×
20.10.2014
216.012.fe9b

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ВЫСОТЫ ПОЛОГО ДРЕВЕСНОГО ЦИЛИНДРИЧЕСКОГО ИЗДЕЛИЯ

Вид РИД

Изобретение

№ охранного документа
0002531035
Дата охранного документа
20.10.2014
Аннотация: Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение стабильности измерения контролируемого параметра. Технический результат достигается тем, что в устройство для определения высоты полого древесного цилиндрического изделия, содержащее генератор электромагнитных колебаний, первый детектор и индикатор, введены элемент ввода электромагнитных колебаний, первый и второй элементы вывода электромагнитных колебаний, второй детектор и коррелятор, причем выход генератора электромагнитных колебаний соединен с элементом ввода электромагнитных колебаний, выход первого элемента вывода электромагнитных колебаний подключен к входу первого детектора, выход второго элемента вывода электромагнитных колебаний соединен с входом второго детектора, выход первого детектора подключен к первому входу коррелятора, выход второго детектора соединен с вторым входом коррелятора, выход которого подключен к индикатору. 1 ил.
Основные результаты: Устройство для определения высоты полого древесного цилиндрического изделия, содержащее генератор электромагнитных колебаний, первый детектор и индикатор, отличающееся тем, что в него введены элемент ввода электромагнитных колебаний, первый и второй элементы вывода электромагнитных колебаний, второй детектор и коррелятор, причем выход генератора электромагнитных колебаний соединен с элементом ввода электромагнитных колебаний, выход первого элемента вывода электромагнитных колебаний подключен к входу первого детектора, выход второго элемента вывода электромагнитных колебаний соединен с входом второго детектора, выход первого детектора подключен к первому входу коррелятора, выход второго детектора соединен с вторым входом коррелятора, выход которого подключен к индикатору.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен резонансный измеритель длины трубы (см. В.А. Викторов и др. «Радиоволновые измерения параметров технологических процессов». Москва, Энергоиздат, 1989, стр.82), в котором контролируемая труба рассматривается как цилиндрический объемный резонатор. У торцов трубы располагаются элементы возбуждения и съема электромагнитных колебаний, а также закорачивающие элементы (при выборе рабочей длины волны немного ниже критической длины волны трубы-волновода необходимость в закорачивающих элементах отпадает). После возбуждения электромагнитных колебаний в трубе-резонаторе измерением одной из его собственных резонансных частот можно определить длину трубы. При этом изменение длины трубы отслеживается изменением измеренной резонансной частотой.

Недостатком этого известного устройства является низкая точность из-за сложности выделения из спектра собственных резонансных частот одну резонансную частоту.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип микроволновый доплеровский измеритель длины движущихся протяженных изделий (см. В.А. Викторов и др. «Радиоволновые измерения параметров технологических процессов». Москва, Энергоиздат, 1989, стр.82). В этом устройстве, содержащем СВЧ-генератор, направленный ответвитель, приемопередающую антенну, фотоэлемент, детектор, усилитель, блок формирования прямоугольных импульсов и счетчик (индикатор), движение контролируемого изделия приводит к появлению сигнала на частоте биения на выходе детектора вследствие фазовых различий между зондирующей и отраженной волнами. Частота биения пропорциональна скорости изделия, одно биение соответствует перемещению на λ/2 (λ - длина волны). Зная моменты начала и окончания счета доплеровских импульсов, определяемые сигналами фотоэлемента, можно определить длину изделия. Недостатком данного способа следует считать нестабильность результата измерения из-за температурных и световых влияний на работу фотоэлемента.

Техническим результатом заявляемого решения является повышение стабильности измерения контролируемого параметра.

Технический результат достигается тем, что в устройство для определения высоты полого древесного цилиндрического изделия, содержащее генератор электромагнитных колебаний, первый детектор и индикатор, введены элемент ввода электромагнитных колебаний, первый и второй элементы вывода электромагнитных колебаний, второй детектор и коррелятор, причем выход генератора электромагнитных колебаний соединен с элементом ввода электромагнитных колебаний, выход первого элемента вывода электромагнитных колебаний подключен к входу первого детектора, выход второго элемента вывода электромагнитных колебаний соединен с входом второго детектора, выход первого детектора подключен к первому входу коррелятора, выход второго детектора соединен с вторым входом коррелятора, выход которого подключен к индикатору.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, измерение времени запаздывания параллельно поляризованной силовым линиям зондирующего электромагнитного поля волны относительно перпендикулярно поляризованной силовым линиям зондирующего электромагнитного поля волны, дает возможность определить высоту полого древесного цилиндрического изделия.

Наличие в заявляемом устройстве совокупности перечисленных существующих признаков позволяет определить высоту полого древесного цилиндрического изделия на основе измерения запаздывания во времени двух ортогонально поляризованных волн в естественно поляризованном древесном изделии с желаемым техническим результатом, т.е. повышением стабильности измерения контролируемого параметра.

На чертеже представлена функциональная схема устройства.

Устройство содержит генератор электромагнитных колебаний 1, соединенный выходом с элементом ввода электромагнитных колебаний 2, первый элемент вывода электромагнитных колебаний 3, подключенный выходом к входу первого детектора 4, коррелятор 5, второй элемент вывода электромагнитных колебаний 6, соединенный выходом с входом второго детектора 7 и индикатор 8. На чертеже цифрой 9 обозначено древесное полое цилиндрическое изделие.

Устройство работает следующим образом. Выходной сигнал генератора электромагнитных колебаний 1 поступает в элемент ввода электромагнитных колебаний 2. С помощью последнего далее сигнал вводится в контролируемое древесное изделие 9.

Как известно, древесина является анизотропным материалом, то есть материалом с неодинаковыми свойствами по направлениям волокон. В силу этого зондирование такого материала электромагнитными волнами обуславливает в древесном материале поляризацию волн, то есть возникновение в нем двух ортогонально поляризованных волн.

Пусть у рассматриваемого древесного изделия естественная анизотропия наблюдается вдоль вертикальной оси изделия, то есть по высоте цилиндрического изделия. Если направить электромагнитную волну по направлению вертикальной оси (вдоль) изделия и местом начала поляризации зондирующей волны считать край сечения цилиндрического изделия, обращенного к направлению вводимой в изделие волны, то согласно теории поляризации в этом случае возникнут в данном веществе две волны, одна из которых будет распространяться параллельно силовым линиям поля зондирующей волны, а вторая - перпендикулярно силовым линиям поля зондирующей волны. Другими словами, будем иметь в древесном изделии одну поляризованную волну, направленную вдоль цилиндрического изделия, а вторую поляризованную - направленную поперек цилиндрического изделия. Отсюда можно заключить, что при поляризации зондирующей волны в древесном цилиндрическом полом изделии возникают две волны, одна из которых распространяется по линии высоты цилиндрического изделия, а вторая - по линии диаметра цилиндрического изделия. При этом ввиду естественных анизотропных свойств древесного цилиндрического материала (анизотропия наблюдается по линии высоты цилиндра) составляющая этих двух ортогонально поляризованных волн, распространяющаяся по линии высоты цилиндрического изделия, будет отставать по скорости распространения от скорости распространения составляющей, распространяющейся по линии диаметра цилиндрического изделия (влияние изменения показателя преломления волны в данной анизотропной среде). В результате если обозначить скорость распространения волны по направлению диаметра цилиндрического изделия и скорость распространения волны по направлению высоты цилиндрического изделия , то для этих скоростей в рассматриваемом случае можно записать:

где c - скорость распространения электромагнитной волны в свободном пространстве, n - показатель преломления волны при отсутствии анизотропии (показатель преломления среды для волны с плоскостью поляризации, ортогональной силовым линиям поля зондирующей волны), определяемый диэлектрической проницаемостью контролируемого вещества без учета его анизотропных свойств. - показатель преломления волны (показатель преломления среды для волны с плоскостью поляризации, параллельной силовым линиям поля зондирующей волны), связанный с диэлектрической проницаемостью вещества из-за его анизотропных свойств. Из анализа вышеприведенных выражений видно, что волна, распространяющаяся по линии высоты цилиндрического изделия, отстает в скорости распространения от волны, распространяющейся по линии диаметра цилиндрического древесного изделия.

В рассматриваемом случае время, за которое волна распространяется по линии высоты цилиндрического изделия (параллельная поляризация волны силовым линиям поля зондирующей волны) можно выразить как

где H - высота цилиндрического изделия.

Аналогично, для случая ортогональной поляризации волны силовым линиям поля зондирующей волны (распространение волны по линии диаметра цилиндрического изделия)

где d - диаметр цилиндрического изделия.

Из выражения (1) видно, что если измерить время tH, при постоянных значениях n, c и , можно определить высоту Н. Согласно предлагаемому техническому решению для измерения времени tн сигналы, снимаемые с выходов первого 3 и второго 6 элементов выводов электромагнитных колебаний, после детектирования соответственно в первом 4 и втором 7 детекторах поступают на соответствующие входы коррелятора 5. Здесь из-за временного запаздывания сигнала, снимаемого с выхода второго детектора 7 относительно сигнала, снимаемого с выхода первого детектора, производится взаимнокорреляционная обработка этих двух сигналов. Как известно из теории корреляционных функций, при взаимнокорреляционной обработке сигналов путем сложения двух входных сигналов находится время (как правило, в таких случаях задерживается сопереживающий сигнал, т.е. сигнал, снимаемый с выхода первого детектора для данного случая), при котором сумма сложения окажется максимальной. Следовательно, измерение времени задержки опережающего сигнала с фиксацией максимума складывающихся входных сигналов (эти операции выполняет коррелятор) даст возможность определить высоту H цилиндрического изделия. В данном устройстве для индикации результатов измерения выходной сигнал коррелятора поступает на вход индикатора 8, где отражается информация об измеряемом параметре.

Таким образом, согласно предлагаемому техническому решению на основе измерения времени задержки (запаздывания) между двумя волнами с плоскостями поляризации ортогонально и параллельно силовым линиям зондирующей волны в древесном полом цилиндрическом изделии ввиду его естественной анизотропии можно обеспечить стабильность определения высоты древесного полого цилиндрического изделия.

Устройство для определения высоты полого древесного цилиндрического изделия, содержащее генератор электромагнитных колебаний, первый детектор и индикатор, отличающееся тем, что в него введены элемент ввода электромагнитных колебаний, первый и второй элементы вывода электромагнитных колебаний, второй детектор и коррелятор, причем выход генератора электромагнитных колебаний соединен с элементом ввода электромагнитных колебаний, выход первого элемента вывода электромагнитных колебаний подключен к входу первого детектора, выход второго элемента вывода электромагнитных колебаний соединен с входом второго детектора, выход первого детектора подключен к первому входу коррелятора, выход второго детектора соединен с вторым входом коррелятора, выход которого подключен к индикатору.
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ВЫСОТЫ ПОЛОГО ДРЕВЕСНОГО ЦИЛИНДРИЧЕСКОГО ИЗДЕЛИЯ
Источник поступления информации: Роспатент

Showing 261-270 of 282 items.
02.03.2020
№220.018.07d1

Свч - мостовой измеритель температуры

Изобретение относится к устройствам для измерения температуры и может применяться в различных областях техники. Заявлен СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, введены первый СВЧ-генератор с варакторной перестройкой частоты,...
Тип: Изобретение
Номер охранного документа: 0002715496
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0827

Инвертирующий масштабный усилитель с регулируемой степенью

Изобретение относится к области электронных устройств для усиления непрерывных сигналов с заданным масштабным коэффициентом. Технический результат заключается в повышении точности масштабирования инвертирующего усилителя на операционных усилителях с ограниченными частотными свойствами за счет...
Тип: Изобретение
Номер охранного документа: 0002715471
Дата охранного документа: 28.02.2020
04.03.2020
№220.018.085f

Устройство для внутрипластового горения

Изобретение относится к устройствам для извлечения смеси углеводородов, в частности смеси тяжелых углеводородов, из подземного пласта путем внутрипластового горения. Устройство для внутрипластового горения содержит измельчитель алюминиевой стружки, сепаратор и датчик температуры, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002715572
Дата охранного документа: 02.03.2020
14.05.2020
№220.018.1c54

Способ организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного р-ичного гиперкуба

Изобретение относится к способу организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного p-ичного гиперкуба для многопроцессорных систем с сотнями абонентов-процессоров. Техническим результатом изобретения является повышение отказоустойчивости системной сети,...
Тип: Изобретение
Номер охранного документа: 0002720553
Дата охранного документа: 12.05.2020
15.07.2020
№220.018.3249

Способ определения покомпонентного расхода газожидкостной среды

Изобретение относится к измерительной технике и может использоваться для контроля расхода и определения массы компонента газожидкостной среды (ГЖС), извлекаемой, например, из буровой скважины. Способ определения покомпонентного расхода газожидкостной среды характеризуется тем, что периодически...
Тип: Изобретение
Номер охранного документа: 0002726304
Дата охранного документа: 13.07.2020
15.07.2020
№220.018.3295

Устройство для диагностики состояния высоковольтных изоляторов

Изобретение относится к области электроизмерительной техники и может быть использовано для дистанционного контроля рабочего состояния высоковольтных изоляторов. Технический результат: упрощение процесса диагностики. Сущность: устройство для диагностики состояния высоковольтных изоляторов...
Тип: Изобретение
Номер охранного документа: 0002726305
Дата охранного документа: 13.07.2020
12.04.2023
№223.018.4a44

Устройство для энергоснабжения привязного беспилотного летательного аппарата

Устройство для энергоснабжения привязного беспилотного летательного аппарата содержит наземный источник питания, силовой кабель, два бортовых понижающих преобразователя, управляющий ШИМ-контроллер, два формирователя сигнала ошибки. Обеспечивается повышение эффективности энергоснабжения...
Тип: Изобретение
Номер охранного документа: 0002793830
Дата охранного документа: 06.04.2023
20.04.2023
№223.018.4ac8

Способ и система автономного децентрализованного коллективного определения положения движущихся на трассе объектов автотранспорта

Изобретение относится к области вычислительной техники и направлено на разработку способа и системы определения местоположения движущихся объектов автономно, без привлечения внешних средств, и децентрализованно, без выделения в системе центра управления. Способ автономного децентрализованного...
Тип: Изобретение
Номер охранного документа: 0002778861
Дата охранного документа: 26.08.2022
20.04.2023
№223.018.4b66

Способ экспериментальных исследований аэромеханики и динамики полёта беспилотных летательных аппаратов и устройство для его осуществления

Изобретение относится к области авиационной испытательной техники, в частности к методам и средствам исследования аэромеханики и динамики полета беспилотных летательных аппаратов. При реализации способа экспериментально исследуют характеристики беспилотного летательного аппарата при заданном...
Тип: Изобретение
Номер охранного документа: 0002767584
Дата охранного документа: 17.03.2022
20.04.2023
№223.018.4bb6

Беспилотный летательный аппарат

Изобретение относится к малогабаритным авиационным системам с дистанционно пилотируемыми летательными аппаратами. Беспилотный летательный аппарат содержит крестовину с закрепленным в ее центре корпусом с боковыми стенками и крышкой, на которой установлена аккумуляторная батарея. На концах лучей...
Тип: Изобретение
Номер охранного документа: 0002760832
Дата охранного документа: 30.11.2021
Showing 191-191 of 191 items.
09.05.2019
№219.017.4faf

Устройство для измерения влажности почвы

Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя...
Тип: Изобретение
Номер охранного документа: 0002433393
Дата охранного документа: 10.11.2011
+ добавить свой РИД