×
10.11.2014
216.013.0555

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ДИФФУЗИИ ВЛАГИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициентов диффузии влаги в строительных материалах и конструкциях, а также в пищевой, химической и других отраслях промышленности. Способ определения коэффициента диффузии влаги заключается в создании в исследуемом образце равномерного начального влагосодержания, приведении плоской поверхности образца в контакт со средой с отличным от образца влагосодержанием. Также способ включает измерение изменения во времени сигнала гальванического преобразователя, определение времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчет коэффициента диффузии. При этом производят импульсное увлажнение плоской поверхности исследуемого образца по прямой линии, после чего гидроизолируют эту поверхность, располагают электроды гальванического преобразователя в двух точках этой плоской поверхности на линии, параллельной линии нанесения импульсного увлажнения и на заданном расстоянии от нее, и рассчитывают искомый коэффициент по формуле: , где τ - время достижения максимума на кривой изменения ЭДС гальванического преобразователя, r - расстояние между линией импульсного увлажнения и линией расположения электродов гальванического преобразователя. Техническим результатом является повышение оперативности эксперимента и обеспечение возможности неразрушающего контроля коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов. 1 ил., 1 табл.
Основные результаты: Способ определения коэффициента диффузии влаги, заключающийся в создании в исследуемом образце равномерного начального влагосодержания, приведении плоской поверхности образца в контакт со средой с отличным от образца влагосодержанием, измерении изменения во времени сигнала гальванического преобразователя, определении времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчете коэффициента диффузии, отличающийся тем, что производят импульсное соприкосновение плоской поверхности исследуемого изделия с источником влаги по прямой линии, после чего гидроизолируют эту поверхность, располагают электроды гальванического преобразователя в двух точках этой плоской поверхности на линии, параллельной линии нанесения импульсного увлажнения и на заданном расстоянии от нее, и рассчитывают искомый коэффициент по формуле: где - время достижения максимума на кривой изменения ЭДС гальванического преобразователя; - расстояние между линией импульсного увлажнения и линией расположения электродов гальванического преобразователя.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициентов диффузии влаги в строительных материалах и конструкциях, а также в пищевой, химической и других отраслях промышленности.

Известен способ определения коэффициента массопроводности и потенциалопроводности массопереноса (а.с. 174005, кл. G01N 25/56, 1965), заключающийся в импульсном увлажнении слоя материала и измерении на заданном расстоянии от этого слоя изменения влагосодержания материала во времени. Коэффициент массопроводности вычисляется по установленной зависимости. Недостатками этого способа являются осуществление разрушающего контроля опытного образца при размещении датчиков во внутренних слоях исследуемого тела, большая трудоемкость метода при подготовке образцов, необходимость индивидуальной градуировки датчиков по каждому материалу.

Наиболее близким является способ определения коэффициента диффузии влаги в капиллярно-пористых материалах (Современные энергосберегающие тепловые технологии (сушка и тепловые процессы) СЭТТ-2005. - Мат-лы второй научн.-практ. конф. - М. - 2005, Т.2, с.315-318). В методе используется модель взаимодействия двух полубесконечных тел. Для реализации метода изготавливают три одинаковых образца в форме параллелепипедов, имеющих одну поверхность массообмена образцов друг с другом - плоскость контакта. Остальные поверхности образцов влагоизолируют. В одном из образцов (образец №2) делают отверстия для размещения двух электродов гальванического преобразователя локального влагосодержания в плоскости, отстоящей на заданном расстояния от поверхности массообмена данного образца с образцами №1 и №3. В образцах №2 и №3 перед началом эксперимента создают одинаковое, а в образце №1 несколько большее равномерное влагосодержание. В процессе эксперимента образец №2 приводят в соприкосновение по плоскости массообмена сначала с образцом №1, затем образец №1 меняют на образец №3, получая тем самым импульсное воздействие от плоского источника влаги в неограниченной среде.

Недостатками этого способа являются необходимость подготовки образцов заданной конфигурации, что связано с затратами времени и средств; осуществление разрушающего контроля при размещении электродов датчика во внутренних слоях образца; необходимость создания различных значений равномерного влагосодержания в образцах значительной толщины, влагоизолированных по всем поверхностям кроме поверхности массообмена, что связано со значительными затратами времени.

Техническая задача предлагаемого технического решения предполагает повышение оперативности эксперимента и обеспечение возможности неразрушающего контроля коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов.

Техническая задача достигается тем, что в способе определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов, имеющих по крайней мере одну плоскую поверхность (например, цементные или гипсовые плиты), включающем создание в исследуемом образце равномерного начального влагосодержания, приведение плоской поверхности образца в контакт со средой с отличным от образца влагосодержанием, измерение изменения во времени сигнала гальванического преобразователя на фиксированном расстоянии от области массообмена образца с источником массы, определение времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчет коэффициента диффузии. В отличие от прототипа (Современные энергосберегающие тепловые технологии (сушка и тепловые процессы) СЭТТ-2005. - Мат-лы второй научн.-практ. конф. - М. - 2005, Т.2, с.315-318) производят импульсное соприкосновение плоской поверхности исследуемого изделия с источником влаги по прямой линии, после чего гидроизолируют эту поверхность, располагают электроды гальванического преобразователя в двух точках этой плоской поверхности на линии, параллельной линии нанесения импульсного увлажнения и на заданном расстоянии от нее, измеряют изменение во времени ЭДС гальванического преобразователя и рассчитывают коэффициент диффузии влаги исследуемого материала по установленной зависимости, что обеспечивает неразрушающий контроль массивного изделия из капиллярно-пористого материала и повышение оперативности определения коэффициента диффузии влаги в нем.

Сущность предлагаемого способа заключается в следующем (см. чертеж): к плоской поверхности ABCD массивного изделия 1 с равномерным начальным распределением влаги (в том числе и нулевым) прижимается зонд с импульсным линейным источником массы и расположенными в двух точках на линии, параллельной линии O1O2 нанесения импульсного увлажнения и на заданном расстоянии r0 от нее, электродами 3, 4 гальванического преобразователя (ГП). Расстояние между электродами ГП равно r1. После подачи импульса влаги (мгновенного увлажнения линии 5 длиной L поверхности изделия) зонд обеспечивает гидроизоляцию поверхности изделия в зоне действия источника и прилегающей к ней области контроля распространения влаги. После этого фиксируют изменение ЭДС гальванического преобразователя во времени.

Процесс распространения влаги в массивном изделии после нанесения такого импульса описывается краевой задачей массопереноса в неограниченной среде при нанесении импульсного воздействия от линейного источника массы:

,

; ; ;

где U(r,τ) - концентрация влаги в исследуемом изделии на расстоянии r от линейного источника импульса массы в момент времени τ; D - коэффициент диффузии влаги; δ(r,τ) - δ-функция Дирака; - плотность абсолютно сухого исследуемого материала; W - мощность «мгновенного» источника массы, подействовавшего в начале координат r=0, вычисляемая как отношение количества влаги (подведенной к контролируемому изделию) к длине линии импульсного воздействия L; U0 - начальное влагосодержание исследуемого материала в момент времени τ=0.

В данном случае исследуемое изделие рассматривается как половина неограниченного цилиндра, образованная путем деления на две части исходного цилиндра плоскостью ABCD, проходящей через линию 5 импульсного воздействия. При этом длина линии импульсного воздействия L должна быть не менее (20 r0+r1), где r0 - расстояние от линии расположения электродов гальванического преобразователя до линии нанесения импульсного воздействия; r1 - расстояние между электродами гальванического преобразователя на линии, параллельной линии импульсного воздействия. Объем контролируемого изделия при этом должен превышать половину сплошного цилиндра 2 радиусом не менее 10 r0 и высотой не менее L, образованного плоскостью, проходящей через его ось O1O2 и расположенной в плоскости ABCD контакта измерительного зонда и контролируемого изделия.

В этом случае изменение влагосодержания в зоне действия источника описывается функцией:

.

Расчетная формула для определения коэффициента диффузии имеет вид:

где τmax - время, соответствующее максимуму на кривой U(r0,τ) изменения влагосодержания на расстоянии r0 от источника.

В предлагаемом техническом решении для фиксирования максимума влагосодержания на расстоянии r0 от источника применялись миниатюрные электроды ГП, которые располагались в двух точках плоской поверхности контролируемого изделия на линии, параллельной линии нанесения импульсного увлажнения и на заданном расстоянии r0 от нее. ЭДС такого преобразователя определяется энергией связи влаги с материалом, контактирующим с поверхностями его электродов.

Так как распространение влаги при организации данного способа осуществляется радиально относительно линии импульсного воздействия, эквипотенциальные поверхности представляют собой поверхности цилиндров, которые в плоскости контакта измерительного зонда с контролируемым изделием образуют прямые линии, параллельные линии импульсного воздействия. Поэтому ЭДС гальванического преобразователя в конечном итоге однозначно связана с влагосодержанием капиллярно-пористого материала именно на линии, отстоящей на расстоянии r0 от линии импульсного увлажнения материала.

Так как статическая характеристика ГП монотонна, то в момент достижения влагосодержанием U(r0,τ) своего максимального значения ЭДС ГП также достигает своего максимума. Это позволяет не проводить градуировку гальванических преобразователей по каждому исследуемому материалу, а определять время достижения максимума на кривой изменения влагосодержания по времени достижения максимума ЭДС гальванического преобразователя.

Это позволяет существенно повысить оперативность измерения коэффициента диффузии влаги в массивных изделиях из капиллярно-пористых материалов без их разрушения.

В таблице представлены результаты 20-кратных измерений коэффициента диффузии влаги в плитах толщиной 50 мм, отформованных из пеногипсобетона, плотностью в сухом состоянии 550 кг/м куб.

Результаты экспериментальных исследований коэффициента диффузии влаги в пеногипсобетоне (r0=3,0·10-3, м)
№ опыта Время достижения максимума кривой E(r,τ), с Коэффициент диффузии Di·109, м2 Математическое ожидание , м2 Абсолютная погрешность измерения , м2 , м42 Относительная погрешность измерения, %
1 377,5 5,96 +1,14 1,2996
2 413,6 5,44 +0,62 0,3844
3 447,3 5,03 +0,21 0,0441
4 568,2 3,96 -0,86 0,7396
5 533,2 4,22 -0,60 0,3600
6 595,2 3,78 -1,04 1,0816
7 484,9 4,64 -0,18 0,0324
8 582,9 3,86 -0,96 0,9216
9 476,7 4,72 -0,10 0,0100
10 382,7 5,88 4,82 +1,06 1,1236 8,6
11 419,8 5,36 +0,54 0,2916
12 511,4 4,40 -0,42 0,1764
13 380,1 5,92 +1,10 1,2100
14 372,5 6,04 +1,22 1,4884
15 367,6 6,12 +1,30 1,6900
16 571,1 3,94 -0,88 0,7744
17 601,6 3,74 -1,08 1,1664
18 420,6 5,35 +0,53 0,2809
19 618,1 3,64 -1,18 1,3924
20 516,1 4,36 -0,46 0,2116

Величина импульса влаги составляла 60 микролитров, длина линии импульсного воздействия 80 мм. Расстояние от линейного источника влаги до линии расположения электродов гальванического преобразователя - 3 мм, расстояние между электродами гальванического преобразователя - 5 мм.

Погрешность результата измерения равна половине доверительного интервала и определяется следующим образом:

,

где - математическое ожидание случайной величины;

- среднеквадратическая погрешность отдельного измерения;

tα,n - коэффициент Стьюдента при доверительной вероятности α и количестве измерений n.

Проведенные экспериментальные исследования показали, что случайная погрешность результата определения коэффициента диффузии влаги в пеногипсобетоне при двадцатикратных испытаниях (tα,n=2,1 при α=0,95) составляет 8,6%. Длительность эксперимента не превышает 11 минут.

Способ определения коэффициента диффузии влаги, заключающийся в создании в исследуемом образце равномерного начального влагосодержания, приведении плоской поверхности образца в контакт со средой с отличным от образца влагосодержанием, измерении изменения во времени сигнала гальванического преобразователя, определении времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчете коэффициента диффузии, отличающийся тем, что производят импульсное соприкосновение плоской поверхности исследуемого изделия с источником влаги по прямой линии, после чего гидроизолируют эту поверхность, располагают электроды гальванического преобразователя в двух точках этой плоской поверхности на линии, параллельной линии нанесения импульсного увлажнения и на заданном расстоянии от нее, и рассчитывают искомый коэффициент по формуле: где - время достижения максимума на кривой изменения ЭДС гальванического преобразователя; - расстояние между линией импульсного увлажнения и линией расположения электродов гальванического преобразователя.
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ДИФФУЗИИ ВЛАГИ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ДИФФУЗИИ ВЛАГИ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ДИФФУЗИИ ВЛАГИ
Источник поступления информации: Роспатент

Showing 21-30 of 59 items.
10.02.2015
№216.013.254e

Декоративная плита на основе фанеры

Изобретение используется в строительстве в качестве финишной облицовки фасадов зданий и сооружений. Техническая задача - разработать альтернативный вид финишной облицовки фасадов. Причем данный вид не должен по основным эксплуатационным свойствам и внешнему виду уступать существующим видам...
Тип: Изобретение
Номер охранного документа: 0002541003
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a20

Способ непрерывного приготовления многокомпонентных смесей сыпучих материалов

Изобретение относится к области переработки сыпучих материалов и может быть использовано для непрерывного приготовления многокомпонентных смесей в химической и других родственных с ней отраслях промышленности. Способ включает в себя непрерывное дозирование компонентов, их загрузку в смеситель...
Тип: Изобретение
Номер охранного документа: 0002542241
Дата охранного документа: 20.02.2015
20.03.2015
№216.013.33a5

Способ удаления водорастворимых примесей из суспензий органических продуктов

Изобретение относится к очистке тонкодисперсных органических веществ от водорастворимых примесей и может быть использовано в химической, нефтехимической, фармацевтической, пищевой отраслях промышленности. Описывается способ удаления водорастворимых примесей из суспензий органических продуктов...
Тип: Изобретение
Номер охранного документа: 0002544696
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.360e

Устройство для измерения температуры

Изобретение относится к измерительной технике и может быть использовано для проведения температурных измерений. Устройство для измерения температуры содержит мост, собранный на резисторах R1, R2, R3, R4, питаемый от источника стабилизированного напряжения U (точки b, c). К измерительной...
Тип: Изобретение
Номер охранного документа: 0002545322
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3f7d

Способ отмывки тонкодисперсных осадков на фильтрующей перегородке

Изобретение относится к отмывке тонкодисперсных осадков органических пигментов от водорастворимых примесей на фильтрующей перегородке и может быть использовано в других отраслях химической промышленности. Удаление водорастворимых примесей ведут с цикличной подачей промывной воды. При этом...
Тип: Изобретение
Номер охранного документа: 0002547741
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.415c

Энергосберегающая двухступенчатая сушильная установка для растительных материалов

Изобретение относится к области сушки растительных материалов, в частности к вакуумным сушилкам периодического действия, и может быть использовано для сушки пищевых продуктов, а именно овощей, грибов, фруктов, зелени и др. Энергосберегающая двухступенчатая сушильная установка для растительных...
Тип: Изобретение
Номер охранного документа: 0002548230
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4201

Способ определения вида и концентрации наночастиц в неорганических аморфных средах и композитах на основе полимеров

Способ определения вида и концентрации наночастиц в неорганических аморфных средах и композитах на основе полимеров может найти применение в электронике, радиотехнике, природоохранной, химической и нефтяной отраслях для контроля качества проведения технологических процессов и качества готовой...
Тип: Изобретение
Номер охранного документа: 0002548395
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4382

Способ определения функционального состояния системы гемостаза

Изобретение относится к медицине, а именно к гемокоагулогии, и может быть использовано для выявления лиц группы риска развития гемокоагуляционных осложнений. Сущность способа: проводят измерение амплитуды записи процесса свертывания крови в его начале, определяют показатели начала и конца...
Тип: Изобретение
Номер охранного документа: 0002548780
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.46bd

Способ определения коэффициента диффузии растворителей в массивных изделиях из ортотропных капиллярно-пористых материалов

Использование: для исследования процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из ортотропных капиллярно-пористых материалов в строительной, химической и других отраслях промышленности. Сущность изобретения заключается в том, что способ определения...
Тип: Изобретение
Номер охранного документа: 0002549613
Дата охранного документа: 27.04.2015
27.05.2015
№216.013.4e53

Косилка-измельчитель сидеральных культур

Изобретение относится к сельскохозяйственному машиностроению. Предложенная косилка-измельчитель сидеральных культур содержит корпус 1 корытообразоного сечения, открытый в передней и задней своих частях, опорные колеса 2, опорные подшипниковые узлы 3 для крепления ряда параллельных валов 4 с...
Тип: Изобретение
Номер охранного документа: 0002551569
Дата охранного документа: 27.05.2015
Showing 21-30 of 80 items.
10.10.2014
№216.012.fbc6

Способ повышения качества структурного изображения биообъекта в оптической когерентной томографии

Изобретение относится к технологиям кодирования изображений. Техническим результатом является повышение качества структурного изображения биообъекта в оптической когерентной томографии, а именно значения отношения сигнал/шум за счет растровых усреднений. Заявлен способ получения структурного...
Тип: Изобретение
Номер охранного документа: 0002530300
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.0587

Электробаромембранный аппарат с плоскими фильтрующими элементами

Изобретение относится к области разделения, концентрирования и очистки растворов методами электрогиперфильтрации, электромикрофильтрации, электроультрафильтрации и электронанофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и...
Тип: Изобретение
Номер охранного документа: 0002532813
Дата охранного документа: 10.11.2014
27.11.2014
№216.013.0b9b

Устройство контроля плотности

Изобретение относится к области измерительной техники, в частности к устройствам контроля плотности твердой фазы гетерогенных систем и тел неправильной формы, и может найти применение в различных отраслях промышленности. Устройство контроля плотности выполнено в виде измерительной емкости с...
Тип: Изобретение
Номер охранного документа: 0002534379
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0ba0

Частотно-импульсный измеритель скорости изменения температуры

Изобретение относится к области температурных измерений и может быть использовано для определения скорости изменения температуры среды. Частотно-импульсный измеритель скорости изменения температуры содержит дифференциальную термопару 1 из термопар 2 и 3 с различными постоянными времени,...
Тип: Изобретение
Номер охранного документа: 0002534384
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0bc0

Устройство для измерения артериального давления в условиях двигательной активности человека

Изобретение относится к медицинской технике. Устройство для измерения артериального давления в условиях двигательной активности человека содержит измерительный датчик пульсовой волны под пневмоманжетой в месте прохождения плечевой артерии и компенсационный датчик пульсовой волны на диаметрально...
Тип: Изобретение
Номер охранного документа: 0002534416
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0bcb

Устройство для измерения разности температур

Изобретение относится к области температурных измерений и может быть использовано при наземных испытаниях элементов летательных аппаратов. Устройство для измерения разности температур содержит два встречно включенных термоприемника 1 и 2, находящихся при температурах t и t в контролируемой...
Тип: Изобретение
Номер охранного документа: 0002534427
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0d12

Сушилка периодического действия для гранулированных полимерных материалов с адаптивным объемом сушильной камеры

Сушилка относится к области химической промышленности и служит для сушки гранулированных полимерных материалов и композитов на их основе. Сушилка периодического действия для гранулированных полимерных материалов с адаптивным объемом рабочей камеры содержит питающий бункер, верхний затвор,...
Тип: Изобретение
Номер охранного документа: 0002534763
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.19bd

Способ подготовки воды заданного качества

Изобретение относится к области водоподготовки. Артезианскую воду подают в конденсатор, нагревают до температуры от 21°C до 31°C, затем подают в систему предварительной очистки от нерастворенных примесей. Далее воду подают в установку обратного осмоса, откуда выходят пермеат и концентрат....
Тип: Изобретение
Номер охранного документа: 0002538017
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.225a

Способ измерения плотности

Изобретение относится к области измерительной техники, в частности к пневматическим способам измерения плотности твердой фазы гетерогенных систем, например сыпучие, волокнистые, тканые и нетканые материалы, пористая фильтрующая керамика, газонаполненные пластмассы (поропласты) и др., а также...
Тип: Изобретение
Номер охранного документа: 0002540247
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22ce

Электробаромембранный аппарат трубчатого типа

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа и может быть использовано для осуществления процессов мембранной технологии. Электробаромембранный аппарат трубчатого типа содержит цилиндрический корпус с расположенными на его внешней поверхности патрубком для ввода...
Тип: Изобретение
Номер охранного документа: 0002540363
Дата охранного документа: 10.02.2015
+ добавить свой РИД