×
27.10.2014
216.013.0313

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПЛЕНОК Bi-СОДЕРЖАЩИХ ФЕРРИТОВ-ГРАНАТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения пленок ферритов-гранатов и может быть использовано в прикладной магнитооптике для получения магнитооптических дисков, модуляторов, дефлекторов. Способ включает изготовление мишени заданного состава, обработку монокристаллической подложки галлиевого граната ионами аргона, распыление мишени на подложку с дальнейшим отжигом полученной пленки, при этом используют подложку сложнозамещенного галлиевого граната, процесс распыления осуществляют на подогретую до температуры 800-850°C подложку, в процессе распыления осуществляют подачу в область подложки контролируемого потока ионов кислорода, а полученные пленки отжигают в атмосфере кислорода в течение 0,5-1,0 час при температуре 700-750°C и нормальном атмосферном давлении. Изобретение позволяет повысить качество получаемых наноразмерных пленок Bi-содержащих ферритов-гранатов, а также величину удельного фарадеевского вращения. 1 табл., 1 пр.
Основные результаты: Способ получения наноразмерных пленок Bi-содержащих ферритов-гранатов, включающий изготовление мишени заданного состава, обработку монокристаллической подложки галлиевого граната ионами аргона, распыление мишени на подложку с дальнейшим отжигом полученной пленки, отличающийся тем, что используется подложка сложнозамещенного галлиевого граната, процесс распыления осуществляется на подогретую до температуры 800-850°C подложку, в процессе распыления осуществляется подача в область подложки контролируемого потока ионов кислорода, а полученные пленки отжигают в атмосфере кислорода в течение 0,5-1,0 час при температуре 700-750°C и нормальном атмосферном давлении.

Изобретение относится к технологии получения пленок ферритов-гранатов и может быть использовано в прикладной магнитооптике для получения магнитооптических дисков, модуляторов, дефлекторов и т.д.

Известен способ получения поликристаллических пленок ферритов-гранатов, содержащих Bi, методом магнетронного напыления на подложку гадолиний-галлиевого граната (см. Старостин Ю.В., Николаев Е.Н., Песин В.С., Кочетков В.В. и др. Напыление и параметры пленок ферритов-гранатов для магнитооптических дисков. Неорганические материалы. - 1993. Т.32, №7. - С.988-991). Способ включает изготовление мишеней заданных составов, их магнетронное распыление на подложку с дальнейшим отжигом полученной пленки в атмосфере кислорода на протяжении одного часа. Недостаток способа - невозможность получения наноразмерных пленок.

Наиболее близким к предлагаемому является «Способ получения наноразмерных пленок феррита-граната, содержащих Bi» (см.: патент Украины №66219. Прокопов А.Р., Шапошников А.Н., Каравайников А.В. «Способ получения наноразмерных пленок феррита-граната, содержащих Bi». Бюл. №24, 2011 г.). Способ включает изготовление мишени заданного состава, обработку монокристаллической подложки ионами аргона, распыление компонентов мишени на подложку и отжиг на воздухе при атмосферном давлении. Недостаток настоящего способа - существенное отличие состава полученной пленки от состава исходной мишени, нестехиометрия получаемых пленок.

Цель настоящего изобретения - улучшение качества получаемых пленок Bi-содержащих ферритов-гранатов, повышение удельного фарадеевского вращения.

Поставленная цель достигается тем, что в предлагаемом способе получения наноразмерных пленок Bi-содержащих ферритов-гранатов, включающем изготовление мишени заданного состава, обработку монокристаллической подложки галлиевого граната ионами аргона, распыление мишени на подложку с дальнейшим отжигом полученной пленки, в соответствии с предлагаемым техническим решением используется подложка сложнозамещенного галлиевого граната с высоким значением параметра решетки, ионное распыление и подогрев подложки в процессе напыления пленки до 800-850°C, подача в зону подложки контролируемого потока кислорода и отжиг полученных пленок кислорода на протяжении 0,5-1,0 час в атмосфере кислорода при температуре 700-750°C при нормальном атмосферном давлении.

Сущность предлагаемого способа состоит в том, что использование подогрева подложки, подача в область подложки контролируемого потока ионов кислорода и последующий отжиг полученных структур в атмосфере кислорода при нормальном атмосферном давлении позволяют существенно улучшить качество получаемых наноразмерных пленок Bi-содержащих ферритов-гранатов, в частности, уменьшить нестехиометрию, существенно уменьшить расхождение состава получаемой пленки по сравнению с составом мишени. Использование сложнозамещенного галлиевого граната в качестве подложки за счет высоких значений параметра решетки позволяет получить высокую концентрацию ионов Bi3+(2,5-2,8 форм, ед.) в кристаллической решетке и за счет этого достичь высоких значений удельного фарадеевского вращения.

Способ реализуется следующим образом. Изготавливается мишень требуемого состава Bi-содержащего феррита-граната (содержание ионов Bi3+ - 2,5-2,8 форм. ед.). Монокристаллическую подложку сложнозамещенного галлиевого граната (напр.: (GdCa)3(GaMgZr)5O12, Ca3(NbGaMg)5O12, Ca3(GaNbZr)5O12 и др.; такой тип подложки выбирается с целью вхождения в решетку пленки как можно большей концентрации ионов Bi3+ для увеличения удельного фарадеевского вращения) обрабатывают ионами аргона энергии 10-20 эВ. В вакуумной камере достигают давления (6,5-6,8)·10-4 Па и производят с помощью платинового нагревателя нагрев подложки до температуры 800-850°C. Далее производят осаждение материала мишени на подложку путем распыления мишени пучком аргона с помощью ионного источника (плотность тока пучка ионов j=8-12 мА/см2, энергия ионов Е=1-3 кэВ). С целью облегчения кристаллизации пленки стехиометрического Bi-содержащего феррита-граната, в область подложки подается с помощью источника ионов контролируемый поток ионов кислорода. Требуемая толщина пленки регулируется временем распыления. Полученную структуру помещают в печь и отжигают в атмосфере кислорода при температуре 700-750°C при нормальном атмосферном давлении.

Пример реализации способа.

1. Методом керамической технологии готовили мишени состава Bi2,7Lu0,3Fe3,9Ga1,1O12. Диаметр мишеней составлял 100 мм. В качестве подложек использовались монокристаллические пластины-подложки состава Ca3(GaNbZr)5O12. Процесс получения наноразмерных Bi-содержащих пленок указанного состава осуществлялся в вакуумной установке, изготовленной на базе установки УВН 3279026. В вакуумной камере достигали давления (6,5-6,8)·10 Па, после чего осуществляли обработку подложки ионами аргона энергии 10-20 эВ. Далее производили с помощью платинового нагревателя нагрев подложки до температуры 850°C, после чего производилось осаждение материала мишени на подложку путем распыления мишени пучком аргона с помощью ионного источника (плотность тока пучка ионов j=8-12 мА/см2, энергия ионов Е=1-3 кэВ). С целью облегчения кристаллизации пленки стехиометрического Bi-содержащего феррита-граната, в область подложки подавали с помощью источника ионов контролируемый поток ионов кислорода. Полученные пленки отжигали в установке для обжига иттриевых гранатов ТИ-1 ПЯ 2.983.003 СП атмосфере кислорода при температуре 750°C и нормальном атмосферном давлении. После естественного охлаждения установки для обжига до комнатной температуры полученные пленки промывали в дистиллированной и деионизованной воде. Таким образом были приготовлены 5 пленок.

Результаты рентгено-дифракционного исследования показали, что полученные наноразмерные пленки являются монокристаллическими. Толщина переходного слоя составляла 3-6 нм, толщина пленок 33-47 нм.

По данным рентгеноспектрального анализа, концентрация ионов висмута в полученных пленках составляла от 2,6 форм. ед. до 2,72 форм. ед.

В таблице представлены основные характеристики полученных наноразмерных пленок Bi-содержащих гранатов.

Таблица
Характеристики полученных методом ионно-лучевого распыления наноразмерных пленок Bi2,7Lu0,3Fe3,9Ga1,1O12 (ВЛФГ)
№ п/п Номер структуры Температура обжига Т, °C Толщина пленки ВЛФГ Удельное фарадеевское вращение θF, град/см (λ=0,633 мкм) Намагниченность насыщения, Ms, Гс Поле эффективной анизотропии НК, Э
1 1-1 700 33,00 54 100 280 4 300
2 3-2 715 37,00 54 900 270 4 450
3 4-5 730 42,00 55 250 250 4 280
4 6-3 750 45,00 55 600 295 4 290

Таким образом, предлагаемый способ обладает следующими отличительными признаками:

1. Используется монокристаллическая подложка сложнозамещенного галлиевого граната.

2. Используется подогрев подложки до температуры 800-850°С.

3. Используется в процессе распыления подача в область подложки контролируемого потока ионов кислорода.

4. Полученные пленки отжигают в кислороде в течение 0,5-1,0 час при температуре 700-750°C и нормальном атмосферном давлении.

Использование настоящих отличительных признаков для достижения полученных результатов авторам неизвестно.

Способ получения наноразмерных пленок Bi-содержащих ферритов-гранатов, включающий изготовление мишени заданного состава, обработку монокристаллической подложки галлиевого граната ионами аргона, распыление мишени на подложку с дальнейшим отжигом полученной пленки, отличающийся тем, что используется подложка сложнозамещенного галлиевого граната, процесс распыления осуществляется на подогретую до температуры 800-850°C подложку, в процессе распыления осуществляется подача в область подложки контролируемого потока ионов кислорода, а полученные пленки отжигают в атмосфере кислорода в течение 0,5-1,0 час при температуре 700-750°C и нормальном атмосферном давлении.
Источник поступления информации: Роспатент

Showing 241-244 of 244 items.
29.12.2017
№217.015.fda7

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов, обеспечивающее снижение температуры синтеза и повышение...
Тип: Изобретение
Номер охранного документа: 0002638069
Дата охранного документа: 11.12.2017
04.04.2018
№218.016.318e

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция, что обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002645192
Дата охранного документа: 16.02.2018
19.06.2019
№219.017.8ac8

Алмазный инструмент на гальванической связке

Изобретение относится к алмазным инструментам, изготавливаемым с использованием процессов закрепления алмазных зерен на корпусе инструмента электроосаждением металлической связки, - инструментам на гальванической связке. Такими инструментами могут быть отрезные круги, трубчатые сверла,...
Тип: Изобретение
Номер охранного документа: 0002437752
Дата охранного документа: 27.12.2011
14.07.2019
№219.017.b4e6

Способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент

Изобретение относится к области упрочнения режущего твердосплавного инструмента и может быть использовано в машиностроении, в частности в технологии металлообработки. Первоначально поверхность упомянутого инструмента подвергают модифицированию ионами хрома и методом ионно-плазменного...
Тип: Изобретение
Номер охранного документа: 0002468124
Дата охранного документа: 27.11.2012
Showing 251-256 of 256 items.
28.08.2018
№218.016.7fec

Способ изготовления фильтров для ик-диапазона

Изобретение относится к области оптического приборостроения и касается способа изготовления фильтров для ИК-диапазона. Способ заключается в выращивании из смеси бинарных компонент ZnSe и ZnS кристаллического слитка твердого раствора с перепадом температуры между зонами испарения и...
Тип: Изобретение
Номер охранного документа: 0002664912
Дата охранного документа: 23.08.2018
29.03.2019
№219.016.f785

Безэховая камера

Изобретение относится к области радиотехники и звукотехники и может использоваться при строительстве и оборудовании безэховых камер (помещений с радио- и звукоизоляцией), которым предъявляются повышенные требования, и которые могут найти применение при проверке и сертификации...
Тип: Изобретение
Номер охранного документа: 0002447551
Дата охранного документа: 10.04.2012
29.04.2019
№219.017.445a

Способ получения радиопоглощающего магний-цинкового феррита

Изобретение относится к технологии получения радиопоглощающего магний-цинкового феррита, который может найти широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры. Техническим результатом изобретения является получение дешевого...
Тип: Изобретение
Номер охранного документа: 0002454747
Дата охранного документа: 27.06.2012
19.06.2019
№219.017.89a3

Сверхширокодиапазонный поглотитель электромагнитных волн для безэховых камер и экранированных помещений

Изобретение относится к радиофизике, антенной технике и может найти применение при создании поглотителей электромагнитных волн, используемых для оснащения сверхширокодиапазонных многофункциональных безэховых камер (БЭК) и экранированных помещений, обеспечивающих проведение радиотехнических...
Тип: Изобретение
Номер охранного документа: 0002453953
Дата охранного документа: 20.06.2012
08.11.2019
№219.017.df51

Способ изготовления анизотропных гексагональных ферритов типа м

Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры. Изготовление анизотропных гексаферритов типа М включает...
Тип: Изобретение
Номер охранного документа: 0002705201
Дата охранного документа: 06.11.2019
17.06.2023
№223.018.8039

Многоцелевая модульная платформа для создания космических аппаратов нанокласса

Изобретение относится к области космической техники, а более конкретно к космическим аппаратам с общей массой до 10 кг. Многоцелевая модульная платформа космического аппарата нанокласса выполнена в форме шестиугольной призмы и состоит из набора унифицированных масштабируемых модулей. Модули...
Тип: Изобретение
Номер охранного документа: 0002762452
Дата охранного документа: 21.12.2021
+ добавить свой РИД