×
10.10.2014
216.012.fc54

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА

Вид РИД

Изобретение

№ охранного документа
0002530442
Дата охранного документа
10.10.2014
Аннотация: Изобретение относится к электронике и предназначено для создания материала на основе полупроводниковых наночастиц, обладающего газочувствительным термоэлектрическим эффектом, т.е. величина термо-ЭДС наноматериала может быть чувствительной к различным газам во внешней атмосфере. Изобретение может использоваться в термоэлектрических устройствах, преобразующих тепловую энергию в электрическую, а также при разработки газочувствительных сенсоров. Технический результат: расширение функциональных возможностей материала за счет увеличение термо-ЭДС до 1,3 мВ/K при рабочей температуре 330 К и до 1,1 мВ/K при рабочей температуре 500 К. Сущность: способ заключается в изготовлении пленки толщиной не более 200 нм из полупроводниковых наночастиц SnO размером не более 50 нм. После изготовления пленку из наночастиц SnO отжигают при температуре 330 ± 20 К или 500±20 К в течение не менее 15 минут в кислородосодержащей атмосфере с последующим охлаждением до комнатной температуры со скоростью не менее 10 К/с. 1 з.п. ф-лы, 4 ил.

Изобретение относится к электронике и предназначено для создания материала на основе полупроводниковых наночастиц или иначе наноматериала, обладающего газочувствительным термоэлектрическим эффектом, т.е. величина термо-ЭДС наноматериала может быть чувствительной к различным газам во внешней атмосфере. Изобретение может использоваться в термоэлектрических устройствах, преобразующих тепловую энергию в электрическую. Также может быть использовано в различных областях науки и техники для разработки газочувствительных сенсоров.

За прототип выбран наноматериал на основе нанокристаллической полупроводниковой пленки SnO2, состоящий из частиц с типичным размером 10-100 нм [1]. Подобные материалы широко используются в качестве газочувствительных слоев сенсоров и могут быть получены различными методами напыления (например, термическое, магнетронное, ионно-лучевое) с последующим отжигом или золь-гель методом [1, 3]. Проводимость таких пленок сильно зависит от концентрации различных детектируемых газов. Известно, что важную роль в механизме чувствительности подобных сенсоров к различным детектируемым газам играет хемосорбция кислорода, т.к. детектируемые газы, как правило, активно взаимодействуют с хемосорбированным на поверхности полупроводниковых частиц кислородом [1-3]. При хемосорбции молекул кислорода, играющих роль акцептора, на поверхности полупроводниковой частицы с проводимостью n-типа образуются отрицательно заряженные ионы кислорода, а в приповерхностной области пространственного заряда образуется обедненный электронами заряженный слой и соответствующий изгиб энергетических зон вблизи поверхности [2]. Вследствие этого между отдельными частицами образуются потенциальные барьеры и проводимость такой системы можно приближенно описать следующим уравнением:

где Gv - множитель, описывающий объемную проводимость полупроводника, Vs - высота потенциального барьера. Повышение высоты потенциальных барьеров Vs между наночастицами при хемосорбции кислорода будет приводить к уменьшению проводимости. Если хемосорбция кислорода происходит в некоторой области температур, то при этих температурах величина Vs будет максимальна, и на температурной зависимости проводимости будет появляться минимум [2, 3]. Для термо-ЭДС S и коэффициента Пелтье П в полупроводнике известно следующее выражение (с точностью до несущественного здесь постоянного слагаемого) [4]:

или с учетом высоты потенциального барьера Vs:

где S - термоэдс, Е0 - разница энергий между дном зоны проводимости и уровнем Ферми при нулевой температуре, γ - коэффициент для температурной зависимости положения уровня Ферми, Vs - поверхностный потенциальный барьер между наночастицами. Таким образом, увеличение высоты потенциального барьера между полупроводниковыми наночастицами, обусловленное увеличением изгиба энергетических зон вблизи их поверхности, может приводить к усилению термоэлектрических свойств полупроводниковых наноматериалов. Известно, что эффективность термоэлектрических материалов определяется коэффициентом качества, равным произведению ZT. Здесь

где k - теплопроводность [Вт/(мК)], σ - электрическая проводимость, S - термо-ЭДС [В/К]. В настоящее время наилучшая величина коэффициента качества достигает ZT≈2 для некоторых термоэлектрических материалов, например, Bi2Te3, PbSe, но эти материалы имеют определенные недостатки - высокие рабочие температуры, содержат ядовитые, редкие или дорогостоящие элементы [5-7]. В качестве альтернативных перспективных термоэлектрических материалов в последнее время предложены оксиды металлов, как стабильные при высоких температурах, более экологически безопасные и дешевые. Например, предлагаются материалы на основе легированного ZnO (ZT=0,47 при 1000 K) и слоистого оксида кобальта Ca3Co4O9 (ZT=0,22 при 1000 K) [5, 8, 9]. В [10] предложен материал на основе смеси оксида олова SnO2 с добавками ZnO и Ta2O5 или Nb2O5. Порошкообразная смесь оксидов прессуется в таблетки, которые спекаются при температуре от 1000 до 1400°C. Общую формулу полученного материала можно записать в виде Sn1-x-yZnxMyO2, где 0,76≤1-x-y≤0,99, с включениями фазы ZnSn2O4 от 1 до 25% вес. Размер частиц полученного поликристаллического пористого материала лежит в диапазоне от 100 нм до 100 мкм, причем предпочтительный размер составляет от 5 до 70 микрометров. Недостатком данного материала является недостаточно высокие значения термо-ЭДС и коэффициента качества, которые составляют 100-200 мкВ/К и 0,06-0,13, соответственно, при 1000 К.

Техническим результатом предлагаемого изобретения является

• расширение функциональных возможностей термоэлектрических материалов за счет возможности изменения термо-ЭДС наноматериала в зависимости от концентрации кислорода или других газов (Н2, NH3, СО, СН4, NO2, H2S) в воздухе;

• упрощение и удешевление термоэлектрического материала за счет его изготовления из наночастиц SnO2 без применения специальных ядовитых, редких или дорогостоящих материалов типа свинца, серебра, висмута, теллура или редкоземельных элементов;

• увеличение термо-ЭДС до 1,3 мВ/К при рабочей температуре 330 К и до 1,1 мВ/К при рабочей температуре 500 К;

• увеличение коэффициента качества ZT термоэлектрического материала до 1 при рабочей температуре 330 или 500 К.

Для достижения указанного результата предложен способ получения

термоэлектрического газочувствительного материала, заключающийся в изготовлении пленки толщиной не более 200 нм из полупроводниковых наночастиц SnO2 с размером не более 50 нм, при этом после изготовления пленку из наночастиц SnO2 отжигают при температуре 330±20 К или 500±20 К в течение не менее 15 минут в кислородосодержащей атмосфере, с последующим охлаждением до комнатной температуры со скоростью не менее 10 К/с.

При этом отжиг проводят в воздухе.

На фигуре 1 показана температурная зависимость термо-ЭДС предлагаемого материала.

На фигуре 2 приведена температурная зависимость коэффициента Пелтье, которая отражает температурную зависимость положения уровня Ферми согласно уравнению (2).

На фигуре 3 показана температурная зависимость проводимости предлагаемого материала.

На фигуре 4 приведена температурная зависимость коэффициента качества предлагаемого материала.

Измерения проводились на нанокристаллической пленке SnO2 толщиной 200 нм, полученной путем магнетронного напыления. Размеры отдельных наночастиц в полученной пленке, определенные на электронном микроскопе, составляли около 50 нм. Конструктивно экспериментальные образцы представляли собой поликоровую подложку с размерами 5×0,5×0,2 мм, с одной стороны которой находилась полупроводниковая пленка SnO2, а с другой - напыленная пленка платины, служащая нагревателем. Нагреватель являлся одновременно и термосопротивлением, по величине которого контролировалась температура образца. Температура образца могла изменяться и стабилизироваться на заданной величине с помощью специально разработанного электронного блока питания с точностью до 0,1°C. Для получения градиента температуры на образце платиновый нагреватель располагался только на одном конце образца. Разница температур измерялась с помощью двух термопар Au-Ni, размещенных на противоположных концах образца. Дифференциальная термо-ЭДС была измерена в диапазоне температур 300 - 550 К (Фиг.1). Соответствующий коэффициент Пелтье, который отражает температурную зависимость положения уровня Ферми согласно уравнению (2), приведен на Фиг.2. На Фиг.3 приведена температурная зависимость проводимости. На полученных зависимостях четко наблюдаются два экстремума при температурах около 330 и 500 К или, соответственно, 60 и 230°C. Эти экстремумы можно объяснить хемосорбцией заряженных форм кислорода O2- и O- при указанных температурах. Максимальная глубина залегания уровня Ферми в зависимости от температуры определяется изменением высоты потенциального барьера при хемосорбции кислорода и достигает значения около 0,55 эВ в области температуры 500 К (Фиг.2). Если после нагрева до такой температуры произвести быстрое охлаждение до комнатной температуры со скоростью не менее 10 К/с, повышенная величина потенциального барьера сохраняется, т.к. хемосорбированные молекулы кислорода остаются при этом на поверхности. Таким образом, термо-ЭДС металл оксидных полупроводниковых наноматериалов типа SnO2, ZnO, может быть существенно увеличена путем соответствующей температурной обработки материала. Оценка коэффициента качества ZT согласно уравнению (4) на основе измеренных термо-ЭДС (Фиг.1) и проводимости для предлагаемого наноматериала (Фиг.3) показывает, что его величина достигает значения 1 при двух оптимальных температурах 330 и 500 К (Фиг.4), что сравнимо с лучшими термоэлектрическими материалами. При этом величина коэффициента теплопроводности к для SnO2 полагалась равной 0,5 Вт/(м К) во всем диапазоне температур [11]. Из-за сильного рассеяния фононов на границах частиц, а также на различных дефектах и примесях теплопроводность поликристаллических пористых материалов может быть намного меньше, чем у монокристаллов, поэтому уменьшение размера наночастиц и толщины пленки может приводить к уменьшению теплопроводности [12]. Таким образом, существует возможность для дальнейшего уменьшения теплопроводности для предлагаемого наноматериала и увеличения коэффициента качества ZT. Также в предлагаемом наноматериале можно контролировать и настраивать величину потенциального барьера между наночастицами, чтобы оптимизировать транспортные свойства для получения максимального термоэлектрического эффекта.

Полученный наноматериал может быть использован в термоэлектрических генераторах, а также для изготовления различных газовых сенсоров с целью определения содержания кислорода или других газов (Н2, NH3, СО, СН4, NO2, H2S) в воздухе, причем на контактах газового сенсора генерируется ЭДС, которое зависит от концентрации детектируемого газа.

ЛИТЕРАТУРА

1. S. Song, J. Cho, W. Choi et al, Sensors and Actuators В 46 (1998) 42-19.

2. Моррисон С.Р. Химическая физика поверхности твердого тела. -М: Мир, 1980. С.296.

3. А.Е. Варфоломеев, А.В. Ерышкин, В.В. Малышев, А.С. Разумов, С.С. Якимов, -Журнал аналитической химии, том 52, №1 (1997) с.66-68.

4. В.Л. Бонч-Бруевич, С.Г. Калашников, Физика полупроводников, -М.: Наука, 1990.

5. MRS BULLETIN, vol.31, March 2006, p.193.

6. X.H. Ji, X.B. Zhao, Y.H. Zhang, B.H. Lu, H.L. Ni, J. Alloys Compd. 387 (2005) 282.

7. J. Seo, C. Lee, K. Park, J. Mater. Sci. 35 (2000) 1549

8. M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, J. Appl. Phys. 79 (1996) 1816.

9. Y. Zhang and J. Zhang, J. Of Materials and Processing Technologie, 208 (2008) 70-74.

10. Патент ЕР 2447233 A1, Tin oxide-based thermoelectric materials, 2012.

11. P.R. Bueno, J.A. Varela et al, J. American Ceram. Soc., 88 (9) (2005) 2629-2631

12. C. Poulier, D. Smith, J. Absi, Journal of the European Ceramic Society 27 (2007) 475-478.


СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Showing 121-130 of 260 items.
25.08.2017
№217.015.9db6

Способ извлечения липидов из биомассы микроводорослей chlorella и дрожжей yarrowia lipolytica

Изобретение относится к биотехнологии. Предложен способ извлечения липидов из микроводоросли рода Chlorella и дрожжей Yarrowia lipolytica для получения биодизельного топлива. Способ включает дополнение стадии культивирования микроводорослей Chlorella стадией культивирования дрожжей Yarrowia...
Тип: Изобретение
Номер охранного документа: 0002610675
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.a186

Лекарственный препарат противотуберкулезного действия на основе d-циклосерина в виде лиофилизата и способ получения лекарственного препарата

Изобретение относится к фармацевтической промышленности и медицине и представляет собой лекарственный препарат противотуберкулезного действия в виде лиофилизата для перорального применения массой 2.0±0.20 г, содержащий D-циклосерин 12.5±1.25 мас.%, полимер PLGA 50/50 50±5.0 мас.%, поливиниловый...
Тип: Изобретение
Номер охранного документа: 0002606839
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b438

Способ получения радионуклида никель-63

Изобретение относится к способу выделения изотопа Ni из облученной металлической мишени для использования в автономных источниках питания, например, основанных на бетавольтаическом эффекте. Способ включает нагревание металлического никеля, содержащего радионуклид Ni до температуры его испарения...
Тип: Изобретение
Номер охранного документа: 0002614021
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b953

Способ выращивания эпитаксиальной пленки дисилицида европия на кремнии

Изобретение относится к способу получения эпитаксиальной пленки дисилицида европия на кремниевой подложке и может быть использовано для создания контактов истока/стока в технологии производства полевых МОП транзисторов с барьером Шоттки (SB-MOSFET), а также для создания устройств спинтроники в...
Тип: Изобретение
Номер охранного документа: 0002615099
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.ba61

Способ получения наночастиц элементного аморфного селена

Изобретение относится к области биохимии. Предложен способ получения наночастиц элементного аморфного селена. Способ включает внесение селенита натрия в культуру фототрофных бактерий Rhodobacter capsulatus В10 из расчета 5 мМ/л, инкубирование культуры с селенитом, отделение селена от...
Тип: Изобретение
Номер охранного документа: 0002615461
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.be2f

Стенд для калибровки устройства для масс-спектрометрического измерения газовых потоков

Изобретение относится к вакуумной технике, масс-спектрометрической технике и может быть использовано в области исследования газовой проницаемости материалов и задач, сопряженных с точным измерением газовых потоков. Стенд для калибровки устройства масс-спектрометрического измерения газовых...
Тип: Изобретение
Номер охранного документа: 0002616927
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bf25

Противоопухолевое лекарственное средство на основе никлозамида

Изобретение относится к фармацевтической промышленности, а именно к противоопухолевому лекарственному средству на основе никлозамида в виде частиц субмикронного размера (не более 500 нм). Лекарственное средство включает, мас.%: никлозамид – 3,6-6,5, сополимер молочной и гликолевой кислот с...
Тип: Изобретение
Номер охранного документа: 0002617049
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.c1c1

Способ выделения липидов из биомассы микроводорослей рода chlorella

Изобретение относится к области биотехнологии. Предложен способ выделения липидов для биодизеля из биомассы микроводоросли рода Chlorella. Способ включает гомогенизацию сухой биомассы микроводоросли измельчением, обработку смесью органических растворителей хлороформ-метанол или хлороформ-этанол...
Тип: Изобретение
Номер охранного документа: 0002617959
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.ca35

Способ выращивания эпитаксиальных пленок дисилицида стронция на кремнии

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно новой фазы дисилицида стронция, обладающего в контакте с кремнием низкой высотой барьера Шоттки, и может быть использовано для создания контактов истока/стока в технологии производства полевых...
Тип: Изобретение
Номер охранного документа: 0002620197
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.d0bf

Энергетическая установка

Изобретение относится к воздухонезависимым энергоустановкам и может быть использовано для подводных транспортных средств и для других устройств при отсутствии наружного воздуха. Техническим результатом заявленного изобретения является повышение удельной энергии энергоустановки за счет...
Тип: Изобретение
Номер охранного документа: 0002621300
Дата охранного документа: 01.06.2017
Showing 121-130 of 151 items.
25.08.2017
№217.015.9a8c

Способ получения метанола и углеводородов бензинового ряда из синтез-газа

Изобретение относится к способу получения метанола и углеводородов бензинового ряда (УБР) из синтез-газа. Способ проводят в каскаде из трех и более проточных каталитических реакторов (ПКР), при этом синтез-газ (СГ) с первоначальным соотношением водород-оксид углерода 1,5≤Н:СО≤2, последовательно...
Тип: Изобретение
Номер охранного документа: 0002610277
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9db6

Способ извлечения липидов из биомассы микроводорослей chlorella и дрожжей yarrowia lipolytica

Изобретение относится к биотехнологии. Предложен способ извлечения липидов из микроводоросли рода Chlorella и дрожжей Yarrowia lipolytica для получения биодизельного топлива. Способ включает дополнение стадии культивирования микроводорослей Chlorella стадией культивирования дрожжей Yarrowia...
Тип: Изобретение
Номер охранного документа: 0002610675
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.a186

Лекарственный препарат противотуберкулезного действия на основе d-циклосерина в виде лиофилизата и способ получения лекарственного препарата

Изобретение относится к фармацевтической промышленности и медицине и представляет собой лекарственный препарат противотуберкулезного действия в виде лиофилизата для перорального применения массой 2.0±0.20 г, содержащий D-циклосерин 12.5±1.25 мас.%, полимер PLGA 50/50 50±5.0 мас.%, поливиниловый...
Тип: Изобретение
Номер охранного документа: 0002606839
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b438

Способ получения радионуклида никель-63

Изобретение относится к способу выделения изотопа Ni из облученной металлической мишени для использования в автономных источниках питания, например, основанных на бетавольтаическом эффекте. Способ включает нагревание металлического никеля, содержащего радионуклид Ni до температуры его испарения...
Тип: Изобретение
Номер охранного документа: 0002614021
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b953

Способ выращивания эпитаксиальной пленки дисилицида европия на кремнии

Изобретение относится к способу получения эпитаксиальной пленки дисилицида европия на кремниевой подложке и может быть использовано для создания контактов истока/стока в технологии производства полевых МОП транзисторов с барьером Шоттки (SB-MOSFET), а также для создания устройств спинтроники в...
Тип: Изобретение
Номер охранного документа: 0002615099
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.ba61

Способ получения наночастиц элементного аморфного селена

Изобретение относится к области биохимии. Предложен способ получения наночастиц элементного аморфного селена. Способ включает внесение селенита натрия в культуру фототрофных бактерий Rhodobacter capsulatus В10 из расчета 5 мМ/л, инкубирование культуры с селенитом, отделение селена от...
Тип: Изобретение
Номер охранного документа: 0002615461
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.be2f

Стенд для калибровки устройства для масс-спектрометрического измерения газовых потоков

Изобретение относится к вакуумной технике, масс-спектрометрической технике и может быть использовано в области исследования газовой проницаемости материалов и задач, сопряженных с точным измерением газовых потоков. Стенд для калибровки устройства масс-спектрометрического измерения газовых...
Тип: Изобретение
Номер охранного документа: 0002616927
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bf25

Противоопухолевое лекарственное средство на основе никлозамида

Изобретение относится к фармацевтической промышленности, а именно к противоопухолевому лекарственному средству на основе никлозамида в виде частиц субмикронного размера (не более 500 нм). Лекарственное средство включает, мас.%: никлозамид – 3,6-6,5, сополимер молочной и гликолевой кислот с...
Тип: Изобретение
Номер охранного документа: 0002617049
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.c1c1

Способ выделения липидов из биомассы микроводорослей рода chlorella

Изобретение относится к области биотехнологии. Предложен способ выделения липидов для биодизеля из биомассы микроводоросли рода Chlorella. Способ включает гомогенизацию сухой биомассы микроводоросли измельчением, обработку смесью органических растворителей хлороформ-метанол или хлороформ-этанол...
Тип: Изобретение
Номер охранного документа: 0002617959
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.ca35

Способ выращивания эпитаксиальных пленок дисилицида стронция на кремнии

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно новой фазы дисилицида стронция, обладающего в контакте с кремнием низкой высотой барьера Шоттки, и может быть использовано для создания контактов истока/стока в технологии производства полевых...
Тип: Изобретение
Номер охранного документа: 0002620197
Дата охранного документа: 23.05.2017
+ добавить свой РИД