×
10.11.2014
216.013.0402

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ ВИСКОЗНОГО ВОЛОКНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, в частности к измерению влажности волокнистых материалов, и может быть использовано в текстильной и хлопчатобумажной промышленности. Предлагаемый способ включает в себя размещение между двумя электродами пробы волокна, приложение к ним переменного напряжения и контроль тока, проходящего через материал. При этом прессование пробы волокна производят до его объемной плотности материала, превышающей 400 кг/м, к электродам последовательно прикладывают переменное напряжение с частотой ≤50 Гц и частотой 20-100 кГц, контролируют соответствующие токи (I и I), протекающие между электродами, и определяют значение тока смещения, проходящего через пробу, по формуле: , где I - фоновое значение тока, контролируемое между электродами на частоте 20-100 кГц при отсутствии между электродами волокна, затем находят величину массы воды в исследуемой пробе волокна на основании предварительно установленной зависимости тока смещения от массы воды в волокне. Повышение чувствительности и точности измерения влажности волокна является техническим результатом изобретения. 5 ил., 1 табл.
Основные результаты: Способ измерения содержания воды в вискозном волокне, заключающийся в приложении переменного напряжения к двум электродам, между которыми располагают пробу спрессованного исследуемого материала, и измерении ее электропроводности, отличающийся тем, что прессование пробы волокна производят до объемной плотности материала, превышающей 400 кг/м, затем к электродам последовательно прикладывают переменное напряжение с частотой ≤50 Гц и частотой 20-100 кГц, контролируют соответствующие токи (I и I), протекающие между электродами, и определяют значение тока смещения, проходящего через пробу, по формуле: ,в которой I - фоновое значение тока, контролируемое между электродами на частоте 20-100 кГц при отсутствии волокна, и после этого находят величину массы воды в исследуемой пробе волокна на основании предварительно установленной зависимости тока смещения от массы воды в волокне.

Изобретение относится к измерительной технике, в частности к измерению влажности волокнистых материалов, и может быть использовано в текстильной и хлопчатобумажной промышленности.

Остаточная влажность вискозного волокна определяет его качество и подлежит обязательному контролю в условиях промышленного производства. Повышение объективности данного контроля позволяет улучшить технические и коммерческие показатели волокна.

Известен термогравиметрический способ контроля содержания воды в волокне, основанный на регистрации изменения его массы при нагреве в сушильной камере (Аналитический контроль производства искусственных волокон. Справочное пособие под ред. А.К. Диброва и B.C. Матвеева. - М.: Изд. Химия. - 1986. - 334 с.).

К причинам, препятствующим достижению требуемого технического результата при использовании известного способа, относится высокая длительность (4-5 часа) измерений и их низкая объективность (используются порции волокна массой в сотни грамм).

Известен способ определения влажности вещества, основанный на многократном пропускании через его пробу электромагнитных СВЧ-сигналов и последующем определении среднего значения измеряемой величины (Р.И. Сайтов, Р.Г. Абдеев, Н.А. Серафимов и др. - Патент РФ №2380689. Способ измерения влажности материалов. Опубл. 27.01.2010 г.).

К причинам, препятствующим достижению требуемого технического результата при использовании известного способа, относится то, что в нем применяется сложное экспериментальное оборудование и анализируются пробы материала массой в десятки грамм. В результате также не достигается требуемая объективность контроля влажности промышленных партий продукции.

Наиболее близким способом того же назначения к заявляемому объекту по совокупности признаков является способ измерения влажности вискозного волокна, заключающийся в приложении переменного напряжения к двум электродам, между которыми располагают пробу спрессованного исследуемого материала и измерении ее электропроводности (И. Форейт. Емкостные датчики неэлектрических величин. - М.-Л.: Энергия. - 1966. - С.15, 99 - прототип).

К причинам, препятствующим достижению требуемого технического результата при использовании известного способа, принятого за прототип, относится то, что в известном способе применяется одночастотный режим (из диапазона 0,2-5,0 МГц) измерений электропроводности проб исследуемого материала. В результате контролируемая величина тока, проходящего через волокно, кроме тока смещения (информативный параметр), включает в себя и ток проводимости. Данные токи сдвинуты по фазе друг относительно друга на угол в (90-δ) градусов (δ - угол, характеризующий диэлектрические потери в волокне). Величины составляющих контролируемого тока и δ различным образом зависят от частоты напряжения, приложенного к образцу исследуемого волокна, его влажности и степени прессования. Игнорирование этих факторов, как это сделано в прототипе, приводит к значительным неконтролируемым погрешностям.

Задача данного изобретения заключается в повышении чувствительности и точности диэлькометрического способа измерения влажности волокна.

Данный технический результат достигается при осуществлении изобретения тем, что в известном способе, включающем приложение переменного напряжения к двум электродам, между которыми располагают пробу спрессованного вискозного волокна, и измерение ее электропроводности, прессование пробы волокна производят до объемной плотности материала, большей 400 кг/м3. Затем к электродам последовательно прикладывают переменное напряжение амплитудой 20-30 В с частотой ≤50 Гц и с частотой (20-100)·103 Гц, контролируют соответствующие токи (I1 и I2), протекающие между электродами, и определяют значение тока смещения, проходящего через пробу, по формуле:

в которой I0 - фоновое значение тока, контролируемое между электродами на частоте (20-100)·103 Гц при отсутствии волокна. После этого находят величину массы воды в исследуемой пробе волокна на основании предварительно установленной зависимости тока смещения от массы воды в волокне.

Вышеизложенный технический результат достигается за счет выбора оптимальной плотности исследуемого волокна и использования контроля тока, проходящего через него, на двух различных частотах.

При плотности волокна, меньшей 400 кг/м3, на величины контролируемых токов I1 и I2 влияют переходные емкости на границе раздела "волокно - измерительные электроды", которые зависят от массы пробы волокна и ее расположения относительно электродов. При плотности волокна, большей 400 кг/м3, указанная граница раздела обогащается избыточной водой и переходные емкости исчезают, что обеспечивает стабильность регистрируемых сигналов и минимизацию погрешностей их измерения.

Ток через волокно, контролируемый на частоте, меньшей 50 Гц, равен току проводимости (I1), а на частоте 20-100 кГц - векторной сумме токов проводимости и тока смещения. При этом δ при влажности волокна в практически важном диапазоне 4-12% близок к нулю. В результате обеспечивается возможность простого определения истинного тока смещения, проходящего через волокно и однозначно связанного с массой находящейся в нем воды.

Использование амплитуды переменного напряжения в 20-30 В обеспечивает относительную погрешность измерения токов на уровне 1-2%.

В процессе проведенного анализа уровня техники не выявлены технические решения, характеризующиеся признаками заявляемого изобретения. А сравнение предлагаемого решения с наиболее близким по совокупности признаков аналогом позволило выявить совокупность существенных отличительных признаков для достижения технического результата. Анализ также показал, что заявляемое изобретение не следует для специалистов явным образом из известного уровня техники, так как не обнаружены технические решения, в которых содержание воды в вискозном волокне контролируется при его определенной плотности на основании регистрации токов, проходящих через пробу волокна на двух различных частотах.

Таким образом, сопоставительный анализ предложенного технического решения и уровня техники позволил установить, что заявленное изобретение соответствует требованию "новизна" и "изобретательский уровень" по действующему законодательству.

Чертежи, иллюстрирующие особенности реализации предлагаемого способа, представлены на фиг.1-5. Здесь на фиг.1-2 приведены соответственно частотные зависимости действительной и мнимой частей диэлектрической проницаемости волокна, контролируемые при его различной влажности (ρH20, кг/м3: 1-0; 2-40; 3-50; 4-64); на фиг.3 - частотные зависимости угла диэлектрических потерь волокна (ρH20, кг/м3: 1-0, 2-52, 3-64, 4-76, 5-104); на фиг.4 - зависимость тока смещения, проходящего через волокно, от массы находящейся в нем воды; а на фиг.5 - зависимость от степени уплотнения волокна нормированной величины контролируемого тока (влажность волокна 10%, частота зондирующего напряжения - 20 кГц, амплитуда - 20 В).

Сведения, подтверждающие возможность осуществления предложенного изобретения с получением вышеуказанного технического результата, заключаются в следующем. Проба вискозного волокна помещается в измерительную камеру (формы, близкой к кубической) и прессуется до получения плотности волокна, не меньшей 400 кг/м3. Затем к двум измерительным электродам, расположенным на внутренней поверхности противоположенных сторон камеры, прикладывается синусоидальное напряжение и контролируется ток, проходящий через волокно. Величина этого тока однозначно связана с количеством воды, находящейся в пробе волокна.

При реализации известных способов контроля влажности волокна (например, прототип) измерения тока проводят на одной частоте, находящейся в диапазоне от 0,2 до 5,0 МГц. При этом в регистрируемом полезном сигнале (Iизм) кроме токов смещения (Iсм - информативный параметр, однозначно связанный с содержанием воды в волокне) присутствует ток проводимости (Iпр) и паразитный ток, проходящий через камеру в отсутствие в ней волокна (I0). Амплитудное значение тока проводимости неконтролируемым образом зависит от плотности волокна, его химического состава и влажности. Кроме этого Iпр смещен относительно Iсм на угол (90-δ). Угол диэлектрических потерь также зависит от электрофизических свойств волокна и частоты зондирующего сигнала. Искомый ток в этом случае определяется соотношением:

Из полученного выражения следует, что определение количества воды в волокне по Iсм осуществляется с переменной погрешностью (Iпр и δ - переменные величины), учесть которую не представляется возможным.

Устранить указанную неопределенность позволяет индивидуальное определение тока проводимости и выбор частоты зондирующего напряжения, при которой диэлектрические потери в волокне пренебрежимо малы (δ близок к нулю).

Ток проводимости может быть определен при использовании переменного напряжения с частотой, не превышающей 50 Гц. На постоянном токе эти измерения затруднены процессами ионно-миграционной поляризации волокна (токоперенос в объеме электролитических ячеек, образованных в местах локального скопления воды в волокне). При частоте, большей 50 Гц, на контролируемую величину начинает накладываться ток смещения и погрешность измерения Iпр составляет 3-7%.

Выбор высокочастотного диапазона напряжения осуществлен на основании исследования электрофизических свойств волокна - контролировались частотные зависимости действительной (ε′) и мнимой (ε″) частей диэлектрической проницаемости волокна при различном содержании в нем воды. Полученные зависимости представлены на фиг. 1-2, соответственно.

Зависимость ε″ имеет максимум около 106 Гц, чему соответствует процесс ориентации молекул воды (диполей), адсорбированных на поверхности волокна, в направлении приложенного поля. При влажности волокна, превышающей 12%, ε″ возрастает, что свидетельствует о появлении еще одного механизма поляризации с большим характерным временем - макрополяризация электролита, заполняющего отдельные поры волокна.

Действительная часть диэлектрической проницаемости волокна на низких частотах (до 105 Гц) изменяется слабо (фиг.2), заметно возрастая при влажности, превышающей 11%.

Угол диэлектрических потерь при влажности волокна, меньшей 12%, и частоте используемого напряжения, не превышающей 100 кГц, близок к нулю (фиг.3).

При выборе оптимального диапазона частот зондирующего высокочастотного напряжения учитывались следующие обстоятельства. При частоте, меньшей 20 кГц, начинает заметно снижаться контролируемый ток - возрастает емкостное сопротивление волокна. При частоте, большей 100 кГц, становится существенным уменьшение ε′ и возрастание угла диэлектрических потерь. В диапазоне частот 20-100 кГц искомое значение тока смещения, проходящего через волокно, может быть определено по упрощенной формуле:

где I2=Iизм и I1=Iпр - токи через волокно, контролируемые на частоте 20-100 кГц и 1-50 Гц соответственно.

Искомое значение массы воды в исследуемом волокне находится по предварительно установленной зависимости между током смещения, проходящего через волокно, и содержанием в нем воды - фиг.4.

Величина тока, проходящего через волокно, критична к степени его сжатия - фиг.5. Этот факт обусловлен существованием переходной емкости на границе раздела "волокно-поверхность электрода". При плотности волокна, большей 400 кг/м3, влияние данного фактора становится несущественным.

Реализация предлагаемого способа осуществлялась в условиях производства на кипах волокна, находящихся в камере окончательного прессования (размеры камеры - 940×570×500 мм). Амплитуда напряжений, прикладываемых к измерительным электродам, составляла 20 В, частоты 20 Гц и 20 кГц, соответственно. Оценка интегрального содержания воды в кипах вискозного волокна осуществлялась на основании предварительно установленной на уменьшенном макете камеры прессования градуировочной зависимости, представленной на фиг.4. После взвешивания кипы определялась влажность находящегося в ней волокна (Вэкс), которая затем сравнивалась с результатами оценки влажности волокна, выполненной 5-6 раз по стандартной методике (В0 - термогравиметрический метод). Полученные результаты измерений представлены в таблице.

Вэкс 8,6-8,8 7,8-8,1 8,4-8,5 12,0-12,4
В0 7,8-13,0 7,2-10,3 8,1-9,4 9,3-13,3

Из анализа полученных результатов следует, что наблюдается качественное совпадение Вэкс и В0. При этом разработанный метод отличается существенно большей объективностью и повторяемостью результатов. Данное обстоятельство является следствием малой выборки порций волокна при использовании стандартного метода оценки его влажности.

Использование предлагаемого способа позволяет повысить объективность измерения содержания воды в вискозном волокне, что обеспечивает повышение его качества и коммерческих показателей.

Способ измерения содержания воды в вискозном волокне, заключающийся в приложении переменного напряжения к двум электродам, между которыми располагают пробу спрессованного исследуемого материала, и измерении ее электропроводности, отличающийся тем, что прессование пробы волокна производят до объемной плотности материала, превышающей 400 кг/м, затем к электродам последовательно прикладывают переменное напряжение с частотой ≤50 Гц и частотой 20-100 кГц, контролируют соответствующие токи (I и I), протекающие между электродами, и определяют значение тока смещения, проходящего через пробу, по формуле: ,в которой I - фоновое значение тока, контролируемое между электродами на частоте 20-100 кГц при отсутствии волокна, и после этого находят величину массы воды в исследуемой пробе волокна на основании предварительно установленной зависимости тока смещения от массы воды в волокне.
СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ ВИСКОЗНОГО ВОЛОКНА
СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ ВИСКОЗНОГО ВОЛОКНА
СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ ВИСКОЗНОГО ВОЛОКНА
СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ ВИСКОЗНОГО ВОЛОКНА
СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ ВИСКОЗНОГО ВОЛОКНА
СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ ВИСКОЗНОГО ВОЛОКНА
СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ ВИСКОЗНОГО ВОЛОКНА
Источник поступления информации: Роспатент

Showing 21-30 of 94 items.
20.07.2014
№216.012.df32

Способ обработки сигналов для обнаружения прямолинейных границ объектов, наблюдаемых на изображении

Изобретение относится к средствам цифровой обработки изображений. Техническим результатом является повышение точности обнаружения прямолинейных границ объектов на изображении за счет получения локальных максимумов. В способе на основе градиентного поля проводится формирование трех изображений,...
Тип: Изобретение
Номер охранного документа: 0002522924
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ebef

Аппаратура подводной оптической связи

Изобретение относится к технике электрической связи и может использоваться в системах двусторонней оптической связи. Технический результат заключается в расширении функциональных возможностей устройства двусторонней оптической связи в подводных условиях. Для этого в аппаратуру оптической...
Тип: Изобретение
Номер охранного документа: 0002526207
Дата охранного документа: 20.08.2014
10.11.2014
№216.013.0383

Устройство подавления влияния помехи промышленной частоты на электрокардиосигнал

Изобретение относится к медицинской технике. Устройство подавления влияния помехи промышленной частоты на электрокардиосигнал содержит блок выделения интервала времени (2), соответствующего ТР-сегменту электрокардиосигнала, ключевой элемент (8), фильтр (14), усилитель (15), блок задержки (16) и...
Тип: Изобретение
Номер охранного документа: 0002532297
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04a8

Способ измерения контактной разности потенциалов

Изобретение относится измерительной технике и представляет собой способ измерения контактной разности потенциалов между проводящими материалами (металлами, полупроводниками, электролитами) и может быть использовано для измерения электродных потенциалов, работы выхода поверхности, для контроля...
Тип: Изобретение
Номер охранного документа: 0002532590
Дата охранного документа: 10.11.2014
27.11.2014
№216.013.0b00

Способ измерения координат элементов земной поверхности в бортовой четырехканальной доплеровской рлс

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью (радиовидению) на базе четырехканальной доплеровской радиолокационной станции с четырехэлементной антенной решеткой. Достигаемый технический результат - измерение координат...
Тип: Изобретение
Номер охранного документа: 0002534224
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0b16

Способ определения атомного состава активных нанопримесей в жидкостях

Изобретение относится к области нано-, микроэлектроники и аналитического приборостроения и может быть использовано в разработке технологии и в производстве изделий микро- и наноэлектроники, а также в производстве чистых материалов и для диагностики и контроля жидких технологических сред. Способ...
Тип: Изобретение
Номер охранного документа: 0002534246
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0b9e

Способ определения концентрации носителей заряда в полупроводниках и устройство для его осуществления

Группа изобретений относится к области электронной техники, микро- и наноэлектроники и может быть использована для локального определения концентрации свободных носителей заряда в отдельно взятых полупроводниковых нанообъектах и наноструктурах, а также для контроля качества материалов,...
Тип: Изобретение
Номер охранного документа: 0002534382
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ee3

Способ определения длительности времени плазмохимического травления поверхности полупроводниковых пластин для субмикронных технологий

Изобретение относится к области микроэлектроники. Технический результат направлен на повышение достоверности определения типа и количества загрязняющих примесей на поверхности полупроводниковых пластин после плазмохимического травления и определения оптимального значения длительности времени...
Тип: Изобретение
Номер охранного документа: 0002535228
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.19f5

Способ исследования нелинейного спинового резонанса в полупроводниках и устройство для его осуществления

Использование: для исследования нелинейного спинового резонанса в объемных, тонкопленочных и двумерных полупроводниковых наноструктурах. Сущность изобретения заключается в том, что для исследования нелинейного спинового резонанса образец охлаждают, воздействуют на него изменяющимся постоянным и...
Тип: Изобретение
Номер охранного документа: 0002538073
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1fb5

Способ формирования трехмерного изображения земной поверхности и воздушной обстановки с помощью антенной решетки

Изобретение относится к бортовым радиолокационным системам наблюдения за земной поверхностью и воздушной обстановкой, работающим в режиме реального луча на базе плоской антенной решетки. Достигаемый технический результат - формирование трехмерного изображения объектов отражения в зоне обзора с...
Тип: Изобретение
Номер охранного документа: 0002539558
Дата охранного документа: 20.01.2015
Showing 21-30 of 112 items.
20.04.2014
№216.012.bb38

Фазометр когерентно-импульсных сигналов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) когерентно-импульсных периодических радиосигналов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения...
Тип: Изобретение
Номер охранного документа: 0002513656
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb3e

Способ изготовления фотоэмиттера с отрицательным электронным сродством для инфракрасного диапазона

Изобретение относится к области эмиссионной и наноэлектроники и может быть использовано в разработке и в технологии производства фотоэлектронных преобразователей второго поколения, эмиттеров с отрицательным электронным сродством для приборов ИК-диапазона. Способ изготовления фотоэмиттера с...
Тип: Изобретение
Номер охранного документа: 0002513662
Дата охранного документа: 20.04.2014
20.07.2014
№216.012.df32

Способ обработки сигналов для обнаружения прямолинейных границ объектов, наблюдаемых на изображении

Изобретение относится к средствам цифровой обработки изображений. Техническим результатом является повышение точности обнаружения прямолинейных границ объектов на изображении за счет получения локальных максимумов. В способе на основе градиентного поля проводится формирование трех изображений,...
Тип: Изобретение
Номер охранного документа: 0002522924
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ebef

Аппаратура подводной оптической связи

Изобретение относится к технике электрической связи и может использоваться в системах двусторонней оптической связи. Технический результат заключается в расширении функциональных возможностей устройства двусторонней оптической связи в подводных условиях. Для этого в аппаратуру оптической...
Тип: Изобретение
Номер охранного документа: 0002526207
Дата охранного документа: 20.08.2014
10.11.2014
№216.013.0383

Устройство подавления влияния помехи промышленной частоты на электрокардиосигнал

Изобретение относится к медицинской технике. Устройство подавления влияния помехи промышленной частоты на электрокардиосигнал содержит блок выделения интервала времени (2), соответствующего ТР-сегменту электрокардиосигнала, ключевой элемент (8), фильтр (14), усилитель (15), блок задержки (16) и...
Тип: Изобретение
Номер охранного документа: 0002532297
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04a8

Способ измерения контактной разности потенциалов

Изобретение относится измерительной технике и представляет собой способ измерения контактной разности потенциалов между проводящими материалами (металлами, полупроводниками, электролитами) и может быть использовано для измерения электродных потенциалов, работы выхода поверхности, для контроля...
Тип: Изобретение
Номер охранного документа: 0002532590
Дата охранного документа: 10.11.2014
27.11.2014
№216.013.0b00

Способ измерения координат элементов земной поверхности в бортовой четырехканальной доплеровской рлс

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью (радиовидению) на базе четырехканальной доплеровской радиолокационной станции с четырехэлементной антенной решеткой. Достигаемый технический результат - измерение координат...
Тип: Изобретение
Номер охранного документа: 0002534224
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0b16

Способ определения атомного состава активных нанопримесей в жидкостях

Изобретение относится к области нано-, микроэлектроники и аналитического приборостроения и может быть использовано в разработке технологии и в производстве изделий микро- и наноэлектроники, а также в производстве чистых материалов и для диагностики и контроля жидких технологических сред. Способ...
Тип: Изобретение
Номер охранного документа: 0002534246
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0b9e

Способ определения концентрации носителей заряда в полупроводниках и устройство для его осуществления

Группа изобретений относится к области электронной техники, микро- и наноэлектроники и может быть использована для локального определения концентрации свободных носителей заряда в отдельно взятых полупроводниковых нанообъектах и наноструктурах, а также для контроля качества материалов,...
Тип: Изобретение
Номер охранного документа: 0002534382
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ee3

Способ определения длительности времени плазмохимического травления поверхности полупроводниковых пластин для субмикронных технологий

Изобретение относится к области микроэлектроники. Технический результат направлен на повышение достоверности определения типа и количества загрязняющих примесей на поверхности полупроводниковых пластин после плазмохимического травления и определения оптимального значения длительности времени...
Тип: Изобретение
Номер охранного документа: 0002535228
Дата охранного документа: 10.12.2014
+ добавить свой РИД