изобретение направлено на улучшение воспламеняемости...
Тип: Изобретение
Номер охранного документа: 0002711143
Дата охранного документа: 15.01.2020
23.02.2020
№220.018.05f8

Высокопористый многоканальный сферический порох

Решение относится к производству пористых порохов, применяемых, в частности, для снаряжения спортивных и охотничьих дробовых патронов к гладкоствольному оружию. Сферический порох характеризуется тем, что пороховые элементы представляют собой полый шар с пористой оболочкой - горящим сводом,...
Тип: Изобретение
Номер охранного документа: 0002714814
Дата охранного документа: 19.02.2020
25.04.2020
№220.018.198e

Сферический порох для патронов стрелкового оружия

Изобретение относится к производству сферических порохов (СФП) на основе нитратов целлюлозы, в частности использования нитратов целлюлозы с повышенной удельной поверхностью для получения сферического пороха к 5,6-мм винтовочным патронам кольцевого воспламенения. Изобретение направлено на...
Тип: Изобретение
Номер охранного документа: 0002719843
Дата охранного документа: 23.04.2020
21.05.2023
№223.018.698c

Сферический порох для 5,45 мм патрона с усиленным зарядом

Изобретение относится к области получения сферических порохов для снаряжения патронов с усиленным зарядом, предназначенных для проверки прочности запирающего механизма стрелкового оружия. Сферический порох для снаряжения 5,45 мм патрона с усиленным зарядом включает пироксилин 1 Пл, стабилизатор...
Тип: Изобретение
Номер охранного документа: 0002794938
Дата охранного документа: 25.04.2023
Showing 171-180 of 204 items.
29.03.2019
№219.016.f11c

Способ получения нанодисперсного порошка октогена или гексогена и установка для его осуществления

Группа изобретений относится к технологии производства взрывчатых веществ. Предложен способ получения нанодисперсного порошка октогена или гексогена и установка для его осуществления. Октоген или гексоген растворяют в органическом растворителе - циклогексаноне или диметилсульфоксиде, или...
Тип: Изобретение
Номер охранного документа: 0002343138
Дата охранного документа: 10.01.2009
30.03.2019
№219.016.f991

Имитаторы запаха наркотических веществ для тренировки служебно-розыскных собак на обнаружение наркотиков

Изобретение относится к области дрессировки собак. Предложены имитаторы запаха наркотических веществ - героина, кокаина, амфетаминов, каннабиса, крэка, спидбола, опия и JWH, пролонгированного действия для дрессировки служебных собак, включающие инертный носитель и эффективное количество...
Тип: Изобретение
Номер охранного документа: 0002683476
Дата охранного документа: 28.03.2019
04.04.2019
№219.016.fc85

Капсюль-воспламенитель

Изобретение относится к средствами инициирования. Предложен капсюль-воспламенитель, содержащий металлический колпачок с ударно-воспламенительным составом, выполненным в виде двух слоев и прикрытым сверху защитным слоем. Слой ударно-воспламенительного состава, расположенный у дна колпачка,...
Тип: Изобретение
Номер охранного документа: 0002360213
Дата охранного документа: 27.06.2009
17.04.2019
№219.017.1524

Материал жесткого сгорающего картуза

Изобретение относится к области производства сгорающих материалов для жестких сгорающих картузов. Материал жесткого сгорающего картуза включает целлюлозу, нитраты целлюлозы, энергетическое связующее. Согласно изобретению дополнительно вводится низкоазотный нитрат целлюлозы (НАНЦ), в качестве...
Тип: Изобретение
Номер охранного документа: 0002684785
Дата охранного документа: 15.04.2019
19.04.2019
№219.017.2e54

Полихлоралюминаты лития

Изобретение может быть использовано в химической промышленности. Полихлоралюминаты лития получены взаимодействием хлорида лития с хлоридом алюминия в среде диэтилового эфира и соответствуют общей химической формуле LiCl·nAlCl·2EtO, где n=1, 2. Указанные химические соединения пригодны для...
Тип: Изобретение
Номер охранного документа: 0002395452
Дата охранного документа: 27.07.2010
19.04.2019
№219.017.2e5b

Полихлоралюминаты щелочноземельных металлов

Изобретение может быть использовано в химической промышленности. Полихлоралюминаты щелочноземельных металлов получены взаимодействием хлоридов щелочноземельных металлов с хлоридом алюминия в среде диэтилового эфира и соответствуют общей химической формуле МСl·4АlСl·nЕtO, в которой при М=Са...
Тип: Изобретение
Номер охранного документа: 0002395454
Дата охранного документа: 27.07.2010
19.04.2019
№219.017.2e5e

Полихлорцинкаты редкоземельных элементов

Изобретение может быть использовано в химической промышленности. Полихлорцинкаты редкоземельных элементов (РЗЭ) получены взаимодействием хлоридов редкоземельных элементов с хлоридом цинка в среде диэтилового эфира и соответствуют общей химической формуле nMCl·ZnCl·mEtO, где М=РЗЭ, n=1-7,...
Тип: Изобретение
Номер охранного документа: 0002395458
Дата охранного документа: 27.07.2010
19.04.2019
№219.017.2e5f

Трихлорцинкат лития

Изобретение может быть использовано в химической промышленности. Трихлорцинкат лития получен взаимодействием хлорида лития с хлоридом цинка в среде диэтилового эфира и соответствует химической формуле LiCl·ZnCl·4EtO. Указанное химическое соединение пригодно для использования в качестве реагента...
Тип: Изобретение
Номер охранного документа: 0002395453
Дата охранного документа: 27.07.2010
19.04.2019
№219.017.2e64

Полихлорцинкаты металлов iiа группы

Изобретение может быть использовано в химической промышленности. Полихлорцинкаты металлов IIА группы получены взаимодействием хлоридов металлов IIА группы с хлоридом цинка в среде диэтилового эфира и соответствуют общей химической формуле nMCl·ZnCl·mEtO, в которой при М=Mg n=1, m=2; при М=Са,...
Тип: Изобретение
Номер охранного документа: 0002395455
Дата охранного документа: 27.07.2010
19.04.2019
№219.017.3138

Сферический порох

Изобретение относится к области получения сферических порохов для стрелкового оружия и малокалиберной артиллерии. Сферический порох включает, мас.%: дифениламин - 0,2-1,0, этилацетат - 0,2-2,0, влагу - 0,2-1,2, графит - 0,1-0,2, алюминиевую пудру - 8,0-11,0 и нитраты целлюлозы - остальное....
Тип: Изобретение
Номер охранного документа: 0002421433
Дата охранного документа: 20.06.2011
+ добавить свой РИД