×
20.10.2014
216.012.fe88

Результат интеллектуальной деятельности: ПРОТИВОТОЧНАЯ ПАРОВАЯ ТУРБИНА С ЧАСТЯМИ ВЫСОКОГО И НИЗКОГО ДАВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002531016
Дата охранного документа
20.10.2014
Аннотация: Противоточная паровая турбина содержит паровую турбину высокого и низкого давления, общий роторный вал, первый паровой тракт, второй паровой тракт и средства направления первого парового тракта из паровой турбины высокого давления в противоположном направлении через паровую турбину низкого давления, содержащие переходную трубу. Переходная труба проходит от конца низкого давления паровой турбины высокого давления к концу высокого давления турбины низкого давления. Первый паровой тракт проходит в первом направлении через паровую турбину высокого давления. Второй паровой тракт проходит в противоположном направлении через паровую турбину низкого давления. Контрольно-измерительная аппаратура установлена на переходном паровом тракте между паровой турбиной высокого давления и паровой турбиной низкого давления и предназначена для текущего контроля параметров потока пара. Данные, получаемые от контрольно-измерительной аппаратуры, расположенной на переходном паровом тракте, содержат информацию о смешанном потоке, используемую для регулирования паровой турбины. Контрольно-измерительная аппаратура установлена на переходном паровом тракте между паровой турбиной высокого и низкого давления и предназначена для текущего контроля параметров потока пара. Обеспечивается ограничение осевого усилия, так что общая эффективность парового тракта может быть улучшена путем усиления реактивности ступени. 2 н. и 3 з.п. ф-лы, 4 ил.

ОБЛАСТЬ ТЕХНИКИ

Данное изобретение, в целом, относится к паровым турбинам и, более конкретно, к схемам распределения потока пара внутри паровых турбин для сведения к минимуму осевого усилия.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

В настоящее время для больших энергетических систем с комбинированным циклом часто используются крупные паровые турбины, содержащие паровую турбину и газовую турбину, которые совместно приводят в действие электрический генератор в качестве нагрузки. Предлагалось множество схем расположения газовых турбин и паровых турбин при комбинированном цикле. Комбинированный цикл представляет собой объединенный тепловой цикл, в котором горячий выхлопной газ, выходящий из газовой турбины, имеющей камеру сгорания, обеспечивает тепловую энергию частично или полностью для создания пара, используемого в паровой турбине.

Паровая турбина является механическим устройством, которое отбирает энергию от подаваемого под давлением пара и преобразует ее в полезную работу. В паровые турбины поток пара поступает под входным давлением через неподвижные сопла, которые направляют этот поток пара на рабочие лопатки, прикрепленные с возможностью вращения к ротору турбины. Поток пара, воздействуя на эти лопатки, создает вращающий момент, который заставляет вращаться ротор турбины, создавая при этом полезный источник энергии, обеспечивающий вращение электрического генератора или подобного устройства. Паровая турбина по длине ротора содержит несколько пар сопел (или неподвижных лопаток) и рабочих лопаток. Каждая пара сопел и рабочих лопаток называется ступенью. Каждая ступень отбирает некоторое количество энергии от потока пара, вызывая при этом падение давления и расширение определенного объема потока пара. Соответственно, размер сопел и лопаток (ступеней) и их расстояние от ротора на последующих ступенях постепенно увеличиваются. С точки зрения стоимости и эффективности, в целом, желательно отбирать по возможности наибольшее количество энергии до выпуска использованного пара в разреженное пространство в конденсаторе.

В мощных паровых турбинах количество и диаметр ступеней становятся очень большими. Как правило, процесс отбора энергии лучше разделять на две различные турбины, называемые паровой турбиной высокого давления и паровой турбиной низкого давления. Паровая турбина высокого давления принимает исходный поток пара под высоким давлением и выпускает его в паровую турбину низкого давления, которая продолжает процесс отбора энергии. Паровая турбина высокого давления должна быть конструктивно решена так, чтобы противостоять большим усилиям, создаваемым паром под высоким давлением. Паровая турбина низкого давления должна иметь большие размеры, чтобы вмещать большой определенный объем пара под пониженным давлением.

Паровые турбины дополнительно могут быть классифицированы с точки зрения действия пара при преобразовании тепла в механическую энергию. Передача энергии может выполняться активным способом, реактивным способом или комбинированным способом. В активной турбине неподвижные сопла направляют поток пара в виде высокоскоростных струй. Эти струи обладают значительной кинетической энергией, которую рабочие лопатки преобразуют во вращение вала при изменении направления струи пара. Падение давления возникает только в неподвижных лопатках с общим возрастанием скорости пара в ступени.

В реактивной турбине собственно лопатки ротора расположены с образованием сужающихся сопел. В турбинах этого типа используется сила реакции, создаваемой при ускорении пара через сопла, образованные ротором. Направление пара на ротор выполняют с помощью неподвижных лопаток статора, при этом пар выходит от статора в виде струи, которая заполняет всю периферию ротора. Затем пар изменяет направление, а его скорость увеличивается относительно скорости лопаток. Падение давления возникает как в статоре, так и в роторе, при этом пар проходит с ускорением через статор и с замедлением через ротор без общего изменения скорости пара в ступени, однако при этом происходит уменьшение как давления, так и температуры, которое свидетельствует о работе, обеспечивающей приведение во вращение ротора. Ранее не использовали полностью преимущество реактивного способа при получении энергии от паровой турбины, частично вследствие того, что производительность турбины считалась отвечающей требованиям, а частично вследствие сложности восприятия увеличенного осевого усилия на роторный вал, возникающего в результате действия повышенных сил реакции на подвижные лопатки.

Возрастающая стоимость топлива и желание заказчиков получить улучшенную производительность паровой турбины возбудили интерес к созданию повышенной эффективности с помощью более высокой реактивности. Например, однопоточные паровые турбины с частями высокого и низкого давления (ВД-НД) часто используют для опреснительных установок, причем эти установки расположены в местах, в которых топливо является относительно дешевым. Несмотря на это при существующих ценах на топливо производительность становится важным параметром даже для этих систем. За последние 2/3 года затраты, связанные с эксплуатацией установок этого типа, выросли с 300 до 800 долларов США на кВт с выдвижением в настоящее время на первый план улучшенной производительности.

Обычная схема однопоточной паровой турбины с частями высокого и низкого давления (ВД-НД) показана на фиг.1. Тракт потока для паровой турбины ВД-НД может быть определен как поток пара, проходящий между блоками турбины, опирающимися на пару опорных подшипников, расположенных на противоположных концах вала. В однопоточной паровой турбине 5 ВД-НД обычно сначала расположена турбина 10 ВД, за которой следует турбина 20 НД, причем обе турбины расположены на одной оси в одном направлении и объединены посредством вертикального соединения 25. Общий роторный вал 30 турбины 5 может опираться на опорные подшипники 35, расположенные на его противоположных концах. Осевой поток 50 пара ВД проходит через вертикальное соединение 25, а осевой поток 55 пара НД проходит через паровую турбину 5 ВД-НД в том же направлении, создавая при этом осевое усилие 60 ВД и осевое усилие 65 НД, которые в результате создают суммарное конечное осевое усилие 70. Кроме того, на конце общего вала 30 может быть выполнен один большой объединенный упорный подшипник 40, рассчитанный на суммарное осевое усилие, для восприятия суммарного конечного осевого усилия 70 турбины 10 ВД и турбины 20 НД. Во многих случаях для данного применения указанный упорный подшипник 40 выполнен по возможности с максимальными размерами.

Проблему большого осевого усилия раньше решали путем использования упорного подшипника большого размера и низких уровней реактивности в конструкции паровой турбины. Такое сочетание не является лучшим решением для обеспечения производительности турбины, так как наличие указанного подшипника означает большие потери в подшипнике, а низкая реактивность означает низкую эффективность парового тракта. Подобные конструкции не имеют или имеют весьма небольшую возможность для улучшения эффективности.

Если необходимо улучшить эффективность парового тракта, то основным источником улучшения, который остается доступным, является увеличение реактивности ступеней в одной или обеих турбинах ВД и НД. Однако увеличенная реактивность ступеней приводит к увеличению осевых усилий, неизбежно требующих более значительной способности выдерживать осевое усилие (что сказывается на большем размере упорного подшипника). В некоторых применениях с однопоточными блоками паровой турбины ВД-НД в данных блоках уже используют подходящий подшипник специального назначения с наибольшими размерами. Такой размер упорных подшипников ограничивает эффективность однопоточных блоков ВД-НД, увеличивая эффективность парового тракта с низкой реактивностью примерно на 5%.

Соответственно, существует необходимость в создании схемы для комбинации паровой турбины ВД и паровой турбины НД, обеспечивающей преимущественно ограничение осевого усилия, так что общая эффективность парового тракта может быть улучшена путем усиления реактивности ступени.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к схеме комбинации паровой турбины ВД и паровой турбины НД, обеспечивающей преимущественно ограничение осевого усилия, так что общая эффективность парового тракта для данной комбинации может быть улучшена путем увеличения реактивности ступени. Кратко, в соответствии с одним аспектом, предложена противоточная паровая турбина, которая содержит паровую турбину высокого давления и паровую турбину низкого давления. Для паровой турбины высокого давления и паровой турбины низкого давления имеется общий роторный вал. Через паровую турбину высокого давления проходит первый паровой тракт. Через паровую турбину низкого давления в противоположном направлении проходит второй паровой тракт. Предусмотрены средства направления первого парового тракта из паровой турбины высокого давления ко второму паровому тракту в противоположном направлении через паровую турбину низкого давления.

В соответствии со вторым аспектом данного изобретения предложен способ расположения парового тракта в противоточной паровой турбине с частями высокого и низкого давления. Данный способ включает расположение паровой турбины высокого давления и паровой турбины низкого давления на общем роторном вале. Данный способ дополнительно включает направление первого парового тракта через паровую турбину высокого давления, направление второго парового тракта через паровую турбину низкого давления и направление парового тракта, выходящего из паровой турбины высокого давления, к впуску второго парового тракта в противоположном направлении через паровую турбину низкого давления.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Эти и другие свойства, аспекты и преимущества данного изобретения будут более понятны при прочтении последующего подробного описания со ссылкой на сопроводительные чертежи, на которых одинаковые ссылочные позиции обозначают одинаковые детали, на которых

фиг.1 иллюстрирует обычную схему для однопоточной паровой турбины с частями высокого и низкого давления (ВД-НД);

фиг.2 иллюстрирует первый вариант выполнения противоточной паровой турбины ВД-НД с переходной трубой, обеспечивающей изменение направления потока;

фиг.3 иллюстрирует второй вариант выполнения противоточной паровой турбины ВД-НД со сдвоенным кожухом на турбине ВД, обеспечивающим изменение направления потока; и

фиг.4 иллюстрирует блок-схему способа выполнения парового тракта в противоточной паровой турбине с частями высокого и низкого давления.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Последующие варианты выполнения данного изобретения обладают многими преимуществами, включая создание противоточной паровой турбины с частями высокого и низкого давления, которая уравновешивает осевое усилие в паровой турбине высокого давления с осевым усилием в паровой турбине низкого давления, создавая возможность для снижения размера упорных подшипников. В этом случае в обеих турбинах возможно выполнение ступеней с более высокой реактивностью, поскольку они уравновешиваются путем создания противодействующего потока с обеспечением при этом более высокой эффективности парового тракта. Противоположно направленный поток может быть создан через переходную трубу или с использованием сдвоенного кожуха, выдерживающего высокое давление. Исследования в этом случае показывают потенциальное увеличение эффективности тракта пара ВД по меньшей мере на 2% и общее снижение осевого усилия примерно на 40%.

Фиг.2 иллюстрирует один вариант выполнения противоточной паровой турбины. Противоточная паровая турбина 105 содержит паровую турбину 110 ВД и паровую турбину 120 НД. Для турбины 110 ВД и турбины 120 НД предусмотрен общий роторный вал. Первый паровой тракт 150 проходит через турбину 110 ВД. Второй паровой тракт 155 проходит через турбину 120 НД. Для направления первого тракта 150 из турбины 110 ВД ко второму тракту 155 в противоположном направлении через турбину 120 НД также имеются средства 80, которые в первом варианте выполнения изобретения могут содержать переходную трубу, обеспечивающую подачу пара от конца 116 НД турбины 110 ВД к концу 125 ВД турбины 120 НД.

Противоточная турбина 105 имеет подшипниковые опоры, содержащие опорный подшипник 135, расположенный на конце 116 турбины 110, и опорный подшипник 136, расположенный на конце 126 турбины 120. Первый упорный подшипник 145 расположен на конце 116 турбины 110 ВД. Второй упорный подшипник 146 расположен на конце 125 турбины 120 НД. Условно предполагается, что осевое усилие 160, оказываемое турбиной 110, и осевое усилие 170, оказываемое турбиной 120, на общем роторе 130 приблизительно имеют одинаковую величину и противоположно направлены. В этом случае конечное осевое усилие 180 в идеальном случае имеет нулевое значение, однако осевое усилие, оказываемое двумя турбинами, не может быть идеально уравновешено по всему диапазону усилий, поэтому существует небольшое ненулевое значение конечного осевого усилия 180. Соответственно, упорные подшипники 145, 146, расположенные на противоположных концах турбины ВД-НД, должны быть выполнены с такими размерами, чтобы воспринимать небольшое осевое усилие с ненулевым значением, а не суммарное конечное осевое усилие однопоточной турбины ВД-НД.

В однопоточной паровой турбине ВД-НД не может быть добавлено дополнительное осевое усилие. Что касается противоточной турбины, уравновешивание осевого усилия посредством противоположных потоков пара в турбине ВД и турбине НД позволяет использовать увеличенное осевое усилие на одной или обеих отдельных турбинах. Таким образом, отдельные паровые турбины ВД и НД могут быть выполнены с усиленной реактивностью, приводящей к более эффективному паровому тракту.

Второй вариант выполнения противоточной паровой турбины ВД-НД показан на фиг.3. Второй вариант выполнения паровой турбины 205 ВД-НД включает размещение упорных подшипников 245, 246 и опорных подшипников 235, 236 аналогично подшипникам первого варианта выполнения. Турбина ВД содержит средства направления первого парового тракта из паровой турбины высокого давления ко второму паровому тракту в противоположном направлении через паровую турбину низкого давления. Эти средства содержат внутренний кожух 211 на турбине 210 ВД, предназначенный для создания первого парового тракта 250 через турбину ВД. Наружный кожух 212 изменяет направление первого потока, проходящего от стороны высокого давления к стороне низкого давления через паровую турбину высокого давления, на обратное противоположное направление 251 с прохождением к вертикальному соединению 290 кожухов между турбиной ВД и турбиной НД.

Соединение 290 кожухов предназначено для приема переходного потока 251 пара, проходящего из наружного кожуха 212 турбины 210 ВД, в паровой тракт 255 турбины 220 НД.

Варианты выполнения, показанные как на фиг.2, так и на фиг.3, оба обеспечивают дополнительное преимущество над однопоточной паровой турбиной 5 благодаря выполнению преимущественного текущего контроля потока пара между турбинами ВД и НД. Ограниченное место для размещения контрольно-измерительной аппаратуры в вертикальном соединении 25 (фиг.1) однопоточной паровой турбины ВД-НД может не допустить выполнения измерения показательных параметров потока, проходящего через это соединение. В предлагаемых вариантах выполнения контрольно-измерительная аппаратура, используемая для текущего контроля параметров потока пара, может быть выполнена на переходном паровом тракте 151, 251 противоточной паровой турбины ВД-НД. В переходной трубе 80 (фиг.2) или у соединения 290 кожухов (фиг.2) могут быть расположены датчики 195, 295 температуры, давления, расхода и т.д. Как в переходной трубе, так и при прохождении данного потока через наружный кожух 212, расположенный выше по потоку, происходит значительное смешивание данного потока. Это обстоятельство позволяет получать более точные измерения у выхода из секции ВД, поскольку пар будет перемешан и профиль температур, создаваемый за счет расширения парового тракта, может быть исключен или уменьшен. Более точное измерение этих параметров создает возможность лучшего регулирования общей работы турбины.

Фиг.4 иллюстрирует блок-схему способа выполнения парового тракта в противоточной паровой турбине ВД-НД. Этап 410 включает расположение паровой турбины ВД и паровой турбины НД на общем роторном вале. Этап 420 обеспечивает направление первого парового тракта через паровую турбину ВД. На этапе 430 выполняется направление второго парового тракта в противоположном направлении через паровую турбину НД. На этапе 440 первый паровой тракт может быть направлен из выпуска паровой турбины ВД к впуску паровой НД турбины в противоположном направлении.

Данный способ дополнительно включает этап 450 создания опоры для конца НД паровой турбины ВД посредством первого опорного подшипника и создания опоры для конца НД паровой турбины НД посредством второго опорного подшипника. Этап 455 включает восприятие осевого усилия на конце НД турбины ВД первым упорным подшипником, а также восприятие осевого усилия на конце НД турбины НД вторым упорным подшипником.

Данный способ также включает этап 460 уравновешивания осевого усилия во время работы так, что первое осевое усилие на роторном вале, создаваемое турбиной ВД, и второе осевое усилие на роторном вале, создаваемое турбиной НД, приблизительно уравновешиваются во время работы противоточной паровой турбины. Этап 470 включает создание улучшенной реактивности и улучшенной эффективности в паровом тракте в результате снижения осевого усилия на роторном вале.

На этапе 480 данного способа направляют выходящий из паровой турбины ВД первый поток пара через переходную трубу ко второму потоку пара в паровой турбине НД или, как вариант, направляют выходящий из паровой турбины ВД первый поток пара ко второму паровому тракту в противоположном направлении через турбину НД в тракт, содержащий внутренний кожух на турбине ВД, наружный кожух на турбине ВД и через соединение кожухов, расположенное между турбиной ВД и турбиной НД и выполненное для приема переходного потока пара из наружного кожуха турбины НД.

Этап 490 включает текущий контроль параметров потоков пара с помощью контрольно-измерительной аппаратуры, установленной на переходном паровом тракте между турбиной ВД и турбиной НД. Этап 495 включает улучшение производительности противоточной паровой турбины ВД-НД путем использования данных от контрольно-измерительной аппаратуры, расположенной на переходном паровом тракте, полученных из информации о смешанном потоке, для управления паровой турбиной.

Несмотря на то, что в данном документе приведено описание различных вариантов выполнения, следует понимать, что возможно выполнение различных комбинаций элементов, изменений или улучшений, которые подпадают под объем правовой охраны данного изобретения.

Перечень элементов

Однопоточная паровая турбина ВД-НД 5
Паровая турбина ВД 10
Паровая турбина НД 20
Вертикальное соединение 25
Роторный вал 30
Опорный подшипник 35
Большой упорный подшипник 40
Поток пара ВД 50
Поток пара НД 55
Осевое усилие турбины ВД 60
Осевое усилие турбины НД 65
Конечное осевое усилие 70
Средства направления первого
парового тракта ко второму паровому тракту 80
Противоположный поток паровой турбины ВД-НД 105
Паровая турбина ВД 110
Конец высокого давления 115
Конец низкого давления 116
Паровая турбина НД 120
Конец высокого давления 125
Конец низкого давления 126
Роторный вал 130
Опорный подшипник 135
Опорный подшипник 136
Небольшой упорный подшипник 145
Небольшой упорный подшипник 146
Поток пара ВД 150
Переходной паровой тракт 151
Поток пара НД 155
Осевое усилие турбины ВД 160
Осевое усилие турбины НД 170
Конечное осевое усилие 180
Контрольно-измерительная аппаратура,
установленная в переходном потоке пара 195
Противоположный поток паровой турбины ВД-НД 205
Паровая турбина ВД 210
Конец высокого давления 215
Конец низкого давления 216
Паровая турбина НД 220
Конец высокого давления 225
Конец низкого давления 226
Роторный вал 230
Опорный подшипник 235
Опорный подшипник 236
Небольшой упорный подшипник 245
Небольшой упорный подшипник 246
Поток пара ВД 250
Переходной поток пара 251
Поток пара НД 255
Осевое усилие турбины ВД 260
Осевое усилие турбины НД 265
Конечное осевое усилие 270
Соединение кожухов 290
Контрольно-измерительная аппаратура,
установленная в переходном потоке пара 295


ПРОТИВОТОЧНАЯ ПАРОВАЯ ТУРБИНА С ЧАСТЯМИ ВЫСОКОГО И НИЗКОГО ДАВЛЕНИЯ
ПРОТИВОТОЧНАЯ ПАРОВАЯ ТУРБИНА С ЧАСТЯМИ ВЫСОКОГО И НИЗКОГО ДАВЛЕНИЯ
ПРОТИВОТОЧНАЯ ПАРОВАЯ ТУРБИНА С ЧАСТЯМИ ВЫСОКОГО И НИЗКОГО ДАВЛЕНИЯ
ПРОТИВОТОЧНАЯ ПАРОВАЯ ТУРБИНА С ЧАСТЯМИ ВЫСОКОГО И НИЗКОГО ДАВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 241-250 of 357 items.
25.08.2017
№217.015.c757

Топливная форсунка, концевой узел топливной форсунки и газовая турбина

Изобретение относится к энергетике. Топливная форсунка для камеры сгорания содержит топочную трубу и кольцевой центральный элемент, расположенный концентрически в указанной топочной трубе. Указанный кольцевой центральный элемент проходит вдоль продольной оси топливной форсунки и по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002618801
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c75b

Термоуправляемый узел для газотурбинной системы (варианты) и способ управления каналом для потока охлаждающего воздуха

Изобретение относится к энергетике. Термоуправляемый узел для узла газовой турбины газотурбинной системы содержит элемент теплопередачи, имеющий первую часть и вторую часть, при этом первая часть расположена внутри первой полости, имеющей первую температуру, а вторая часть расположена во второй...
Тип: Изобретение
Номер охранного документа: 0002618791
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c8f4

Способ и устройство для отделения со при охлаждении с использованием сопла лаваля

Изобретение относится к отделению диоксида углерода от газового потока. Заявлены способ отделения диоксида углерода (CO) от газового потока и устройство отделения диоксида углерода (CO) от потока, содержащего CO. Способ включает охлаждение газового потока на стадии охлаждения с получением...
Тип: Изобретение
Номер охранного документа: 0002619312
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c99c

Способ нанесения алюминида титана и изделие с поверхностью из алюминида титана

Изобретение относится к способам нанесения покрытия из алюминида титана на металлическое изделие и к металлическому изделию с указанным покрытием. Способ нанесения покрытия из алюминида титана на металлическое изделие включает холодное напыление алюминида титана на изделие для формирования...
Тип: Изобретение
Номер охранного документа: 0002619419
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.caa9

Устройство секционного охлаждения и способ охлаждения сопловой лопатки турбины

Устройство секционного охлаждения для подачи охлаждающего потока в турбине с потоком газообразных продуктов сгорания содержит турбинную сопловую лопатку, дефлектор для охлаждающей среды и инжекционную пластину. Турбинная сопловая лопатка имеет вставку, расположенную в ее аэродинамической части,...
Тип: Изобретение
Номер охранного документа: 0002619955
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cae0

Способ очистки погружных мембран с использованием многоканальных устройств для подвода газа с открытым дном

Изобретение относится к очистке мембран. Способ очистки воздухом погружной мембраны, включающий регулирование параметров аэрации: между последовательными циклами фильтрации, обратной импульсной промывки или релаксации; в ходе цикла фильтрации или между циклом фильтрации и циклом обратной...
Тип: Изобретение
Номер охранного документа: 0002620056
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cbe6

Турбина, энергоустановка и способ модернизации наружного кожуха паровой турбины

Предложены турбина, энергоустановка, содержащая турбину, и способ модернизации наружного кожуха паровой турбины для повышения эффективности турбины и всей энергоустановки в целом. В одном варианте выполнения турбина содержит наружный кожух, имеющий канавки, выполненные с обеспечением...
Тип: Изобретение
Номер охранного документа: 0002620468
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cc01

Удерживающее устройство и система осевого удержания для кольцевых уплотнений (варианты)

Изобретение относится к энергетике. Удерживающее устройство для поддержания в фиксированном осевом положении второго компонента ротационной машины, установленного в осевом направлении на первый компонент ротационной машины, содержит фиксирующий элемент, размеры и конструкция которого...
Тип: Изобретение
Номер охранного документа: 0002620463
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.ce33

Рабочее колесо турбомашины и турбомашина

Рабочее колесо турбомашины содержит основную часть, паз для размещения лопаток и паз для заводки лопаток. Основная часть рабочего колеса имеет первую поверхность и противоположную вторую поверхность, соединенные поверхностью по наружному диаметру, имеющей среднюю линию. Паз для размещения...
Тип: Изобретение
Номер охранного документа: 0002620622
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d189

Система и способ тестирования показателя работы паровой турбины

Изобретение относится к энергетике. Система тестирования показателя работы паровой турбины включает по меньшей мере одно компьютерное устройство, включающее нейронную сеть, сформированную с использованием динамической термодинамической модели паровой турбины и предварительных данных, собранных...
Тип: Изобретение
Номер охранного документа: 0002621422
Дата охранного документа: 06.06.2017
Showing 241-250 of 297 items.
25.08.2017
№217.015.c4ae

Система управления потоком, электрогенераторная система и способ восстановления турбинного двигателя в такой системе

Изобретение относится к энергетике. Система управления потоком включает по меньшей мере один управляющий клапан, связанный по меньшей мере с одним соплом турбинного двигателя, при этом упомянутый управляющий клапан сконфигурирован для регулирования потока текучей среды в первом направлении или...
Тип: Изобретение
Номер охранного документа: 0002618133
Дата охранного документа: 02.05.2017
25.08.2017
№217.015.c60e

Система для подачи топлива в камеру сгорания (варианты)

Система для подачи топлива в камеру сгорания содержит камеру горения и топливную форсунку, которая находится в проточном сообщении с камерой горения. Несколько каналов расположены в окружном направлении вокруг камеры горения для обеспечения с ней проточного сообщения. Камера для жидкого топлива...
Тип: Изобретение
Номер охранного документа: 0002618765
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c6d0

Держатель уплотнения и сопловая лопатка для газовой турбины (варианты)

В настоящей заявке описан держатель уплотнения, используемый вокруг ряда отверстий в платформе сопловой лопатки турбины, предназначенных для прохождения воздуха. Держатель уплотнения может иметь внутреннюю поверхность, обращенную к платформе и имеющую выполненные на ней пазы, совмещенные с...
Тип: Изобретение
Номер охранного документа: 0002618805
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c74a

Топливная форсунка с осевым потоком (варианты) и способ предварительного смешивания топлива и воздуха

Группа изобретений относится к топливным форсункам. Топливная форсунка с осевым потоком для газовой турбины содержит кольцевые каналы, предназначенные для доставки продуктов для сжигания. Кольцевой воздушный канал 62 предназначен для приема нагнетаемого компрессором воздуха. Смежно с осевым...
Тип: Изобретение
Номер охранного документа: 0002618799
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c757

Топливная форсунка, концевой узел топливной форсунки и газовая турбина

Изобретение относится к энергетике. Топливная форсунка для камеры сгорания содержит топочную трубу и кольцевой центральный элемент, расположенный концентрически в указанной топочной трубе. Указанный кольцевой центральный элемент проходит вдоль продольной оси топливной форсунки и по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002618801
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c75b

Термоуправляемый узел для газотурбинной системы (варианты) и способ управления каналом для потока охлаждающего воздуха

Изобретение относится к энергетике. Термоуправляемый узел для узла газовой турбины газотурбинной системы содержит элемент теплопередачи, имеющий первую часть и вторую часть, при этом первая часть расположена внутри первой полости, имеющей первую температуру, а вторая часть расположена во второй...
Тип: Изобретение
Номер охранного документа: 0002618791
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c8f4

Способ и устройство для отделения со при охлаждении с использованием сопла лаваля

Изобретение относится к отделению диоксида углерода от газового потока. Заявлены способ отделения диоксида углерода (CO) от газового потока и устройство отделения диоксида углерода (CO) от потока, содержащего CO. Способ включает охлаждение газового потока на стадии охлаждения с получением...
Тип: Изобретение
Номер охранного документа: 0002619312
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c99c

Способ нанесения алюминида титана и изделие с поверхностью из алюминида титана

Изобретение относится к способам нанесения покрытия из алюминида титана на металлическое изделие и к металлическому изделию с указанным покрытием. Способ нанесения покрытия из алюминида титана на металлическое изделие включает холодное напыление алюминида титана на изделие для формирования...
Тип: Изобретение
Номер охранного документа: 0002619419
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.caa9

Устройство секционного охлаждения и способ охлаждения сопловой лопатки турбины

Устройство секционного охлаждения для подачи охлаждающего потока в турбине с потоком газообразных продуктов сгорания содержит турбинную сопловую лопатку, дефлектор для охлаждающей среды и инжекционную пластину. Турбинная сопловая лопатка имеет вставку, расположенную в ее аэродинамической части,...
Тип: Изобретение
Номер охранного документа: 0002619955
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cae0

Способ очистки погружных мембран с использованием многоканальных устройств для подвода газа с открытым дном

Изобретение относится к очистке мембран. Способ очистки воздухом погружной мембраны, включающий регулирование параметров аэрации: между последовательными циклами фильтрации, обратной импульсной промывки или релаксации; в ходе цикла фильтрации или между циклом фильтрации и циклом обратной...
Тип: Изобретение
Номер охранного документа: 0002620056
Дата охранного документа: 22.05.2017
+ добавить свой РИД