×
27.10.2014
216.013.00ed

Результат интеллектуальной деятельности: КАСКАДНЫЙ УСКОРИТЕЛЬ

Вид РИД

Изобретение

№ охранного документа
0002531635
Дата охранного документа
27.10.2014
Аннотация: Заявленное изобретение относится к ускорительной технике. В заявленном каскадном ускорителе предусмотрено два набора конденсаторов, соответственно соединенных последовательно и включенных через диоды. Каскадный ускоритель содержит образованный посредством отверстий в электродах конденсаторов набора канал ускорения, направленный на размещенный в области электрода с наивысшим напряжением источник частиц. При этом электроды, которые могут иметь сферическую или эллиптическую геометрию, изолированы по отношению друг к другу до канала ускорения с помощью твердого или жидкого изоляционного материала. Техническим результатом является сочетание возможности обеспечения высокой достижимой энергии частиц и компактной конструкции ускорителя при погружении источника частиц в твердый или жидкий изоляционный материал. 2 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к каскадному ускорителю с двумя наборами конденсаторов, соответственно соединенных последовательно, включенных через диоды по типу Greinacher-каскада. Оно относится также к прибору лучевой терапии с подобным каскадным ускорителем.

В медицинской лучевой терапии применяется ионизирующее излучение, чтобы лечить заболевания или замедлять их развитие. В качестве ионизирующих, высокоэнергетичных лучей предпочтительно применяют гамма-излучение, рентгеновское излучение и электроны.

Для генерации электронного луча либо для непосредственного терапевтического использования, либо для формирования рентгеновского излучения, обычно применяют ускорители частиц. В ускорителях частиц заряженные частицы посредством электрических полей доводятся до высоких скоростей и тем самым кинетических энергий, причем электрические поля в некоторых типах ускорителей возникают посредством электромагнитной индукции в переменных магнитных полях. При этом частицы достигают энергии движения, которая соответствует многократному значению их собственной энергии покоя.

В случае ускорителей частиц проводится различие между ускорителями частиц с циклическим ускорением, как, например, бетатронами и циклотронами и ускорителями с прямолинейным ускорением. Последние обеспечивают возможность более компактной конструкции и включают в себя так называемые каскадные ускорители (также ускорители Кокрофта-Уолтона), в которых посредством Greinacher-схемы (схемы Грейнахера), которая включается многократно друг за другом (каскадируется), за счет умножения и выпрямления переменного напряжения, может вырабатываться высокое постоянное напряжение и тем самым сильное электрическое поле.

Способ функционирования Greinacher-схемы базируется при этом на конфигурации диодов и конденсаторов. Отрицательная полуволна источника переменного напряжения заряжает через первый диод первый конденсатор до напряжения источника переменного напряжения. Затем, при следующей за этим положительной полуволне, напряжение первого конденсатора суммируется с напряжением источника переменного напряжения, так что второй конденсатор через второй диод теперь заряжается до удвоенного выходного напряжения источника переменного напряжения. За счет многократного каскадирования по типу Greinacher-каскада, таким образом, получают умножитель напряжения. При этом первые конденсаторы образуют первый набор непосредственно последовательно включенных конденсаторов каскада, а соответствующие вторые конденсаторы - соответствующий второй набор. Диоды образуют поперечное соединение между наборами.

В подобном каскадном ускорителе является возможным достичь сравнительно высоких энергий частиц в диапазоне мегаэлектронвольт. Однако при этом существует, особенно в случае установленных при нормальном воздушном давлении каскадных ускорителей, опасность электрических пробоев (напряжение пробоя в воздухе: 3 кВ/мм), из-за чего максимальная энергия частиц ограничивается нежелательным образом.

Поэтому в основе изобретения лежит задача создать каскадный ускоритель, который при компактной конструкции имеет особенно высокую достижимую энергию частиц.

Эта задача, в соответствии с изобретением, решается каскадным ускорителем с образованным посредством отверстий в электродах конденсаторов набора каналом ускорения, направленным на размещенный в области электрода с наивысшим напряжением источник частиц, причем электроды конденсаторов изолированы по отношению друг к другу до канала ускорения с помощью твердого или жидкого изоляционного материала.

При этом изобретение исходит из идеи, что повышение энергии генерируемого луча частиц каскадного ускорителя было бы возможно за счет повышения напряжения ускорения. Чтобы при этом минимизировать возникающую опасность электрического пробоя, можно было бы увеличить расстояние между отдельными пластинами конденсаторов каскадного ускорителя. Вообще это противоречило бы принципу компактности конструкции, которая как раз желательна для возможности использования в медицинской области. Чтобы обеспечить возможность повышения напряжения ускорения при одновременном обеспечении компактности конструкции, конденсаторы следовало бы защитить иным образом от электрических пробоев. Для этого следовало бы применить соответствующие жидкие или твердые изоляторы, которые обеспечивают возможность надежной изоляции пластин конденсаторов. Это может быть достигнуто тем, что промежутки между электродами до канала ускорения заполнены твердым или жидким изоляционным материалом.

Возникающие в каскадном ускорителе высокие напряжения должны предохраняться от электрических пробоев, наряду с соответствующей толщиной изоляции, также за счет соответствующего выполнения геометрии. Поэтому формирование напряжения и ускоритель частиц должны быть интегрированы, и конструктивные элементы с особенно высоким напряжением должны размещаться внутри по возможности минимального объема. Так как максимальная электрическая напряженность поля пропорциональна кривизне электродов, особенно предпочтительна сферическая или эллипсоидальная геометрия. В особенности, сферическая геометрия означает, в отношении максимально возможной электрической напряженности поля внутри изолятора, особенно малый объем и, следовательно, особенно малую массу. В общем случае, в определенных конструктивных формах может быть желательна деформация в эллипсоид. Поэтому предпочтительным образом множество электродов выполнены как концентричные, расположенные вокруг источника частиц на расстоянии друг от друга полые эллипсоидальные сегменты.

Особенно простая конструкция, которая соединяет преимущества эллипсоидной геометрии с простым формированием напряжения внутри Greinacher-каскада, возможна за счет того, что выполненные как полые эллипсоидальные сегменты электроды являются соответствующими полыми полуэллипсоидами, то есть осуществляется разделение по экватору соответствующего полого эллипсоида, так что возникающее, таким образом, множество слоев полых полуэллипсоидов образует оба набора конденсаторов, которые необходимы для Greinacher-каскада. Канал ускорения проходит тогда предпочтительным образом через наивысшую точку (вершину) полого полуэллипсоида, за счет чего достигается особенно простая геометрия.

В другом предпочтительном выполнении соответствующие диоды размещены в области большого круга соответствующего полого полуэллипсоида. Если именно полые полуэллипсоиды образуют, соответственно, оба набора соединенных последовательно конденсаторов, то диоды соединяют соответствующие полые полуэллипсоиды на чередующихся полусферах. Диоды могут тогда, в целях особенно простой конструкции, размещаться внутри экваториального сечения.

Чтобы достичь особенно высокой стабильности каскадного ускорителя по отношению к пробоям, должен предусматриваться равномерный градиент напряжения вдоль участка ускорения, то есть между отдельными электродами Greinacher-каскада. Это достигается тем, что множество электродов размещены с эквидистантным разнесением относительно друг друга. Так как электроды каждого набора имеют линейное нарастание напряжения, тем самым вдоль канала ускорения получается практически линейное нарастание напряжения.

В другом предпочтительном выполнении источником частиц является холодный катод. Электроды холодного катода не нагреваются и остаются холодными в процессе работы, так что термоэлектронной эмиссии в них не происходит. За счет этого возможна особенно простая конструкция каскадного ускорителя.

Канал ускорения позволяет извлекать поток частиц из каскадного ускорителя. Для того чтобы канал ускорителя выдерживал тангенциальные электрические поля без пробоя, канал ускорения должен содержать стенку цилиндрической формы, которая покрыта алмазоподобным углеродом и/или окисленным алмазом. Эти материалы в состоянии выдерживать такие сравнительно высокие напряжения.

Предпочтительным образом, подобный каскадный ускоритель используется в приборе лучевой терапии.

Достигаемые с помощью изобретения преимущества состоят, в особенности, в том, что в случае каскадного ускорителя на основе Greinacher-каскада, за счет погружения источника частиц и/или электродов в твердый или жидкий изоляционный материал может формироваться особенно высокое напряжение ускорения для ускорения заряженных частиц. При выполнении электродов сферической или эллипсоидной геометрии, кроме того, возможна особенно компактная конструкция, и два набора конденсаторов Greinacher-схемы дополнительно используются как концентрические электроды уравновешивания потенциала для электрического распределения поля вокруг источника частиц и электрода высокого напряжения. Подобный каскадный ускоритель обеспечивает возможность особенно высокого напряжения при особенно компактной конструкции, что, в частности, желательно в медицинских применениях.

Пример выполнения изобретения далее поясняется более подробно со ссылками на чертежи, на которых показано следующее:

фиг.1 - схематичное представление сечения каскадного ускорителя,

фиг.2 - схематичное представление Greinacher-схемы.

Одинаковые части на обоих чертежах обозначены одинаковыми ссылочными позициями.

Каскадный генератор 1 по фиг.1 имеет первый набор 2, а также второй набор 4 полых полусферических электродов. Они размещены концентрично вокруг источника 6 частиц.

Через второй набор электродов 4 ведет канал 8 ускорителя, который направлен на источник 6 частиц и обеспечивает возможность извлечения потока 10 частиц, который исходит от источника 6 частиц и от которого полый сферический электрод 12 получает высокое напряжение ускорения.

Чтобы внутри предотвратить пробои высокого напряжения от электрода 12 высокого напряжения на источник 6 частиц, источник 6 частиц может быть полностью погружен в твердый или жидкий изоляционный материал 14, так что пространство между электродом 12 высокого напряжения и источником 6 частиц до канала 8 ускорения заполнено изолирующим материалом 14. Тем самым могут прикладываться особенно высокие напряжения к электроду 12 высокого напряжения, что приводит к особенно высокой энергии частиц. К тому же электроды или конденсаторные пластины электродов по отношению друг к другу по существу до канала 8 ускорения могут быть изолированы посредством твердого или жидкого изоляционного материала 14.

Формирование высокого напряжения на электроде 12 высокого напряжения осуществляется посредством Greinacher-каскада 20, который изображен на фиг.2 в виде схемы. На входе 22 приложено переменное напряжение U. Первая полуволна заряжает через диод 24 конденсатор 26 до напряжения U. При следующей за ней полуволне переменного напряжения напряжение U от конденсатора 26 суммируется с напряжением U на входе 22, так что конденсатор 28 через диод 30 теперь заряжается до напряжения 2U.

Этот процесс повторяется для последующих диодов и конденсаторов, так что в показанной на фиг.2 схеме на выходе 32 в целом достигается напряжение 6U. Фиг.2 также четко показывает, как с помощью представленной схемы образуется, соответственно, первый набор 2 конденсаторов и второй набор 4 конденсаторов.

Связанные друг с другом на фиг.2 электроды двух конденсаторов в каскадном ускорителе 1 по фиг.1 выполнены, соответственно, концентрично как полые полусферические оболочки. При этом к самым внешним оболочкам 40, 42 приложено, соответственно, напряжение U источника 22 напряжения. Диоды для образования схемы размещены в области большого круга соответствующей полой полусферы, то есть в экваториальном сечении соответствующих полых сфер.

Сферический конденсатор с внутренним радиусом r0 и внешним радиусом r1 имеет емкость:

Тогда напряженность поля при радиусе r равна:

Эта напряженность поля квадратично зависит от радиуса и сильно увеличивается в направлении к внутреннему электроду.

За счет того, что в каскадном ускорителе 1 электроды конденсаторов Greinacher-каскада 20 в качестве промежуточных электродов вставлены на точно определенном потенциале, распределение напряженности поля по радиусу приводится к линейному, так как для тонкостенных сфер электрическая напряженность поля примерно эквивалентна плоскому случаю:

с минимальным значением максимальной напряженности поля.

За счет дополнительного использования двух наборов 2, 4 конденсаторов Greinacher-каскада 20 в виде концентричных электродов уравновешивания потенциала для электрического распределения поля в по существу полностью инкапсулированном в твердом или жидком изоляционном материале 14 электроде 2 высокого напряжения и источнике 6 частиц реализуется особенно высокое напряжение ускорения в каскадном ускорителе 1. Одновременно конструкция является очень компактной, что обеспечивает возможность разнообразных применений, в особенности, в лучевой терапии.

Перечень ссылочных позиций:

1 каскадный генератор

2 первый набор

4 второй набор

6 источник частиц

8 канал ускорения

10 поток частиц

12 электрод высокого напряжения

14 изоляционный материал

20 Greinacher-каскад

22 источник напряжения

24 диод

26, 28 конденсатор

30 диод

32 выход

40, 42 самые внешние оболочки

r0 внутренний радиус сферического конденсатора

r1 внешний радиус сферического конденсатора

U напряжение.


КАСКАДНЫЙ УСКОРИТЕЛЬ
КАСКАДНЫЙ УСКОРИТЕЛЬ
Источник поступления информации: Роспатент

Showing 211-220 of 1,429 items.
20.05.2014
№216.012.c746

Газотурбинный двигатель

Изобретение относится к газотурбинным двигателям. Устройство горения газотурбинного двигателя содержит воздухоприемник, первое измерительное устройство для измерения количества газа в воздухоприемнике, по меньшей мере одну камеру сгорания, множество линий подачи топлива в камеру сгорания,...
Тип: Изобретение
Номер охранного документа: 0002516773
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c822

Способ стабилизации сетевой частоты электрической сети электропитания

Изобретение относится к способу стабилизации сетевой частоты электрической сети электропитания. Двухвальная газовая турбина содержит мощную турбину и газогенератор, причем мощная турбина посредством первого вала соединена с первым генератором с возможностью передачи крутящего момента. Также...
Тип: Изобретение
Номер охранного документа: 0002517000
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c827

Турбинная или компрессорная лопатка

Лопатка для турбины или компрессора содержит перо и хвостовик. Перо лопатки изготовлено из согнутой слоистой полосы из армированной волокном пластмассы, в которой в зоне фальца образована удерживающая петля, причем из лежащих друг на друге концов полосы сформирована поверхность лопатки....
Тип: Изобретение
Номер охранного документа: 0002517005
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c918

Пневматическая флотационная машина и способ флотации

Группа изобретений относится к способам флотации с применением пневматических флотационных машин, может быть использована для обогащения полезных ископаемых и при переработке предпочтительно минеральных веществ с содержанием от низкого до среднего полезного компонента или соответственно ценного...
Тип: Изобретение
Номер охранного документа: 0002517246
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c9c2

Способ определения массового расхода всасывания газовой турбины

Группа изобретений относится к определению массового расхода всасывания газовой турбины. Технический результат заключается в определении массового расхода всасывания, что обеспечивает возможность надежного прогноза ожидаемого выигрыша по мощности. Для этого предложен способ определения...
Тип: Изобретение
Номер охранного документа: 0002517416
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cc79

Система воздушной контактной сети

Изобретение касается системы воздушной контактной сети, включающей в себя потолочные контактные рельсы (1, 16), каждый из которых в своей центральной области посредством неподвижной точки зафиксирован на строительном сооружении (14), а кроме того, соединен со строительным сооружением (14) через...
Тип: Изобретение
Номер охранного документа: 0002518116
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.ce00

Короткозамкнутый ротор

Изобретение относится к короткозамкнутому ротору для асинхронного электродвигателя. Технический результат заключается в повышении электрического коэффициента полезного действия состоящего из двух материалов короткозамкнутого ротора. Ротор содержит листовой пакет (1) ротора с канавками (3), на...
Тип: Изобретение
Номер охранного документа: 0002518507
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.ced6

Устройство для определения углового положения поворотной направляющей лопатки компрессора

Изобретение касается устройства для определения углового положения установленной в компрессоре поворотной вокруг своей продольной оси направляющей лопатки компрессора, для которой предусмотрена синхронно вращающаяся с ней гладкая измерительная поверхность. Угловое положение вращающейся вокруг...
Тип: Изобретение
Номер охранного документа: 0002518721
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cee3

Уплотнение вала для турбомашины

Изобретение относится к уплотнению вала для турбомашины. Уплотнение вала для турбомашины содержит нагружаемое технологическим газом и запираемое со стороны процесса уплотнение технологического газа и нагружаемое воздухом и запираемое со стороны атмосферы атмосферное уплотнение. Вокруг вала...
Тип: Изобретение
Номер охранного документа: 0002518734
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cef2

Секция ротора для ротора турбомашины

Секция ротора турбомашины содержит крепежные пазы для рабочих лопаток, распространяющиеся в осевом направлении. В каждом крепежном пазу установлена рабочая лопатка, включающая обращенную радиально внутрь контактную поверхность. Для пропускания охлаждающего средства по торцевой поверхности...
Тип: Изобретение
Номер охранного документа: 0002518749
Дата охранного документа: 10.06.2014
Showing 211-220 of 948 items.
27.04.2014
№216.012.be28

Электрическая машина с контролем функции заземления и способ

Изобретение относится к области электрических машин Качество заземления электрической машины должно контролироваться более эффективно. Поэтому предложена электрическая машина, содержащая статор (1), ротор (2), вал (3), на котором закреплен ротор (2), и устройство (5) заземления для заземления...
Тип: Изобретение
Номер охранного документа: 0002514420
Дата охранного документа: 27.04.2014
10.05.2014
№216.012.bf59

Модуль выпрямителя тока с охлаждаемой системой шин

Изобретение относится к модулю выпрямителя тока. Технический результат - создание модуля выпрямителя тока, система шин которого может охлаждаться простыми средствами без дополнительной трассировки и увеличения веса устройства в целом. Достигается тем, что модуль выпрямителя тока содержит, по...
Тип: Изобретение
Номер охранного документа: 0002514734
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.bf5a

Способ эксплуатации электродуговой печи, устройство управления и/или регулирования для электродуговой печи и электродуговая печь

Изобретение относится к электродуговой печи, устройству управления и/или регулирования и к способу эксплуатации электродуговой печи. С помощью по меньшей мере одного электрода формируется электрическая дуга для расплавления металла, причем электрическая дуга, ассоциированная с по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002514735
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.bfd0

Система сборных шин с первым и вторым проводом расщепленной фазы

Изобретение относится к системе сборных шин. Система сборных шин имеет участок (3) сборных шин. Участок (3) сборных шин проходит вдоль продольной оси (2) и окружен закрытым корпусом (1). Участок сборных шин имеет первый и второй провода (4, 5, 6) расщепленной фазы. Между проводами (4, 5, 6)...
Тип: Изобретение
Номер охранного документа: 0002514853
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.bfd3

Реактивное балластное устройство

Изобретение относится к электротехнике и может быть использовано для установки дополнительной реактивности трансформатора электродуговой печи. Технический результат состоит в упрощении и повышении точности установки реактивности. Реактивное балластное устройство (V) для электродуговой печи...
Тип: Изобретение
Номер охранного документа: 0002514856
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c055

Тормозная система рельсового транспортного средства

Изобретение относится к области транспортного машиностроения, в частности к тормозным системам рельсовых транспортных средств. Тормозная система включает электрическое тормозное устройство и устройство экстренного торможения. Электрическое тормозное устройство снабжено электронным управлением...
Тип: Изобретение
Номер охранного документа: 0002514986
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c30d

Элемент теплозащитного экрана

Элемент (1) теплозащитного экрана имеет большое число соседних с несущей конструкцией (16) элементов теплозащитного экрана и имеет горячую сторону (9) и холодную сторону (4), а также образующую горячую сторону плиту (10) теплозащитного экрана и образующую холодную сторону несущую плиту (5)....
Тип: Изобретение
Номер охранного документа: 0002515692
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c312

Газовая турбина с уплотнительными пластинами на турбинном диске

Ротор турбины содержит некоторое число рабочих лопаток. Лопатки размещены на соответствующем турбинном диске и скомбинированы соответственно в ряды рабочих лопаток. Турбинный диск на своих боковых поверхностях имеет некоторое число уплотнительных пластин в форме участков кругового кольца....
Тип: Изобретение
Номер охранного документа: 0002515697
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c3be

Сотовое уплотнение и способ его изготовления

Изобретение относится к сотовому уплотнению, используемому для снижения до минимума утечек газа внутри двигателя, в частности, между статором и ротором турбин. Уплотнение для отделения вращающейся части от статора в реактивном двигателе или газотурбинном двигателе содержит сотовый элемент и...
Тип: Изобретение
Номер охранного документа: 0002515869
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c456

Монокристаллическая сварка направленно упрочненных материалов

Изобретение относится к способу лазерной наплавки направленно упрочненного металлического материала. Осуществляют подачу порошка на поверхность подложки (4) конструктивного элемента (1, 120, 130) из упрочненного металлического материала, имеющего дендриты (31), ориентированные в направлении...
Тип: Изобретение
Номер охранного документа: 0002516021
Дата охранного документа: 20.05.2014
+ добавить свой РИД