×
10.11.2014
216.013.0485

Результат интеллектуальной деятельности: СПОСОБ И УСТАНОВКА ДЛЯ КОНВЕРСИИ МОНОКСИДА УГЛЕРОДА И ВОДЫ В ДИОКСИД УГЛЕРОДА И ВОДОРОД С УДАЛЕНИЕМ, ПО МЕНЬШЕЙ МЕРЕ, ОДНОГО ПОЛУЧАЕМОГО ГАЗА

Вид РИД

Изобретение

№ охранного документа
0002532555
Дата охранного документа
10.11.2014
Аннотация: Изобретение относится к способу и устройству для конверсии моноксида углерода и воды в диоксид углерода и водород, для промышленного использования. Способ выполнения реакции сдвига моноксида углерода с проведением реакции в жидкой фазе и удалением получаемого газа, диоксида углерода и/или водорода, характеризуется тем, что в качестве первого растворителя используют сухой метанол для поглощения моноксида углерода с одновременным образованием метилформиата и в качестве второго растворителя используют воду в области высвобождения получаемого газа, чтобы избежать потерь водорода с потоком диоксида углерода. Изобретение обеспечивает высокую конверсию при связывании моноксида углерода. 3 н. и 10 з.п. ф-лы, 1 ил.

Изобретение относится к реакции сдвига моноксида углерода для конверсии моноксида углерода и воды в диоксид углерода и водород, особенно для промышленного использования.

Эта реакция, соответствующая уравнению

является одной из самых важных реакций в химической промышленности. Сейчас эта реакция также стала интересной для электростанций, использующих ископаемое топливо. Основой этого является существующая тенденция к горению с низким уровнем образующегося СО; при сжигании топлива для этих электростанций. В соответствии со способом предварительного сжигания моноксид углерода должен быть конвертирован в диоксид углерода согласно вышеупомянутому уравнению (1) перед горением, чтобы отделить весь углерод в форме диоксида углерода. Таким образом, энергия моноксида углерода передается (сдвигается к) водороду, который может использоваться в газовых турбинах. Однако для удаления продуктов диоксида углерода и также водорода выделение из газовой фазы является чрезвычайно энергозатратным способом.

В способах, общепринятых до настоящего времени, реакцию сдвига моноксида углерода и удаление диоксида углерода выполняют, по существу, в отдельных подстадиях. Во-первых, реакцию сдвига моноксида углерода выполняют в газовой фазе. Диоксид углерода затем отделяют в дальнейшей стадии способа. Типичным примером удаления является скруббер Ректизол (Rectisol scrub), в котором диоксид углерода абсорбируют охлажденным метанолом. Соответственно, низкие температуры необходимы здесь, чтобы отделить диоксид углерода, и большое количество энергии необходимо для охлаждения, что снижает общую эффективность электростанции.

Европейский патент ЕР 0299995 В1 описывает способ выполнения реакции сдвига моноксида углерода, причем реакция протекает в жидкой фазе. В то же самое время может быть реализовано удаление образовавшегося диоксида углерода. Это относится особенно к примеру 6 патентного документа, а также к фиг. 2. Здесь метанол, содержащий воду, используют в качестве растворителя. Показатель рН метанола повышают добавлением карбоната, например карбоната калия. Однако, есть два важных пункта в этом патентном документе, которые делают использование сомнительным: не гарантируют, что газообразный исходный материал, моноксид углерода (СО), может быть превращен достаточно быстро в жидкую фазу для промышленного использования с целью последующей конверсии в формиат. Кроме того, ожидается значительная потеря водорода в отделяемый поток диоксида углерода из-за относительно высокой растворимости в используемом растворителе.

Проблемой, подлежащей решению, является выполнение реакции сдвига моноксида углерода в улучшенном варианте с получением газообразных продуктов, водорода и диоксида и отделением, по меньшей мере, одного из них.

Улучшенный вариант реакции сдвига моноксида углерода в жидкой фазе с одновременным удалением, по меньшей мере, одного продуктового газа достигается совокупностью признаков соответствующих пунктов формулы изобретения.

Изобретение описывает способ, в котором реакцию сдвига моноксида углерода выполняют в жидкой фазе. В способе используют два различных растворителя. Сухой метанол используют в качестве первого растворителя, а воду используют в качестве второго растворителя. Абсорбция моноксида углерода сухим метанолом может применяться преимущественно, так как при использовании соответствующего катализатора одновременно происходит образование метилформиата. Таким образом, достигается высокая конверсия при связывании моноксида углерода.

Преимущественно, способ имеет место в сухом метаноле в качестве первого растворителя в комбинации с растворенным метоксидом натрия в качестве катализатора. Кинетика связывания моноксида углерода и конверсии моноксида углерода может проводиться экономно, как при промышленном получении муравьиной кислоты.

Метилформиат разлагается гидролитически или в присутствии основного катализатора до муравьиной кислоты и метанола. Образующаяся муравьиная кислота депротонируется до формиата в регулируемой основной области рН так, что рН падает течение реакции.

В результате первый растворитель, то есть сухой метанол, и второй растворитель, то есть вода, каждый течет в своем контуре, выделение продуктовых газов, диоксида углерода и водорода может быть произведено без больших потерь водорода в диоксид углерода или в поток диоксида углерода. Это означает, что особенно в результате разделения на два разных контура растворителей индивидуальные продуктовые газы действительно не входят в область или в поток другого газа в каждом случае.

Есть физический раздел между образованием двух газов, водорода и диоксида углерода, и удаление этих продуктовых газов становится возможным одновременно.

Два продуктовых газа, водород и диоксид углерода, производят в водной, а не метанольной среде, как в предшествующем уровне техники согласно европейскому патенту ЕР 0299995 В1. В противном случае результатом были бы большие потери водорода в полученном диоксиде углерода, так как водород значительно более растворим в метаноле, чем в воде.

Продуктовый газ водород может преимущественно быть произведен каталитическим разложением формиата, причем дополнительно образуется гидрокарбонат.

Продуктовый газ диоксид углерода может преимущественно быть получен из гидрокарбоната в другом месте в ходе процесса в результате увеличения температуры или снижения давления. Образующийся карбонат реагирует с водой, что приводит к увеличению рН.

Есть физический раздел между образованием двух газов, водорода и диоксида углерода, и удаление этих продуктовых газов становится возможным одновременно.

Настоящее изобретение имеет значительно измененную структуру процесса по сравнению с процессами, известными до настоящего времени для выполнения реакции сдвига моноксида углерода. В изобретении растворители, метанол и воду, используют в двух отдельных контурах.

Начальные стадии способа по изобретению выполняют способом, подобным способу промышленного производства муравьиной кислоты. Различие состоит в том, что чистый моноксид углерода не должен быть подан в способ, но вместо этого, например, синтез-газ, имеющий значительное количество моноксида углерода, подают в высушенной форме в способ. Сушка синтез-газа необходима, так как первые стадии способа имеют место в среде метанола.

Протекание реакции сдвига СО в жидкой фазе имеет энергетическое преимущество перед реакцией сдвига СО, выполняемой в газовой фазе, так как вода не должна испаряться при выполнении реакции. Это преимущество становится еще значительней, когда реакцию сдвига СО выполняют в присутствии избытка воды, что часто имеет место.

Главная цель состоит в том, чтобы получить водный раствор муравьиной кислоты. Различие между режимом работы в производстве муравьиной кислоты и режимом работы согласно изобретению является то, что в производстве муравьиной кислоты, концентрация муравьиной кислоты по существу представляет проблему, которая должна быть решена. Однако эта подстадия не является необходимой для целей настоящего изобретения. Скорее муравьиная кислота депротонируется в разбавленной форме, и образующийся формиат расщепляется каталитически. Сложный эфир, в частности метилформиат, образуется в качестве промежуточного соединения и отделяется от растворителя метанола и разлагается на метанол и муравьиную кислоту. На дальнейшей стадии способа метанол затем регенерируют, а диоксид углерода, который образуется при разложении гидрокарбоната, в то же самое время отделяют в дальнейшем потоке. Производство водорода происходит в дальнейшем объеме реакции в процессе реакции формиата с водой с получением гидрокарбоната и водорода. Диоксид углерода и водород, таким образом, образуются отдельно в двух различных стадиях способа и в каждом случае отделяются.

Пример, который не ограничивает изобретение, описан ниже при помощи сопутствующего чертежа.

Чертеж показывает схему способа для реакции сдвига моноксида углерода, использующую три реактора 1, 3, 5 и две колонны 2, 4, причем сухой синтез-газ подают через питающую линию 6, и продуктовые газы, диоксид углерода и водород, образуются и отделяются в различных местах в способе, и также первый контур 21 для первого растворителя, то есть сухого метанола, и второй контур 22 для второго растворителя, то есть воды.

Реакция сдвига моноксида углерода и также подреакции, имеющие место в полном способе, описаны ниже.

Общая реакция сдвига моноксида углерода:

Абсорбция моноксида углерода жидкой фазой с получением метилформиата может быть представлена следующим уравнением:

Так как синтез-газ вводят в сухой метанол, вода не присутствует как растворитель в этой точке. Синтез-газ состоит, по существу, из моноксида углерода и водорода. В результате разделения растворителей на сухой метанол и воду, потери водорода, например, в поток диоксида углерода предотвращаются с самого начала.

Образующийся метилформиат каталитически разлагается па муравьиную кислоту и метанол, что приравнивается к гидролизу.

Образующаяся муравьиная кислота превращается в результате отрыва протона в формиат.

Водород производят каталитическим разложением формиата на водород и гидрокарбонат.

Высвобождение диоксида углерода в месте, отличающемся от того места, где высвобождается водород, протекает согласно следующему уравнению:

Образующийся карбонат реагирует с водой так, что рН снова увеличивается до первоначального значения.

Уравнения (2)-(7) вместе дают уравнение (1). Настоящая концепция базируется только частично на производстве муравьиной кислоты. Однако в сочетании с областью использования реакции сдвига моноксида углерода на электростанциях с удалением диоксида углерода идеально полное и селективное отделение углеродсодержащих компонентов от синтез-газа скорее, чем синтез муравьиной кислоты является важным аспектом.

Реакция сдвига моноксида углерода в жидкой фазе протекает через водный раствор муравьиной кислоты. Прямое образование растворенной муравьиной кислоты из газообразного моноксида углерода протекает согласно следующему уравнению реакции:

Проблемой, связанной с уравнением 8, является то, что реакция имеет очень низкую равновесную конверсию в обычных условиях. Эта реакция не может, таким образом, использоваться экономично без принятия дополнительных мер. Способ, описанный в ЕР 0299995 В1 для преодоления этого равновесного ограничения, использует депротонирование муравьиной кислоты посредством относительно высоких значений рН, чтобы удалить муравьиную кислоту из равновесия. Таким образом, общее содержание моноксида углерода может, в принципе, быть перенесено из газовой фазы в жидкую фазу в форме растворенного формиата. Однако из-за использования водного метанола в качестве растворителя этот подход приводит к большим потерям водорода, причем количество водорода, уходящего в поток диоксида углерода, и затраты энергии являются неэкономично высокими.

Кроме того, найдено, что простая структура процесса, как известно, например, из ЕР 0299995 В1, не может дать удовлетворительных результатов из-за сложного сочетания химических реакций. Когда применяют растворитель, предложенный в патенте, то есть метанол, имеющий низкое содержание воды, значительная доля водорода растворяется в растворителе. Эта нежелательная утечка водорода в поток диоксида углерода может быть предотвращена только посредством использования дополнительного растворителя, который течет во втором контуре.

Другой режим работы, в котором используют только растворитель воду вместо метанола, не привел к экономичной системе. Хотя потеря водорода может быть снижена до нескольких частей на тысячу от полного содержания водорода (несколько десятых долей процента) в этом режиме работы, количестве требуемой воды, даже если бы она циркулировала, было бы чрезвычайно высоким. Мерой этого является количество диоксида углерода, подлежащее отделению, что в комбинации с растворимостью газа в воде определяет расход воды. Этот большой поток воды приводит к необычно высокому расходу энергии, так как диоксид углерода отделяют, повышая температуру. Альтернативное удаление посредством снижения давления приводило бы к очень высоким рабочим давлениями и аналогично высокому расходу энергии.

Чтобы преодолеть равновесное ограничение уравнения (8), возможен особый подход. Этот подход не включает прямое производство раствора формиата. Скорее метилформиат образуется в среде метанола согласно уравнению (2). В дальнейшем течении реакции метилформиат гидролизуется и превращается в раствор формиата согласно уравнению (3). Дополнительные стадии способа для этой последовательной процедуры увеличивают полный расход энергии только незначительно. В целом таким образом возможно достигнуть экономичного удаления диоксида углерода, одновременно выполняя реакцию сдвига СО посредством этого способа. Если, кроме того, безводный метанол используют в качестве первого растворителя, достигается высокая конверсия связывания моноксида углерода, так как моноксид углерода реагирует с метанолом с получением метилформиата.

Как показано на чертеже, несколько реакторов и колонн применяют для выполнения способа сдвига моноксида углерода.

Первый реактор 1 используют для поглощения моноксида углерода с одновременным получением метилформиата согласно уравнению (2). В последующей первой колонне 2 отделяют метилформиат. В последующей второй реакции 3 метилформиат разлагают гидролитически согласно уравнению (3) на метанол и муравьиную кислоту. В последующей второй колонне 4 диоксид углерода отделяют согласно уравнению (6), причем карбонат и гидрокарбонат способны реагировать согласно уравнениям (6) и (7). В третьем реакторе 5 водород отделяют каталитически от формиата с получением гидрокарбоната.

Чертеж может быть разделен грубо на метанольную область и водную область. На основе прерывистой разделительной линии 24, проходящей вертикально на чертеже между первой колонной 2 и вторым реактором 3, метанольная область находится слева от линии, а водная область находится справа от линии.

В метанольной области сухой синтез-газ предпочтительно подают по питающей линии 6 в первый реактор 1. Синтез-газ высушивают так, чтобы никакая вода не присутствовала перед фактическим способом. Кроме улучшенного отделения диоксида углерода от водорода, сушка синтез-газа необходима, чтобы предотвратить гидролиз используемого катализатора метоксида. Далее метанол и соответствующий катализатор вводят по линиям 7 и 14. Линия 19 служит для рециркуляции метанола в первый реактор 1 из второй колонны 4. Метилформиат и метоксид, которые растворены в метаноле, подают по линии 13 из первого реактора 1 в первую колонну 2. Первый контур 21 для растворителя метанола течет преимущественно по линиям 14 и 13, причем контур замыкается через первую колонну 2, кубовый материал которой поступает в линию 14. Поток 12 необходим, чтобы выгружать нежелательные твердые частицы, которые могут образовываться при разложении катализатора. Этот первый контур 21 для сухого метанола гарантирует, что включение водной фазы по существу предотвращено. Это гарантирует оптимальное поглощение моноксида углерода.

Кроме того, первая колонна 2 расположена в метанолыюй области. Здесь выполняют разделение материала, причем метилформиат отделяют и подают во второй реактор 3. Кроме того, только метилформиат отгоняют из этой первой колонны 2, а метанол и диоксид углерода дополнительно отгоняют из второй колонны 4, в то время как высококипящие растворители этих двух упомянутых контуров удаляют из соответствующих кубов. Полученным преимуществом является уменьшение общего расхода энергии.

В водной области, соответствующей правой части чертежа, разложение метилформиата согласно уравнению (3) сначала выполнят во втором реакторе 3. Продукты, метанол и муравьиную кислоту, подают по линии 15 во вторую колонну 4. Из второй колонны 4 водную муравьиную кислоту, которая может в этой точке уже присутствовать в депротонированной форме как формиат, подают по линии 16 в третий реактор 5, метанол подают по линии 19 в первый реактор 1, а непрореагировавший метилформиат подают по линии 18 во второй реактор 3. В третьем реакторе 5 водород, во-первых, образуется и удаляется, и во-вторых, гидрокарбонат в водном растворе рециркулируют во второй реактор 3. Второй контур 22, по существу, представляет линию 17, второй реактор 3, линию 15, линию 16 и третий реактор 5, снова соединенный по линии 17. Этот водный контур имеет преимущество в том, что водород только незначительно растворяется и удаляется в месте, в котором он производится.

Линия 8 служит для подачи воды и соответственно достигает водной области. Линия 9 служит для выгрузки газов, которые инертны в реакции, то есть газов, которые не реагируют в первом реакторе 1, причем водород может присутствовать.

В первой колонне 2 образующийся метилформиат отгоняют. Затрата энергии здесь является приемлемой, так как образующийся метилформиат кипит при относительно низкой температуре. При атмосферном давлении точка кипения составляет только 32°С. Метанол, остающийся при перегонке, непрерывно рециркулируют, по существу, по линии 14 в предыдущий первый реактор 1. Возможные продукты разложения катализатора кристаллизуются здесь и удаляются из процесса. Например, катализатор, метоксид, может реагировать с любыми следами воды с получением метанола и гидроксида. Гидроксиды обычно только очень умеренно растворимы в метаноле, так что они осаждаются в этой точке и могут быть удалены без проблем из метанола. Вследствие этой возможной реакции разложения должны быть приняты меры, чтобы гарантировать, что подаваемый газ, содержавший моноксид углерода, является безводным. С определенной вероятностью невозможно заменить метоксид в качестве каталитически активного вещества на менее чувствительное к гидролизу вещество. Очень сильный нуклеофил требуется для реакции с моноксидом углерода, что автоматически означает, что вещество является чувствительным к гидролизу. Кроме того, другие алкоксиды или другие сильные органические основания неприменимы, так как при переэтерификации они образовывали бы сложные эфиры, имеющие более высокие точки кипения вместо метилформиата, или в автоматически происходящих реакциях оснований с кислотами давали бы спирты или органические кислоты, имеющие точку кипения выше, чем точка кипения метанола.

Следствием этого был бы увеличенный расход энергии в колоннах. Метоксиды являются единственными веществами, которые образуют нужные сложные эфиры при переэтерификации, такие, что эта неизбежная реакция не может иметь отрицательного воздействия из-за образования более высококипящих сложных эфиров.

В то время как первый растворитель в первых двух аппаратах, то есть первом реакторе 1 и первой колонне 2, является сухим метанолом, водный раствор присутствует в последующей второй реакции 3. Здесь сложный эфир гидролизуется, обычно в 5-кратном избытке воды, причем эта реакция обычно протекает в присутствии кислотного или основного катализатора. Вариант с основным катализатором является более приемлемым, так как муравьиная кислота, которая образуется при гидролизе, немедленно депротонируется в формиат.

Затем следует вторая колонна 4, и из этой колонны негидролизованный сложный эфир и метанол, который образуется при гидролизе, рециркулируют в соответствующие реакторы. Кроме того, эта вторая колонна 4 подходит для отгона растворенного диоксида углерода, а часть гидрокарбоната и даже до некоторой степени карбоната превращается в газообразный диоксид углерода посредством зависящего от температуры равновесия в реакции между карбонатом, гидрокарбонатом и диоксидом углерода. Удаление указанных веществ перегонкой приводит к водному раствору формиата. Формиат вводят в третий реактор 5, в котором формиат разлагается в каталитической реакции, и образуется водород.


СПОСОБ И УСТАНОВКА ДЛЯ КОНВЕРСИИ МОНОКСИДА УГЛЕРОДА И ВОДЫ В ДИОКСИД УГЛЕРОДА И ВОДОРОД С УДАЛЕНИЕМ, ПО МЕНЬШЕЙ МЕРЕ, ОДНОГО ПОЛУЧАЕМОГО ГАЗА
Источник поступления информации: Роспатент

Showing 661-670 of 1,427 items.
13.01.2017
№217.015.851c

Способ и устройство для определения загруженности пассажирами рельсового транспортного средства

Устройство, реализующее способ определения загруженности пассажирами рельсового транспортного средства, содержит регистрирующее устройство, которое определяет включенные состояния мобильных телефонов, имеющихся на рельсовом транспортном средстве, а к регистрирующему устройству подключен блок...
Тип: Изобретение
Номер охранного документа: 0002603169
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.85d2

Детектор излучения, в частности электромагнитного излучения большой мощности

Изобретение относится к детектору излучения, в частности электромагнитного излучения большой мощности. Детектор содержит секцию преобразования, включающую катод (3), для преобразования излучения (Р), падающего на секцию преобразования, в электроны (Е) с помощью фотоэлектрического эффекта....
Тип: Изобретение
Номер охранного документа: 0002603129
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.866a

Способ управления, защиты и/или контроля рельсового транспорта, а также производственно-техническая управляющая система

Изобретение относится к области железнодорожных систем управления. Производственно-техническая управляющая система (20), реализующая способ управления, защиты и контроля рельсового транспорта, в первом режиме работы выполнена с возможностью дистанционного управления постом (10) централизации....
Тип: Изобретение
Номер охранного документа: 0002603708
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8697

Лопаточный аппарат

Изобретение относится к области машин и двигателей необъемного вытеснения, а именно к лопаточному аппарату (40), содержащему обод (56) и выполненный в нем удерживающий паз (58), который имеет на своих боковых стенках (60) проходящие вдоль выступы (62), образующие поднутрения (64), и в который...
Тип: Изобретение
Номер охранного документа: 0002603696
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.86cd

Ускоритель для заряженных частиц

Изобретение относится к области ускорительной техники. Ускоритель для заряженных частиц содержит набор конденсаторов с первым электродом, который может быть приведен на первый потенциал, со вторым электродом, который расположен концентрично к первому электроду и может быть приведен на...
Тип: Изобретение
Номер охранного документа: 0002603352
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8907

Механизм блокировки для кнопки включения силового выключателя

Изобретение относится к механизму блокировки для кнопки включения силового выключателя. Механизм блокировки для кнопки (2) включения силового выключателя имеет стопорный элемент (14), установленный на кнопке (2) включения с возможностью поворота, каковой стопорный элемент (14), будучи...
Тип: Изобретение
Номер охранного документа: 0002602276
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8915

Улучшение защиты электродвигателя электропривода постоянного тока

Изобретение относится к электрической сети постоянного тока для подводных и надводных транспортных средств, а также морских буровых платформ, содержащей по меньшей мере один расположенный в соответствующей ветви источника источник (12, 13) постоянного тока и по меньшей мере один расположенный в...
Тип: Изобретение
Номер охранного документа: 0002602271
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.89a1

Способ, управляющее устройство и система хранения природного газа для автоматизированного управления несколькими проточными устройствами

Данное изобретение относится к устройству и способу автоматизированного управления несколькими проточными устройствами (10) для создания общего расхода текучей среды в и/или из хранилища (200), в частности хранилища для природного газа. Управляющее устройство (100) для автоматизированного...
Тип: Изобретение
Номер охранного документа: 0002602761
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8aa0

Углубленное расположение топливного инжектора

Изобретение относится к камере сгорания для газовой турбины. Камера сгорания содержит устройство пусковой горелки, топливный инжектор (102) и блок (103) воспламенителя. Устройство пусковой горелки содержит пусковой корпус (100) с пусковой поверхностью (101), которая обращена к внутреннему...
Тип: Изобретение
Номер охранного документа: 0002604230
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8beb

Реактивный электродвигатель, имеющий ротор повышенной устойчивости

Изобретение касается ротора для реактивного электродвигателя, реактивного электродвигателя, имеющего такой ротор, автомобиля, а также способа изготовления вышеназванного ротора. Технический результат - обеспечение возможности высокого крутящего момента и высокой частоты вращения. Ротор для...
Тип: Изобретение
Номер охранного документа: 0002604877
Дата охранного документа: 20.12.2016
Showing 661-670 of 943 items.
13.01.2017
№217.015.7217

Выключатель для участка передачи постоянного тока высокого напряжения

Приводится выключатель для участка передачи постоянного тока высокого напряжения, содержащий вакуумный силовой выключатель (3) для отключения участка передачи и силовой выключатель (5) с газовой изоляцией для отключения участка передачи, причем силовой выключатель (5) с газовой изоляцией...
Тип: Изобретение
Номер охранного документа: 0002597998
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.725c

Разрядник защиты от перенапряжений для высоких напряжений

Разрядник (1) для защиты от перенапряжений при высоких напряжениях имеет высоковольтный разъем, который соединен с образующим нелинейное сопротивление блоком (3) разрядника, а также имеет температурный сенсор (13) для регистрации температуры блока (3) разрядника. Сенсор (13) постоянно...
Тип: Изобретение
Номер охранного документа: 0002598027
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7398

Вч генератор

Изобретение относится к ВЧ технике. ВЧ генератор содержит твердотельный переключатель, проходящий в z-направлении рупорный волновод с первым продольным концом и вторым продольным концом и проходящий в z-направлении цилиндрический полый проводник с третьим продольным концом. При этом размещенная...
Тип: Изобретение
Номер охранного документа: 0002597684
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7511

Гидравлический подшипник для стационарной газовой турбины

Изобретение относится к гидравлическому подшипнику для стационарной газовой турбины, содержащему масляную ванну, в которой предусмотрен сток для гидравлического масла, при этом сток содержит расположенное в масляной ванне сточное отверстие и примыкающий к сточному отверстию сточный трубопровод,...
Тип: Изобретение
Номер охранного документа: 0002598498
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.76f7

Монтажное устройство для измерительных зондов

Монтажное устройства (10) содержит два измерительных зонда (20) с соединительной частью (22) и измерительной частью (24) для измерения параметров машины (100) и/или вращающегося элемента (110), опорную структуру (30) зондов с одним сквозным отверстием (32) для каждого из них и с монтажными...
Тип: Изобретение
Номер охранного документа: 0002599594
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7747

Токарный или накатно-полировальный станок

Токарный или накатно-полировальный станок, содержащий основание, предназначенное для неподвижного монтажа, в частности, на обрабатываемой детали, привод, ротационную часть, установленную на основании с возможностью вращения относительно него вокруг центральной оси с использованием привода, и...
Тип: Изобретение
Номер охранного документа: 0002599655
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79bb

Подмодуль для модульного многоступенчатого преобразователя частоты

Изобретение относится к электротехнике, а именно к подмодулю модульного многоступенчатого преобразователя частоты с однополюсным аккумулятором энергии и с включенной параллельно аккумулятору энергии мощной полупроводниковой последовательной схемой, содержащей два последовательно включенных...
Тип: Изобретение
Номер охранного документа: 0002599261
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79d1

Система герметизирующих корпусов с изменяемой длиной для герметизированного устройства передачи электроэнергии

Изобретение относится к электротехнике, к устройствам передачи энергии. Технический результат состоит в расширении эксплуатационных возможностей путем обеспечения использования под открытым небом. Система герметизирующих корпусов с изменяемой длиной имеет первый и второй герметизирующий корпус...
Тип: Изобретение
Номер охранного документа: 0002599383
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a06

Канал для охлаждения корпуса

Турбина, в частности газовая турбина, содержит внутренний корпус, предназначенный для установки по меньшей мере одной статорной лопатки турбинной ступени, и наружный корпус, расположенный вокруг внутреннего корпуса таким образом, что образуется наружный охлаждающий канал между внутренним...
Тип: Изобретение
Номер охранного документа: 0002599413
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7bf1

Преобразователь и способ его эксплуатации для преобразования напряжений

Изобретение относится к области электротехники. Для передачи электроэнергии между системой постоянного напряжения и, по меньшей мере, n-фазной системой переменного напряжения создан преобразователь (10), содержащий n-фазный трансформатор (20) и преобразовательную схему (12) из n-го числа...
Тип: Изобретение
Номер охранного документа: 0002600125
Дата охранного документа: 20.10.2016
+ добавить свой РИД