×
20.10.2014
216.012.ff58

Результат интеллектуальной деятельности: ЭЛЕКТРОДВИГАТЕЛЬ И СВЯЗАННАЯ С НИМ СИСТЕМА ДЛЯ РАЗМЕЩЕНИЯ В СРЕДЕ НА ЗАБОЕ СКВАЖИНЫ (ВАРИАНТЫ)

Вид РИД

Изобретение

№ охранного документа
0002531224
Дата охранного документа
20.10.2014
Аннотация: Предложенная группа изобретений относится к нефтедобывающей технике, в частности к средствам управления скважинной насосной установкой. Техническим результатом является повышение надежности работы насосной установки в скважинах малого диаметра. В одном из вариантов выполнения электродвигатель включает в себя комплект, по меньшей мере, из трех магнитов, включающих в себя два внешних магнита и внутренний магнит, расположенный между двумя внешними магнитами, имеющими внутренние поверхности с одинаковыми полюсами и внешние поверхности с одинаковыми полюсами. При этом источник переменного тока выполнен для изменения полярности одного из внутреннего и двух внешних магнитов, обеспечивая при этом возвратно-поступательное перемещение внутреннего или двух внешних магнитов и подачу выходной мощности в виде линейного перемещения для привода действующего эксплуатационного устройства. В другом варианте два смежных стационарных магнита и, по меньшей мере, один подвижный магнит являются примыкающими друг к другу. Источник переменного тока подключен к магнитам так, что меняется полярность одного из подвижных и стационарных магнитов, при этом обеспечивая подачу выходной мощности в виде возвратно-поступательного линейного перемещения для привода действующего эксплуатационного устройства. Предложены также варианты выполнения скважинной системы перекачки для механизированной добычи, содержащей эксплуатационный насос и указанный выше электродвигатель. 4 н. и 20 з.п. ф-лы, 8 ил.

Область техники изобретения

Настоящее изобретение относится к области разработки нефтепромыслов, более конкретно, к двигателям, подающим выходную мощность на оборудование эксплуатации в скважине, такое, например, как насосы, муфты, клапаны или другие механизмы. Изобретения, описанные в данном документе, могут быть особенно полезны для практического применения для скважин малого диаметра.

Предпосылки создания изобретения

Механизированную добычу в скважинах можно осуществлять с использованием забойных электродвигателей, преобразующих вращение в прямолинейное перемещение, или с использованием наземных штанговых глубинных насосов. В электродвигателях обычно используются магнитные силы для создания вращения, которое затем преобразуется в прямолинейное перемещение для подачи мощности на действующее эксплуатационное устройство, такое как насос или другое механическое устройство. Для преобразования вращения в прямолинейное перемещение используют подверженные отказам механизмы и сложные подвижные части, привносящие в систему недостатки, заключающиеся в потере кпд и/или надежности. Данное преобразование вращения в прямолинейное перемещение также непрактично для вариантов применения в скважинах малого диаметра, где ограничение пространства ограничивает габариты двигателя и его выходную мощность. Сегодняшние способы механизированной добычи без вращения, такие как штанговыми глубинными насосами, имеют недостатки в том, что требуют наземных двигателей и протяженной колонны штанг для соединения источника мощности с забойным линейным насосом. Данные способы не являются целесообразным решением в областях, где наземное пространство высоко ценится.

Сущность изобретения

Настоящим изобретением созданы усовершенствованные конфигурации электродвигателя для размещения в среде на забое скважины. В уникальных конфигурациях использовано линейное перемещение комплекта установленных в одну линию магнитов, включающего в себя один или несколько подвижных магнитов в комбинации с одним или несколькими стационарными магнитами. При этом предпочтительно создается чувствительная линейная выходная мощность с занятием относительно небольшого кольцевого пространства в скважине. Данная технология, таким образом, является особенно подходящей для использования в стволах скважин малого диаметра, где другие способы механизированной добычи трудно реализовать.

В одном варианте две группы магнитов являются чередующимися и имеют противостоящие поверхности. Реверсирование полярности одной из групп магнитов обуславливает возвратно-поступательное перемещение подвижного магнита (магнитов) и создает выходную мощность в виде линейного перемещения для привода упомянутого эксплуатационного устройства. В другом варианте группы магнитов установлены в одну линию, примыкающими друг к другу, и подвижный магнит (магниты) является подвижным вдоль оси между первым положением вблизи внешнего конца одного из стационарных магнитов и вторым положением вблизи внешнего конца другого из стационарных магнитов. Реверсирование полярности одной из групп магнитов обуславливает возвратно-поступательное перемещение подвижного магнита (магнитов) и создает выходную мощность в виде линейного перемещения для привода эксплуатационного устройства. Магниты могут, например, иметь форму диска или стержневую форму.

В целом, один вариант электродвигателя включает в себя корпус, содержащий комплект магнитов. Комплект включает в себя, по меньшей мере, три магнита, включающие в себя два внешних магнита и внутренний магнит, расположенный между двумя внешними магнитами. Два внешних магнита имеют внутренние поверхности с одинаковыми полюсами и внешние поверхности с одинаковыми полюсами. Один из внутреннего магнита и двух внешних магнитов является стационарным, а другой является подвижным. Один из внутреннего магнита и двух внешних магнитов, являющийся подвижным, перемещается между первым положением, в котором внутренний магнит размещен вблизи одного из внешних двух магнитов, и вторым положением, в котором внутренний магнит размещен вблизи другого из двух внешних магнитов. Один из внутреннего магнита и двух внешних магнитов, являющийся подвижным, имеет конфигурацию для соединения с действующим эксплуатационным устройством. Источник переменного тока подключен к комплекту магнитов так, что изменяет полярность одного из внутреннего магнита и двух внешних магнитов, обеспечивая возвратно-поступательное перемещение одного из внутренних магнитов и двух внешних магнитов между первым и вторым положениями, и подачу выходной мощности в виде возвратно-поступательного линейного перемещения для привода действующего эксплуатационного устройства.

Другой вариант электродвигателя включает в себя корпус, содержащий множество установленных в одну линию магнитов. Множество магнитов включает в себя, по меньшей мере, два примыкающих, установленных по оси стационарных магнита, с внешними концами, имеющими одинаковую полярность, и внутренними концами, имеющими одинаковую полярность. Множество магнитов также включает в себя, по меньшей мере, один подвижный магнит, примыкающий к стационарному магниту или, конкретнее, в нем. Подвижный магнит является подвижным вдоль оси между первым положением вблизи внешнего конца одного из стационарных магнитов и вторым положением вблизи внешнего конца другого стационарного магнита. Подвижный магнит выполнен для соединения с действующим эксплуатационным устройством в скважине. Источник переменного тока подключен к множеству магнитов для изменения полярности одного из подвижных и стационарных магнитов, обеспечивая возвратно-поступательное перемещение подвижного магнита между первым и вторым положениями, и подачу выходной мощности в виде возвратно-поступательного линейного перемещения для привода действующего эксплуатационного устройства.

Также созданы скважинные системы перекачки для механизированной добычи. Системы включают в себя эксплуатационный насос, расположенный в окружающей среде на забое скважины, и электродвигатель, соединенный с эксплуатационным насосом и действующий для подачи выходной мощности возвратно-поступательного линейного перемещения для привода эксплуатационного насоса. Конфигурация электродвигателя может соответствовать любому из двух примеров, описанных выше. Контроллер предназначен для управления электродвигателем посредством селективного питания переменным током электродвигателя и подачи выходной мощности в виде возвратно-поступательного линейного перемещения для привода действующего эксплуатационного устройства.

Краткое описание чертежей

Лучший вариант изобретения описан ниже в данном документе со ссылкой на прилагаемые чертежи, на которых изображено следующее:

на фиг.1 показана скважинная перекачивающая система согласно одному варианту настоящего изобретения,

на фиг.2 показан один вариант электродвигателя согласно настоящему изобретению для размещения в среде на забое скважины, в котором два подвижных внутренних магнита установлены в первом положении,

на фиг.3 показан вариант фиг.2 с внутренними магнитами, установленными во втором положении,

на фиг.4 показан другой вариант электродвигателя согласно настоящему изобретению, в котором магниты комплекта имеют форму диска,

на фиг.5 показан другой вариант электродвигателя согласно настоящему изобретению, в котором магниты комплекта имеют стержневую форму,

на фиг.6 показан другой вариант электродвигателя согласно настоящему изобретению, где подвижный магнит перемещен в первое положение вблизи внешнего конца одного из двух примыкающих, установленных по оси стационарных магнитов,

на фиг.7 показан вариант фиг.6, в котором подвижный магнит установлен во второе положение вблизи внешнего конца другого из двух примыкающих, установленных по оси стационарных магнитов,

на фиг.8 показан вариант фиг.2, в котором два внутренних подвижных магнита соединены с пружиной.

Подробное описание чертежей

В следующем описании некоторые термины использованы для сокращения, ясности и понимания. Описание не накладывает ненужных ограничений за пределами требований известного уровня техники, поскольку такие термины использованы только для целей описания и предназначены для широкого толкования. Различные конфигурации, описанные в данном документе, можно использовать индивидуально или в объединении с другими конфигурациями и системами. Различные эквиваленты, альтернативы и модификации являются возможными в объеме прилагаемой формулы изобретения.

На фиг.1 показана скважина 11, проходящая от поверхности 14 под землю или в среду на забое скважины в коллекторе 12. Скважина 11 может иметь любую длину и в предпочтительном примере применения является скважиной малого диаметра. В показанном варианте скважина 11 является вертикальной, но может проходить наклонно или горизонтально к поверхности 14.

На фиг.1 также показан вариант системы 10 согласно настоящему изобретению. Система 10 включает в себя контроллер 16, электродвигатель 18 и связанное с ним действующее эксплуатационное устройство 20. Контроллер 16 предпочтительно включает в себя запоминающее устройство и программу, которую может исполнять для управления работой электродвигателя 18, например, управляя источником 17 питания для селективного питания переменным током электродвигателя 18 для подачи выходной мощности в виде возвратно-поступательного линейного перемещения на действующее эксплуатационное устройство 20, как описано дополнительно в данном документе ниже. В показанном варианте контроллер 16 размещен на поверхности 14 и подключен к источнику питания 17 и электродвигателю 18 проводными или беспроводными линиями 19, 21. Данное устройство предпочтительно требует минимальной рабочей площади на поверхности. В других вариантах контроллер 16 может быть прикреплен непосредственно к электродвигателю 18 или, например, к другому относящемуся к нему действующему оборудованию. Электродвигатель 18 соединен с действующим эксплуатационным устройством 20 и предназначен для создания выходной мощности в виде возвратно-поступательного перемещения для действующего эксплуатационного устройства 20. В показанном варианте, действующее эксплуатационное устройство 20 является насосом, таким как поршневой насос или диафрагменный, или сильфонный насос, вместе с тем оно может представлять собой любое другое забойное механическое устройство, способное к приему приводной мощности от электродвигателя 18.

На фиг.2 показан один вариант электродвигателя 18 согласно настоящему изобретению. В данном варианте электродвигатель 18a включает в себя корпус 32, содержащий комплект магнитов 23, установленных вдоль осевого направления A. Корпус 32 служит механической опорой для комплекта магнитов 23 и путем магнитного потока, как описано в данном документе ниже. Комплект магнитов 23 включает в себя первую группу магнитов, т.е. "внешние магниты" 26a, 26b и 26c, и вторую группу магнитов "внутренние магниты" 28a, 28b, размещенные между первой группой магнитов 26a-26c в чередующейся конфигурации. Поверхности магнитов 26a, 26b и 26c установлены в одну линию так, что полюса не все одинаково ориентированы в осевом направлении. Вместо этого полюса на противостоящих поверхностях двух магнитов 26a, 26b оба являются южными, и полюса на соответствующих противоположных поверхностях магнитов 26a, 26b оба являются северными. Аналогично, полюса на противостоящих поверхностях двух магнитов 26b, 26c оба являются северными, и полюса на соответствующих противоположных поверхностях магнитов 26b, 26c оба являются южными. Поверхности магнитов 28a, 28b также установлены в одну линию с неодинаковой ориентацией полюсов в осевом направлении. Полюса на противостоящих поверхностях магнитов 28a, 28b оба являются северными, а полюса на противоположных поверхностях магнитов 28a, 28b оба являются южными. Магнит 28a установлен в одну линию так, что притягивается к одной из противостоящих поверхностей двух магнитов 26a, 26b и отталкивается от другой. Магнит 28b установлен в одну линию так, что притягивается к одной из противостоящих поверхностей двух магнитов 26b, 26c и отталкивается от другой. Предпочтительно, магниты 26a-26c и 28a, 28b являются электромагнитами; вместе с тем можно использовать другие типы магнитов.

В показанном варианте магниты 26a-26c являются стационарными магнитами, а магниты 28a, 28b являются подвижными магнитами. Внешние магниты 26a-26c неподвижно закреплены относительно корпуса 32 и, следовательно, остаются стационарными относительно корпуса 32. В отличие от них, внутренние магниты 28a, 28b являются подвижными в осевом направлении A относительно внешних магнитов 26a-26c между первым и вторым положениями, показанным на фиг.2 и 3, соответственно. Необходимо только, чтобы одна из групп магнитов 28a, 28b или 26a-26c осталось стационарной, тогда как другая являлась подвижной между первым и вторым положениями, показанными на фиг.2 и 3, соответственно. Другими словами, внешние магниты 26a-26c могут быть подвижными, при этом внутренние магниты 28a, 28b могут оставаться стационарными. Возможно также сконструировать электродвигатель 18с меньшим или большим числом магнитов в каждой группе. Например, корпус 32 может содержать комплект магнитов, включающий в себя только два внешних магнита, например 26a, 26b, и внутренний магнит, например 28a, расположенный между двумя внешними магнитами, при этом два внешних магнита имеют противостоящие поверхности с одинаковыми полюсами и противоположные поверхности с одинаковыми полюсами. В данном варианте любая из двух групп магнитов может являться как подвижной, так и соединенной с устройством 20, при этом другая остается стационарной.

В показанном варианте подвижный магнит 28а соединен с подвижным магнитом 28b соединительным штоком 30b. Другой соединительный шток 30а соединяет подвижный магнит 28a и подвижный магнит 28b с действующим эксплуатационным устройством 20 (схематично показано пунктирными линиями) так, что перемещение магнитов 28a, 28b передается на действующее эксплуатационное устройство 20. Также оборудован другой соединительный шток 30c и, если необходимо, разъемно соединен с другим комплектом магнитов 31 (схематично показано пунктирными линиями) для увеличения или уменьшения полезной мощности электродвигателя 18. В данном уникальном модульном образце величину выходной мощности в виде линейного перемещения, подаваемой на устройство 20, можно легко увеличивать добавлением дополнительного комплекта магнитов 31 к электродвигателю 18a в многоярусном образовании и легко уменьшать удалением дополнительного комплекта магнитов 31 из образования. Три соединительных штока 30a-30c являются отдельными, но могут альтернативно заменяться одним соединительным штоком, проходящим через различные магниты комплекта 23 или вокруг них.

На фиг.8 показан электродвигатель 18a, в котором пружина 34 введена в комплект 23, подвижные магниты 28a, 28b соединены с пружиной 34 соединительным штоком 30c. Пружина 34 установлена в одну линию так, что укорачивается и удлиняется в осевом направлении A. Один конец пружины 34 соединен с соединительным штоком 30c, а другой конец пружины 34 соединен с корпусом 32. Корпус 32 имеет отверстие 33, обеспечивающее перемещение соединительного штока 30c сквозь корпус 32. Пружину можно использовать для увеличения полезной выходной мощности в виде линейного перемещения электродвигателя 18 посредством сглаживания квадратичного отклика, создаваемого, когда подвижные магниты перемещаются к стационарным магнитам или от них. Пружину также можно использовать для предварительного нагружения комплекта магнитов 23 для увеличения выходной мощности в виде линейного перемещения в одном направлении, с уменьшением в другом направлении.

В показанном варианте, источник 17 питания соединен со стационарными внешними магнитами 26a-26c проводной линией 21, предпочтительно с прокладкой через корпус 32, для питания переменным током магнитов 26a-26c, обеспечивающего изменение ориентации полюсов магнитов 26a-26c между ориентацией, в которой противостоящие поверхности магнитов 26a, 26b имеют одинаковые южные полюса и противостоящие поверхности магнитов 26b, 26c имеют одинаковые северные полюса (фиг.2), и ориентацией, в которой противостоящие поверхности магнитов 26a, 26b имеют одинаковые северные полюса и противостоящие поверхности магнитов 26b, 26c имеют одинаковые южные полюса (фиг.3). Изменение полярности магнитов 26a, 26b обуславливает возвратно-поступательное перемещение магнита 28a между указанными первым и вторым положениями, показанными на фиг.2 и 3 соответственно, тогда как изменение полярности магнитов 26b, 26c обуславливает возвратно-поступательное перемещение магнита 28b между упомянутыми первым и вторым положениями. Конкретнее, на фиг.2 показан магнит 28а, переместившийся в первое положение, при этом магнит 28a имеет ориентацию полюсов юг-север в осевом направлении A. Северный полюс магнита 28а притягивается к южному полюсу магнита 26b. Когда ток меняется и ориентация полюсов магнитов 26a, 26b меняется так, что противостоящие поверхности обе являются северными полюсами, северный полюс магнита 28a отталкивается от северного полюса магнита 26b, а южный полюс магнита 28а притягивается к северному полюсу магнита 26a. Таким образом, магнит 28а перемещается из первого положения, показанного на фиг.2 во второе положение, показанное на фиг.3. Когда ток вновь меняется и противостоящие поверхности магнитов 26a, 26b становятся вновь южными полюсами, магнит 28a должен опять перемещаться в первое положение, показанное на фиг.2, где его северный полюс должен притягиваться к южному полюсу магнита 26b, а его южный полюс должен отталкиваться от южного полюса магнита 26a. Аналогичное отталкивание и притяжение возникают между магнитами 26b, 26c, и 28b. Показанный на фиг.2 южный полюс магнита 28b притягивается к северному полюсу магнита 26c. Когда ток меняется и ориентация полюсов магнитов 26b, 26c изменяется так, что противостоящие поверхности обе являются южными полюсами, южный полюс магнита 28b отталкивается от южного полюса магнита 26c, тогда как северный полюс магнита 28b притягивается к южному полюсу магнита 26b. Таким образом, магнит 28b перемещается из первого положения, показанного на фиг.2, во второе положение, показанное на фиг.3. Когда ток вновь меняется и противостоящие поверхности внешних магнитов 26b, 26c вновь становятся северными полюсами, магнит 28b должен опять перемещаться в первое положение, показанное на фиг.2, где его южный полюс должен притягиваться к северному полюсу магнита 26c, тогда как его северный полюс должен отталкиваться от северного полюса магнита 26b.

Создание переменного тока для изменения полярности внешних магнитов 26a-26c создает возвратно-поступательное перемещение внутренних магнитов 28a, 28b между первым положением (фиг.1) и вторым положением (фиг.2) и подачу выходной мощности в виде линейного перемещения на эксплуатационное устройство 20.

В другом варианте источник 17 питания может подключаться к подвижным магнитам 28a, 28b для изменения их полярности, но не полярности стационарных магнитов 26a-26c и обеспечение возвратно-поступательного перемещения магнитов 28a, 28b, описанного выше. Следует понимать, что три магнита 26a-26c могут быть подвижными, тогда как магниты 28a, 28b могут быть стационарными. Полярность как магнитов 28a, 28b, так и магнитов 26a-26c может изменяться в данной конфигурации также для подачи выходной мощности в виде возвратно-поступательного линейного перемещения на действующее эксплуатационное устройство 20.

Также следует понимать, что конфигурация на фиг.2 и 3 показана только в качестве примера, и аналогичное возвратно-поступательное линейное перемещение можно создавать любой комбинацией, по меньшей мере, трех магнитов: двух внешних магнитов и одного внутреннего магнита, расположенного между внешними магнитами, одного из внутренних магнитов и двух внешних магнитов, являющихся стационарными, и других, являющихся подвижными между первым и вторым положениями. Данное изобретение также предполагает комбинации четырех магнитов, пяти магнитов, шести магнитов, и т.д.

Электродвигатели 18a могут иметь различную геометрию, примеры которой показаны на фиг.4 и 5. На фиг.4 показан другой вариант электродвигателя 18a с использованием внешних магнитов 38 в виде дисков и внутренних магнитов 40 в виде дисков. На фиг.5 показан еще один вариант электродвигателя 18a с использованием стержневых внешних магнитов 42 и стержневых внутренних магнитов 44. Как магниты 40 в виде дисков, так и стержневые магниты 44 способны перемещаться между первым и вторым положениями, как показано на фиг.2 и 3, соответственно. Геометрия магнитов может изменяться, как показано на фиг.4 и 5, для различных вариантов применения. Например, стержневые магниты 42, 44 являются особенно полезными для применения в скважинах малого диаметра вследствие малого диаметра магнитов.

На фиг.6 показан другой вариант электродвигателя 18 согласно настоящему изобретению. Конкретно, электродвигатель 18b включает в себя корпус 52, содержащий множество установленных в одну линию магнитов 53, включающих в себя, по меньшей мере, два смежных стационарных магнита 48 и, по меньшей мере, один подвижный магнит 50, расположенный примыкающим к стационарным магнитам 48a, 48b. Стационарные магниты 48a, 48b соединены с корпусом 52 и являются катушками с внешними концами, имеющими одинаковую полярность, и внутренними концами, имеющими одинаковую полярность. В показанном варианте на фиг.6 внешние концы стационарных магнитов 48a, 48b являются южными полюсами, тогда как внутренние концы стационарных магнитов 48a, 48b являются северными полюсами. Подвижный магнит 50 расположен примыкающим к стационарным магнитам 48a, 48b. В показанном варианте подвижный магнит 50 расположен в проходном отверстии 54, образованном стационарными магнитами 48a, 48b. Подвижный магнит 50 соединен с соединительным штоком 60a, 60b каждым из концов. Соединительный шток 60а соединяет подвижный магнит 50 с действующим эксплуатационным устройством 20 таким способом, что перемещение подвижного магнита 50 передается на действующее эксплуатационное устройство 20 (схематично показано пунктирными линиями). Другой соединительный шток 60b, если необходимо, разъемно соединен с другим подвижным магнитом 51 (схематично показан пунктирными линиями) для увеличения или уменьшения выходной мощности в виде линейного возвратно-поступательного перемещения электродвигателя 18b. В данном уникальном модульном образце величину выходной мощности в виде линейного перемещения, подаваемой на устройство 20, можно легко увеличивать добавлением дополнительных множеств установленных в одну линию магнитов 53 с электродвигателем 18b в уложенном ярусами образовании и также можно легко уменьшить удалением множества магнитов 53 из образования. Два соединительных штока 60a, 60b являются раздельными, но могут альтернативно заменяться одним штоком, проходящим через подвижный магнит 50 или вокруг него. Предпочтительно, подвижный магнит 50 является постоянным магнитом, а стационарные магниты 48a, 48b являются электромагнитами, однако, можно использовать другие комбинации постоянных магнитов и электромагнитов.

Подвижный магнит 50 и соединительные штоки 60a, 60b выполнены так, что, по существу, блокируют прохождение любой текучей среды через проходное отверстие 54. Это дает преимущество по сравнению с известными решениями, в которых текучая среда может входить в непосредственный контакт с магнитами в корпусе и магнитами, соединенными со штоком. Текучие среды, перекачиваемые из скважины, часто содержат небольшие куски металла, прилипающие к постоянным магнитам в электродвигателе, и, как следствие, засоряющим электродвигатель. При предотвращении прохода текучей среды через проходное отверстие 54, этого не должно происходить.

В показанном варианте источник 17 питания соединен со стационарными магнитами 48a, 48b проводной линией 21 для создания питания переменным током магнитов 48a, 48b и, обуславливания тем самым изменения ориентации полюсов магнитов 48a, 48b между ориентацией, в которой внутренние концы стационарных магнитов 48a, 48b являются северными полюсами (фиг.6) и ориентацией, в которой внутренние концы стационарных магнитов 48a, 48b являются южными полюсами (фиг.7). Изменение ориентации магнитов 48a, 48b с севера на юг обуславливает возвратно-поступательное перемещение подвижного магнита 50 между первым и вторым положениями, показанными на фиг.6 и 7, соответственно. Конкретно, на фиг.6 показан подвижный магнит 50 в первом положении, где он имеет ориентацию полюсов с севера на юг. Южный полюс подвижного магнита 50 притягивается к южному полюсу стационарного магнита 48b, так, что, если обеспечить продолжение перемещения, южные полюса подвижного магнита 50 и стационарного магнита 48b могут совместиться, и результирующая магнитная сила как на магните 50, так и на магните 48b будет равна нулю. Вместе с тем физическое останавливающее устройство 62 или датчик положения (не показано) предотвращает полное совмещение полюсов подвижного магнита 50 с полюсами стационарного магнита 48b. Когда ток изменяется, и ориентация полюсов стационарных магнитов 48a, 48b изменяется так, что внутренние концы стационарных магнитов 48a, 48b оба являются южными полюсами (фиг.7), подвижный магнит 50 стремится к совмещению своих северного и южного полюсов с северным и южным полюсами стационарного магнита 48a так, что компенсируется результирующая сила либо на магните 50 или 48a. Опять же вместе с тем это предотвращается физическим останавливающим устройством 62 или датчиком положения (не показано). Когда ток опять изменяется для создания ориентации полюсов, показанной на фиг.6, подвижный магнит 50 вновь стремится совместиться со стационарным магнитом 48b. Таким образом, подвижный магнит 50 совершает возвратно-поступательное перемещение между упомянутым первым положением (фиг.6) и упомянутым вторым положением (фиг.7).

В другом примере источник 17 питания соединен с подвижным магнитом 50 проводной линией 21 для изменения полярности подвижного магнита 50 и осуществления, при этом возвратно-поступательного перемещения подвижного магнита 50, как описано выше. Вместе с тем указанное не является предпочтительным, поскольку обеспечение питания подвижного магнита 50 может требовать, возвратно-поступательного перемещения проводной линии 21 вместе с подвижным магнитом 50. Со временем это должно вызывать износ проводной линии 21, вызывая необходимость ремонта электродвигателя 18. Поэтому, предпочтительно, подвижный магнит 50 является постоянным магнитом, что не требует его питания от проводной линии 21.


ЭЛЕКТРОДВИГАТЕЛЬ И СВЯЗАННАЯ С НИМ СИСТЕМА ДЛЯ РАЗМЕЩЕНИЯ В СРЕДЕ НА ЗАБОЕ СКВАЖИНЫ (ВАРИАНТЫ)
ЭЛЕКТРОДВИГАТЕЛЬ И СВЯЗАННАЯ С НИМ СИСТЕМА ДЛЯ РАЗМЕЩЕНИЯ В СРЕДЕ НА ЗАБОЕ СКВАЖИНЫ (ВАРИАНТЫ)
ЭЛЕКТРОДВИГАТЕЛЬ И СВЯЗАННАЯ С НИМ СИСТЕМА ДЛЯ РАЗМЕЩЕНИЯ В СРЕДЕ НА ЗАБОЕ СКВАЖИНЫ (ВАРИАНТЫ)
ЭЛЕКТРОДВИГАТЕЛЬ И СВЯЗАННАЯ С НИМ СИСТЕМА ДЛЯ РАЗМЕЩЕНИЯ В СРЕДЕ НА ЗАБОЕ СКВАЖИНЫ (ВАРИАНТЫ)
ЭЛЕКТРОДВИГАТЕЛЬ И СВЯЗАННАЯ С НИМ СИСТЕМА ДЛЯ РАЗМЕЩЕНИЯ В СРЕДЕ НА ЗАБОЕ СКВАЖИНЫ (ВАРИАНТЫ)
ЭЛЕКТРОДВИГАТЕЛЬ И СВЯЗАННАЯ С НИМ СИСТЕМА ДЛЯ РАЗМЕЩЕНИЯ В СРЕДЕ НА ЗАБОЕ СКВАЖИНЫ (ВАРИАНТЫ)
ЭЛЕКТРОДВИГАТЕЛЬ И СВЯЗАННАЯ С НИМ СИСТЕМА ДЛЯ РАЗМЕЩЕНИЯ В СРЕДЕ НА ЗАБОЕ СКВАЖИНЫ (ВАРИАНТЫ)
ЭЛЕКТРОДВИГАТЕЛЬ И СВЯЗАННАЯ С НИМ СИСТЕМА ДЛЯ РАЗМЕЩЕНИЯ В СРЕДЕ НА ЗАБОЕ СКВАЖИНЫ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Showing 71-80 of 324 items.
10.06.2014
№216.012.d0de

Платформа клапана-регулятора расхода

Группа изобретений относится к горному делу и может быть применена в скважинных клапанных системах. Скважинная система включает в себя насосно-компрессорную трубу, проходящую в изолированную зону скважины, и множество модулей штуцеров, расположенных в изолированной зоне, для управления...
Тип: Изобретение
Номер охранного документа: 0002519241
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d384

Система, устройство и способ для быстрого конфигурирования объемной подачи насосов

Изобретение относится к области насосостроения, в частности к поршневым насосам прямого вытеснения. Система для изменения конфигурации подачи насоса включает смеситель, подающий текучую среду низкого давления в насос. Насос имеет приводную часть и гидравлическую часть, причем гидравлическая...
Тип: Изобретение
Номер охранного документа: 0002519919
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d490

Система и способ оптимизирования добычи в скважине

Изобретение относится к способу оптимизирования эксплуатации скважины. Выбирают интервалы в наклонно-направленном стволе скважины и развертывают колонну испытаний и обработки скважины в стволе скважины. Каждый интервал затем изолируют для обеспечения выполнения необходимых испытаний. Полученные...
Тип: Изобретение
Номер охранного документа: 0002520187
Дата охранного документа: 20.06.2014
10.07.2014
№216.012.dcf2

Порт связи для использования на скважинном измерительном приборе

Группа изобретений относится к скважинному измерительному прибору, который может быть использован в горнодобывающей промышленности, а также к способу изготовления соединительного устройства связи для данного прибора. Прибор содержит кожух, выполненный с возможностью перемещения внутри ствола...
Тип: Изобретение
Номер охранного документа: 0002522340
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.e091

Доставка зернистого материала под землю

Изобретение относится к доставке зернистого материала на участок, расположенный под землей. Скважинный флюид является жидкостью-носителем на водной основе, содержащим первый и второй гидрофобные зернистые материалы - частицы, суспендированные в нем, где первые частицы имеют больший удельный...
Тип: Изобретение
Номер охранного документа: 0002523275
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e0ba

Способ гидравлического разрыва пласта

Представлен способ отклонения закачиваемой рабочей жидкости, содержащей понизитель трения, при гидравлическом разрыве пласта. Способ гидравлического разрыва подземной формации включает закачивание промежуточной жидкости с вязкостью менее чем приблизительно 50 мПа·с при скорости сдвига 100 с при...
Тип: Изобретение
Номер охранного документа: 0002523316
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1d9

Способ и установка для удаления двойной индикации дефектов при контроле труб по дальнему полю вихревых токов

Изобретение относится к измерительной технике. Сущность: устройство обнаружения дальнего поля вихревых токов вводится в цилиндрические трубы и перемещается по ним. Устройство может быть использовано для измерения толщины трубы и содержит излучающую рамку и множество симметрично расположенных...
Тип: Изобретение
Номер охранного документа: 0002523603
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e3b8

Доставка зернистого материала под землю

Изобретение относится к доставке зернистого материала на участок, расположенный под землей. Скважинный флюид включает жидкость-носитель на водной основе и гидрофобный зернистый материал, суспендированный в нем, где гидрофобный зернистый материал имеет объемный медианный размер частиц d не...
Тип: Изобретение
Номер охранного документа: 0002524086
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e3c6

Скважинные системы датчиков и соответствующие способы

Группа изобретений относится к области отбора проб из геологических пластов и анализа при оценивании и испытании пластов. Техническим результатом является усовершенствование скважинных систем датчиков, чтобы сделать системы более гибкими и приспосабливаемыми для скважинных применений. Модуль...
Тип: Изобретение
Номер охранного документа: 0002524100
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e43d

Механизм для активирования множества скважинных устройств

Группа изобретений относится к добыче углеводородов в подземных пластах и, более конкретно, к механизму для активирования множества скважинных устройств в случае, когда необходимо создать множество зон добычи. Способ избирательного активирования механизма приведения в действие на множестве...
Тип: Изобретение
Номер охранного документа: 0002524219
Дата охранного документа: 27.07.2014
Showing 71-80 of 236 items.
20.04.2014
№216.012.bb02

Долото для управляемого направленного бурения, система бурения и способ бурения криволинейных стволов скважин

Изобретение относится к буровому инструменту и может быть использовано при наклонно-направленном бурении скважин. Предложен корпус долота, содержащий задний конец, направляющую секцию и разбуривающую секцию. При этом задний конец выполнен с возможностью разъемного скрепления с бурильной...
Тип: Изобретение
Номер охранного документа: 0002513602
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb85

Компоновка тандемного трактора с гидравлическим приводом

Компоновка тракторов для применения на забое нефтегазоносных скважин с использованием нескольких тракторов одновременно содержит гидравлический привод и может создавать существенное увеличение общей грузоподъемности при выполнении работы забойными тракторами. Таким образом, работы на гибкой...
Тип: Изобретение
Номер охранного документа: 0002513733
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bbd4

Система, способ и считываемый компьютером носитель для вычисления расходов скважин, создаваемых электропогружными насосами

Группа изобретений относится к мониторингу показателей скважин с забойным и устьевым оборудованием. Более конкретно, настоящие изобретения раскрывают систему и способ по определению и вычислению расходов в скважинах, которые создают электропогружные насосы. Обеспечивается повышение...
Тип: Изобретение
Номер охранного документа: 0002513812
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bbd6

Кабельная сборка увеличенной длины для применения в углеводородных скважинах

Изобретение относится к рабочим кабелям для размещения в углеводородных скважинах. Техническим результатом является обеспечение возможности использования кабеля в сверхглубоких скважинах. Предложена кабельная сборка для использования в углеводородной скважине увеличенной глубины, содержащая, по...
Тип: Изобретение
Номер охранного документа: 0002513814
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bbd7

Барьерное уплотнение и узел с данным барьерным уплотнением

Изобретение относится к барьерному уплотнению и оборудованию устья скважины, включающему данное барьерное уплотнение. Оборудование устья скважины содержит выпускную трубу, оснащенную контрольно-измерительным оборудованием колонны, содержащую первый патрубок, образующий уплотняющий профиль,...
Тип: Изобретение
Номер охранного документа: 0002513815
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c0d2

Нейтронный скважинный прибор для измерения пористости с увеличенной точностью и уменьшенными литологическими влияниями

Использование: для измерения пористости. Сущность изобретения заключается в том, что нейтронный скважинный прибор для определения пористости включает источник нейтронов, устройство контроля нейтронов, детектор нейтронов и схему обработки данных. Источник нейтронов может излучать нейтроны в...
Тип: Изобретение
Номер охранного документа: 0002515111
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.ce54

Система и способ коррекции влияния диаметра скважины и ее гидродинамического совершенства при измерениях пористости методом нейтронного каротажа

Использование: для измерения пористости методом нейтронного каротажа. Сущность изобретения заключается в том, что представлены система, способ и прибор для определения значений пористости подземного пласта, скорректированных с учетом влияния скважины. Скважинный прибор, опускаемый в скважину...
Тип: Изобретение
Номер охранного документа: 0002518591
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf62

Способы, установки и изделия промышленного производства для обработки измерений струн, вибрирующих в флюидах

Изобретение относится к области разведочной геологии и может быть использовано для определения различных свойств углеводородных пластовых флюидов. В заявленном изобретении раскрыты примеры способов, установок и изделий промышленного производства для обработки измерений струн, вибрирующих во...
Тип: Изобретение
Номер охранного документа: 0002518861
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf71

Способ определения плотности подземных пластов, используя измерения нейтронного гамма-каротажа

Использование: для определения плотности подземных пластов. Сущность изобретения заключается в том, что определение плотности подземного пласта, окружающего буровую скважину, производят на основании измерения гамма-излучения, возникающего в результате облучения пласта ядерным источником в...
Тип: Изобретение
Номер охранного документа: 0002518876
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d0de

Платформа клапана-регулятора расхода

Группа изобретений относится к горному делу и может быть применена в скважинных клапанных системах. Скважинная система включает в себя насосно-компрессорную трубу, проходящую в изолированную зону скважины, и множество модулей штуцеров, расположенных в изолированной зоне, для управления...
Тип: Изобретение
Номер охранного документа: 0002519241
Дата охранного документа: 10.06.2014
+ добавить свой РИД