×
27.10.2014
216.013.00ed

Результат интеллектуальной деятельности: КАСКАДНЫЙ УСКОРИТЕЛЬ

Вид РИД

Изобретение

№ охранного документа
0002531635
Дата охранного документа
27.10.2014
Аннотация: Заявленное изобретение относится к ускорительной технике. В заявленном каскадном ускорителе предусмотрено два набора конденсаторов, соответственно соединенных последовательно и включенных через диоды. Каскадный ускоритель содержит образованный посредством отверстий в электродах конденсаторов набора канал ускорения, направленный на размещенный в области электрода с наивысшим напряжением источник частиц. При этом электроды, которые могут иметь сферическую или эллиптическую геометрию, изолированы по отношению друг к другу до канала ускорения с помощью твердого или жидкого изоляционного материала. Техническим результатом является сочетание возможности обеспечения высокой достижимой энергии частиц и компактной конструкции ускорителя при погружении источника частиц в твердый или жидкий изоляционный материал. 2 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к каскадному ускорителю с двумя наборами конденсаторов, соответственно соединенных последовательно, включенных через диоды по типу Greinacher-каскада. Оно относится также к прибору лучевой терапии с подобным каскадным ускорителем.

В медицинской лучевой терапии применяется ионизирующее излучение, чтобы лечить заболевания или замедлять их развитие. В качестве ионизирующих, высокоэнергетичных лучей предпочтительно применяют гамма-излучение, рентгеновское излучение и электроны.

Для генерации электронного луча либо для непосредственного терапевтического использования, либо для формирования рентгеновского излучения, обычно применяют ускорители частиц. В ускорителях частиц заряженные частицы посредством электрических полей доводятся до высоких скоростей и тем самым кинетических энергий, причем электрические поля в некоторых типах ускорителей возникают посредством электромагнитной индукции в переменных магнитных полях. При этом частицы достигают энергии движения, которая соответствует многократному значению их собственной энергии покоя.

В случае ускорителей частиц проводится различие между ускорителями частиц с циклическим ускорением, как, например, бетатронами и циклотронами и ускорителями с прямолинейным ускорением. Последние обеспечивают возможность более компактной конструкции и включают в себя так называемые каскадные ускорители (также ускорители Кокрофта-Уолтона), в которых посредством Greinacher-схемы (схемы Грейнахера), которая включается многократно друг за другом (каскадируется), за счет умножения и выпрямления переменного напряжения, может вырабатываться высокое постоянное напряжение и тем самым сильное электрическое поле.

Способ функционирования Greinacher-схемы базируется при этом на конфигурации диодов и конденсаторов. Отрицательная полуволна источника переменного напряжения заряжает через первый диод первый конденсатор до напряжения источника переменного напряжения. Затем, при следующей за этим положительной полуволне, напряжение первого конденсатора суммируется с напряжением источника переменного напряжения, так что второй конденсатор через второй диод теперь заряжается до удвоенного выходного напряжения источника переменного напряжения. За счет многократного каскадирования по типу Greinacher-каскада, таким образом, получают умножитель напряжения. При этом первые конденсаторы образуют первый набор непосредственно последовательно включенных конденсаторов каскада, а соответствующие вторые конденсаторы - соответствующий второй набор. Диоды образуют поперечное соединение между наборами.

В подобном каскадном ускорителе является возможным достичь сравнительно высоких энергий частиц в диапазоне мегаэлектронвольт. Однако при этом существует, особенно в случае установленных при нормальном воздушном давлении каскадных ускорителей, опасность электрических пробоев (напряжение пробоя в воздухе: 3 кВ/мм), из-за чего максимальная энергия частиц ограничивается нежелательным образом.

Поэтому в основе изобретения лежит задача создать каскадный ускоритель, который при компактной конструкции имеет особенно высокую достижимую энергию частиц.

Эта задача, в соответствии с изобретением, решается каскадным ускорителем с образованным посредством отверстий в электродах конденсаторов набора каналом ускорения, направленным на размещенный в области электрода с наивысшим напряжением источник частиц, причем электроды конденсаторов изолированы по отношению друг к другу до канала ускорения с помощью твердого или жидкого изоляционного материала.

При этом изобретение исходит из идеи, что повышение энергии генерируемого луча частиц каскадного ускорителя было бы возможно за счет повышения напряжения ускорения. Чтобы при этом минимизировать возникающую опасность электрического пробоя, можно было бы увеличить расстояние между отдельными пластинами конденсаторов каскадного ускорителя. Вообще это противоречило бы принципу компактности конструкции, которая как раз желательна для возможности использования в медицинской области. Чтобы обеспечить возможность повышения напряжения ускорения при одновременном обеспечении компактности конструкции, конденсаторы следовало бы защитить иным образом от электрических пробоев. Для этого следовало бы применить соответствующие жидкие или твердые изоляторы, которые обеспечивают возможность надежной изоляции пластин конденсаторов. Это может быть достигнуто тем, что промежутки между электродами до канала ускорения заполнены твердым или жидким изоляционным материалом.

Возникающие в каскадном ускорителе высокие напряжения должны предохраняться от электрических пробоев, наряду с соответствующей толщиной изоляции, также за счет соответствующего выполнения геометрии. Поэтому формирование напряжения и ускоритель частиц должны быть интегрированы, и конструктивные элементы с особенно высоким напряжением должны размещаться внутри по возможности минимального объема. Так как максимальная электрическая напряженность поля пропорциональна кривизне электродов, особенно предпочтительна сферическая или эллипсоидальная геометрия. В особенности, сферическая геометрия означает, в отношении максимально возможной электрической напряженности поля внутри изолятора, особенно малый объем и, следовательно, особенно малую массу. В общем случае, в определенных конструктивных формах может быть желательна деформация в эллипсоид. Поэтому предпочтительным образом множество электродов выполнены как концентричные, расположенные вокруг источника частиц на расстоянии друг от друга полые эллипсоидальные сегменты.

Особенно простая конструкция, которая соединяет преимущества эллипсоидной геометрии с простым формированием напряжения внутри Greinacher-каскада, возможна за счет того, что выполненные как полые эллипсоидальные сегменты электроды являются соответствующими полыми полуэллипсоидами, то есть осуществляется разделение по экватору соответствующего полого эллипсоида, так что возникающее, таким образом, множество слоев полых полуэллипсоидов образует оба набора конденсаторов, которые необходимы для Greinacher-каскада. Канал ускорения проходит тогда предпочтительным образом через наивысшую точку (вершину) полого полуэллипсоида, за счет чего достигается особенно простая геометрия.

В другом предпочтительном выполнении соответствующие диоды размещены в области большого круга соответствующего полого полуэллипсоида. Если именно полые полуэллипсоиды образуют, соответственно, оба набора соединенных последовательно конденсаторов, то диоды соединяют соответствующие полые полуэллипсоиды на чередующихся полусферах. Диоды могут тогда, в целях особенно простой конструкции, размещаться внутри экваториального сечения.

Чтобы достичь особенно высокой стабильности каскадного ускорителя по отношению к пробоям, должен предусматриваться равномерный градиент напряжения вдоль участка ускорения, то есть между отдельными электродами Greinacher-каскада. Это достигается тем, что множество электродов размещены с эквидистантным разнесением относительно друг друга. Так как электроды каждого набора имеют линейное нарастание напряжения, тем самым вдоль канала ускорения получается практически линейное нарастание напряжения.

В другом предпочтительном выполнении источником частиц является холодный катод. Электроды холодного катода не нагреваются и остаются холодными в процессе работы, так что термоэлектронной эмиссии в них не происходит. За счет этого возможна особенно простая конструкция каскадного ускорителя.

Канал ускорения позволяет извлекать поток частиц из каскадного ускорителя. Для того чтобы канал ускорителя выдерживал тангенциальные электрические поля без пробоя, канал ускорения должен содержать стенку цилиндрической формы, которая покрыта алмазоподобным углеродом и/или окисленным алмазом. Эти материалы в состоянии выдерживать такие сравнительно высокие напряжения.

Предпочтительным образом, подобный каскадный ускоритель используется в приборе лучевой терапии.

Достигаемые с помощью изобретения преимущества состоят, в особенности, в том, что в случае каскадного ускорителя на основе Greinacher-каскада, за счет погружения источника частиц и/или электродов в твердый или жидкий изоляционный материал может формироваться особенно высокое напряжение ускорения для ускорения заряженных частиц. При выполнении электродов сферической или эллипсоидной геометрии, кроме того, возможна особенно компактная конструкция, и два набора конденсаторов Greinacher-схемы дополнительно используются как концентрические электроды уравновешивания потенциала для электрического распределения поля вокруг источника частиц и электрода высокого напряжения. Подобный каскадный ускоритель обеспечивает возможность особенно высокого напряжения при особенно компактной конструкции, что, в частности, желательно в медицинских применениях.

Пример выполнения изобретения далее поясняется более подробно со ссылками на чертежи, на которых показано следующее:

фиг.1 - схематичное представление сечения каскадного ускорителя,

фиг.2 - схематичное представление Greinacher-схемы.

Одинаковые части на обоих чертежах обозначены одинаковыми ссылочными позициями.

Каскадный генератор 1 по фиг.1 имеет первый набор 2, а также второй набор 4 полых полусферических электродов. Они размещены концентрично вокруг источника 6 частиц.

Через второй набор электродов 4 ведет канал 8 ускорителя, который направлен на источник 6 частиц и обеспечивает возможность извлечения потока 10 частиц, который исходит от источника 6 частиц и от которого полый сферический электрод 12 получает высокое напряжение ускорения.

Чтобы внутри предотвратить пробои высокого напряжения от электрода 12 высокого напряжения на источник 6 частиц, источник 6 частиц может быть полностью погружен в твердый или жидкий изоляционный материал 14, так что пространство между электродом 12 высокого напряжения и источником 6 частиц до канала 8 ускорения заполнено изолирующим материалом 14. Тем самым могут прикладываться особенно высокие напряжения к электроду 12 высокого напряжения, что приводит к особенно высокой энергии частиц. К тому же электроды или конденсаторные пластины электродов по отношению друг к другу по существу до канала 8 ускорения могут быть изолированы посредством твердого или жидкого изоляционного материала 14.

Формирование высокого напряжения на электроде 12 высокого напряжения осуществляется посредством Greinacher-каскада 20, который изображен на фиг.2 в виде схемы. На входе 22 приложено переменное напряжение U. Первая полуволна заряжает через диод 24 конденсатор 26 до напряжения U. При следующей за ней полуволне переменного напряжения напряжение U от конденсатора 26 суммируется с напряжением U на входе 22, так что конденсатор 28 через диод 30 теперь заряжается до напряжения 2U.

Этот процесс повторяется для последующих диодов и конденсаторов, так что в показанной на фиг.2 схеме на выходе 32 в целом достигается напряжение 6U. Фиг.2 также четко показывает, как с помощью представленной схемы образуется, соответственно, первый набор 2 конденсаторов и второй набор 4 конденсаторов.

Связанные друг с другом на фиг.2 электроды двух конденсаторов в каскадном ускорителе 1 по фиг.1 выполнены, соответственно, концентрично как полые полусферические оболочки. При этом к самым внешним оболочкам 40, 42 приложено, соответственно, напряжение U источника 22 напряжения. Диоды для образования схемы размещены в области большого круга соответствующей полой полусферы, то есть в экваториальном сечении соответствующих полых сфер.

Сферический конденсатор с внутренним радиусом r0 и внешним радиусом r1 имеет емкость:

Тогда напряженность поля при радиусе r равна:

Эта напряженность поля квадратично зависит от радиуса и сильно увеличивается в направлении к внутреннему электроду.

За счет того, что в каскадном ускорителе 1 электроды конденсаторов Greinacher-каскада 20 в качестве промежуточных электродов вставлены на точно определенном потенциале, распределение напряженности поля по радиусу приводится к линейному, так как для тонкостенных сфер электрическая напряженность поля примерно эквивалентна плоскому случаю:

с минимальным значением максимальной напряженности поля.

За счет дополнительного использования двух наборов 2, 4 конденсаторов Greinacher-каскада 20 в виде концентричных электродов уравновешивания потенциала для электрического распределения поля в по существу полностью инкапсулированном в твердом или жидком изоляционном материале 14 электроде 2 высокого напряжения и источнике 6 частиц реализуется особенно высокое напряжение ускорения в каскадном ускорителе 1. Одновременно конструкция является очень компактной, что обеспечивает возможность разнообразных применений, в особенности, в лучевой терапии.

Перечень ссылочных позиций:

1 каскадный генератор

2 первый набор

4 второй набор

6 источник частиц

8 канал ускорения

10 поток частиц

12 электрод высокого напряжения

14 изоляционный материал

20 Greinacher-каскад

22 источник напряжения

24 диод

26, 28 конденсатор

30 диод

32 выход

40, 42 самые внешние оболочки

r0 внутренний радиус сферического конденсатора

r1 внешний радиус сферического конденсатора

U напряжение.


КАСКАДНЫЙ УСКОРИТЕЛЬ
КАСКАДНЫЙ УСКОРИТЕЛЬ
Источник поступления информации: Роспатент

Showing 551-560 of 1,429 items.
10.04.2016
№216.015.2e54

Избирательное управление двигателем переменного тока или двигателем постоянного тока

Изобретение относится к области электротехники и может быть использовано для управления приводами, используемыми на подводных лодках. Техническим результатом является обеспечение возможности избирательного управления двигателями переменного или постоянного тока. В устройстве (1) для...
Тип: Изобретение
Номер охранного документа: 0002579439
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e6b

Газовая турбина и способ балансировки вращающейся части газовой турбины

Газовая турбина содержит систему балансировки вращающейся части, включающую балансировочный весовой элемент и крепежный элемент. Балансировочный весовой элемент выполнен с первым и вторым отверстиями, при этом первое и второе отверстия выполнены с возможностью съемной установки крепежного...
Тип: Изобретение
Номер охранного документа: 0002579613
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2eb0

Способ и блок управления для распознавания манипуляций в сети транспортного средства

Изобретение относится к контролю информационной безопасности. Технический результат - обеспечение безопасности сети транспортного средства. Способ распознавания манипулирования в по меньшей мере одной сети транспортного средства транспортного средства, имеющий следующие этапы: определение...
Тип: Изобретение
Номер охранного документа: 0002580790
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2ecd

Усилительное устройство для управляемого возврата мощности потерь

Изобретение относится к усилительным устройствам и может быть использовано в мощных передатчиках. Достигаемый технический результат - уменьшение модуляционных нелинейностей и уменьшение нелинейных искажений. Усилительное устройство для начального сигнала (s), имеющего начальную частоту (f),...
Тип: Изобретение
Номер охранного документа: 0002580025
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30a5

Электростатический инжектор частиц для высокочастотного ускорителя заряженных частиц

Изобретение относится к области ускорительной техники. На входе первого объемного резонатора предусмотрен электрод, который подключен к источнику постоянного напряжения и на основе которого формируется потенциальная яма, которая обуславливает ускорение частиц, испускаемых источником ионов, к...
Тип: Изобретение
Номер охранного документа: 0002580950
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.32d0

Пробоотборное устройство для отбора проб капель и газа в узких каналах газовой турбины или любого другого устройства с масляным сапуном

Группа изобретений относится к области техники измерения выбросов от газовых турбинных двигателей в целях соблюдения государственных и региональных стандартов окружающей среды. Аналитическое устройство (100) для анализа состава текучей среды, такой как масляный туман, газовой турбины содержит...
Тип: Изобретение
Номер охранного документа: 0002581086
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.368c

Газовая турбина и способ изготовления такой газовой турбины

Газовая турбина содержит устройство с внешним и внутренним корпусами и уплотнительным кольцом, а также дополнительное устройство с дополнительным внутренним и дополнительным внешним корпусами. Внешний и внутренний корпуса устройства расположены с образованием между ними канала охлаждения....
Тип: Изобретение
Номер охранного документа: 0002581287
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.372c

Способ изготовления турбинного диска и турбина

Турбина включает турбинный диск и другую турбинную часть, между которыми образована полость. Турбинный диск содержит первый и второй выступы. Первый и второй выступы образованы так, что обеспечивается возможность закрепления балансировочного грузика между первым выступом и вторым выступом....
Тип: Изобретение
Номер охранного документа: 0002581296
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.37e3

Миниатюрная магнитная проточная цитометрия

Группа изобретений относится к области магнитного обнаружения клеток, а именно к магнитной проточной цитометрии. Устройство для магнитной проточной цитометрии включает в себя магниторезестивный датчик, проточную камеру, которая предназначена для прохождения потока клеточной суспензии, и участок...
Тип: Изобретение
Номер охранного документа: 0002582391
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.384a

Усовершенствованная группа отверстий футеровок камеры сгорания газотурбинного двигателя с низкими динамикой горения и выделениями

Камера сгорания для газовой турбины содержит внутренний корпус и наружный корпус. Внутренний корпус содержит внутренний стеночный элемент, который содержит группу первых отверстий и группу вторых отверстий. Внутренний стеночный элемент охватывает объем горения камеры сгорания. Группа первых...
Тип: Изобретение
Номер охранного документа: 0002582378
Дата охранного документа: 27.04.2016
Showing 551-560 of 948 items.
20.03.2016
№216.014.cc39

Лопатка для турбомашины и турбомашина, содержащая такую лопатку.

Лопатка для турбомашины, в частности газовой турбины, расположена на турбинном роторе и содержит перо и хвостовую часть, выполненные за одно целое с лопаткой, проход для подачи охлаждающего воздуха в хвостовой части для направления охлаждающего воздуха в охладитель и отвод охлаждающего воздуха,...
Тип: Изобретение
Номер охранного документа: 0002577688
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.cc9b

Электрическая машина с замкнутым, автономным контуром охлаждающей среды

Изобретение касается электрической машины с жидкостным охлаждением. Технический результат - повышение эффективности охлаждения. Электрическая машина имеет основное тело, роторный вал и теплообменник. В основном теле, содержащем статор, расположены охлаждающие каналы для жидкой охлаждающей...
Тип: Изобретение
Номер охранного документа: 0002577773
Дата охранного документа: 20.03.2016
20.02.2016
№216.014.cd5f

Лопатка газовой турбины

Лопатка газовой турбины содержит хвостовик и перо лопатки с входной и выходной кромками и вершиной, систему каналов для охлаждающего воздуха, простирающихся от отверстия для охлаждающего воздуха в хвостовике посредством извилистого змеевидного канала к расположенному в зоне выходной кромки...
Тип: Изобретение
Номер охранного документа: 0002575842
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cd66

Способ компьютерного моделирования технической системы

Изобретение относится к области компьютерного моделирования технических систем. Технический результат - обеспечение более точного и надежного прогнозирования рабочих параметров за счет применения нейронной сети при моделировании. Способ для компьютерного моделирования технической системы, при...
Тип: Изобретение
Номер охранного документа: 0002575417
Дата охранного документа: 20.02.2016
27.02.2016
№216.014.cdb9

Разрядник защиты от перенапряжений с растяжимой манжетой

Разрядник (1) защиты от перенапряжений с колонкой варисторных элементов содержит растяжимую манжету (8) для размещения натяжных элементов (4) и фиксации их в радиальном направлении. Форма манжеты предусматривает заданные зоны деформации, за счет чего при неисправности и перегрузке манжета (8)...
Тип: Изобретение
Номер охранного документа: 0002575917
Дата охранного документа: 27.02.2016
20.02.2016
№216.014.cdfd

Сопловая лопатка с охлаждаемой платформой для газовой турбины

Узел платформы для поддержки сопловой лопатки для газовой турбины содержит поверхность прохождения газа, расположенную так, чтобы контактировать с потоковым рабочим газом, по меньшей мере, один охлаждающий канал. Охлаждающий канал имеет форму для направления охлаждающей текучей среды в...
Тип: Изобретение
Номер охранного документа: 0002575260
Дата охранного документа: 20.02.2016
10.02.2016
№216.014.cead

Устройство для монтажа и демонтажа конструктивного элемента стационарной газовой турбины, стационарная газовая турбина и способ монтажа и демонтажа конструктивного элемента стационарной газовой турбины

Изобретение относится к способу и устройству для монтажа и демонтажа конструктивного элемента в виде горелки или переходной трубы газовой турбины на стационарной газовой турбине. Устройство содержит двухколейную рельсовую систему, по которой передвигается рамная тележка, несущий узел для...
Тип: Изобретение
Номер охранного документа: 0002575109
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.cf3d

Способ компьютерной генерации управляемой данными модели технической системы, в частности газовой турбины или ветрогенератора

Изобретение относится к способу компьютерной генерации управляемой данными модели технической системы, в частности газовой турбины или ветрогенератора. Управляемая данными модель обучается предпочтительно в областях тренировочных данных с низкой плотностью. Оценщик плотности выдает для наборов...
Тип: Изобретение
Номер охранного документа: 0002575328
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cf4e

Способ для динамической авторизации мобильного коммуникационного устройства

Изобретение относится к области технического обслуживания. Технический результат - ограничение открытого доступа к сетям с обслуживаемыми установками. Способ для динамической авторизации мобильного коммуникационного устройства для сети, при котором ассоциированный с коммуникационным устройством...
Тип: Изобретение
Номер охранного документа: 0002575400
Дата охранного документа: 20.02.2016
27.03.2016
№216.014.ddab

Устройство и способ для добычи, особенно добычи на месте залегания (in-situ), углеродсодержащего вещества из подземного месторождения

Группа изобретений относится к устройству и способу для добычи углеводородсодержащего вещества, особенно битума или тяжелой фракции нефти, из резервуара. Резервуар нагружается тепловой энергией для снижения вязкости вещества, для чего предусмотрен по меньшей мере один проводящий шлейф для...
Тип: Изобретение
Номер охранного документа: 0002579058
Дата охранного документа: 27.03.2016
+ добавить свой РИД