×
10.10.2014
216.012.fc4a

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ НАНОАЛМАЗНОГО МАТЕРИАЛА КОМБИНИРОВАННОЙ ЭЛЕКТРОМЕХАНИЧЕСКОЙ ОБРАБОТКОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу нанесения наноалмазного материала комбинированной электромеханической обработкой и может быть использовано в машиностроительной, авиационной, автомобильной и других отраслях промышленности. В нормальных атмосферных условиях проводят обработку, при которой на поверхность трения стальных деталей наносят обмазку, состоящую из коагулированных наноалмазов в виде порошка размером 200…250 нм, смешанных с консистентным графитным смазочным материалом, и затем осуществляют электромеханическую обработку с обеспечением поверхностного слоя стали с феррито-сорбито-трооститной структурой и формированием на поверхности стали наноструктурного слоя из графита, спеченного с наноалмазами, с получением общего упрочненного слоя толщиной до 1,2 мм. Обеспечивается повышение триботехнических показателей и износостойкости деталей с покрытием. 4 ил., 1 табл.
Основные результаты: Способ нанесения наноалмазного материала комбинированной электромеханической обработкой, включающий обработку стальных поверхностей деталей и электромеханическую обработку, отличающийся тем, что упомянутую обработку осуществляют в нормальных атмосферных условиях путем нанесения на поверхность трения стальных деталей обмазки, состоящей из коагулированных наноалмазов в виде порошка размером 200…250 нм, смешанных с консистентным графитным смазочным материалом, и проводят электромеханическую обработку с обеспечением поверхностного слоя стали с феррито-сорбито-трооститной структурой и формированием на поверхности стали наноструктурного слоя из графита, спеченного с наноалмазами, с получением общего упрочненного слоя толщиной до 1,2 мм.

Изобретение относится к способам нанесения наноразмерных углеродных материалов в поверхность деталей машин и механизмов на основе применения комбинированной электромеханической обработки и может быть использовано в машиностроительной, авиационной, автомобильной и других отраслях промышленности.

Известен способ ионной имплантации поверхностей деталей из титановых сплавов [1], включающий имплантирование ионов азота в поверхность сплава, отличающийся тем, что перед имплантацией поверхность детали обрабатывают лазерным лучом, который фокусируют в пятно формой круга, с удельной мощностью излучения 200-450 Вт/мм2, после чего пятно перемещают по обрабатываемой поверхности со скоростью 45-70 мм/с, а ионы азота имплантируют после лазерной обработки с дозой (2-6)·1017 ион/см2.

Недостатком данного способа является большая длительность цикла обработки деталей, что ведет к повышению трудоемкости технологического процесса в целом.

Известен способ ионной имплантации поверхности деталей из конструкционных сталей [2], включающий обработку поверхности деталей бомбардировкой потоком ионов меди и свинца при использовании в качестве катода имплантера сплава меди со свинцом, отличающийся тем, что катод имплантера изготавливают из монотектического сплава меди со свинцом, в который контактным легированием вводят 7-12% олова, а имплантацию осуществляют с дозой (5,5-8,5)·1017 ион/см2.

Недостатком отмеченного способа является невозможность обеспечения износостойкости на требуемом уровне из-за малой глубины проникновения ионов и недостаточной степени упрочнения модифицированной поверхности.

Известен способ ионной имплантации конструкционных сталей [3], при котором в поверхность стали имплантируют ионы меди с дозой (1-5)·1017 ион/см2, отличающийся тем, что после имплантирования ионов меди проводят имплантацию ионов свинца, дозу имплантации которого выбирают в интервале (0,2…0,3)·D, где D - доза имплантирования ионами меди.

Недостатком данного аналога является ограниченное увеличение износостойкости обработанной поверхности деталей. Увеличение дозы имплантирования ионов меди приводит к росту длительности обработки при постоянстве значения усталости обработанной стали и появлению задиров на имплантированной поверхности при испытаниях на износостойкость.

Известны способы комбинированного упрочнения, основанные на термическом и деформационном воздействии на обрабатываемую поверхность. Комбинированное локальное термодеформационное воздействие при фрикционно-упрочняющей (ФРУО) и электромеханической (ЭМО) обработке приводят к формированию на обработанной поверхности тонких (до 0,1 мм) высокотвердных слоев [4].

Недостаток данной обработки - небольшая глубина упрочнения.

Главным недостатком всех приведенных способов является то, что при использовании их получается неоднородная структурная стабильность и небольшая глубина упрочненного поверхностного слоя, а процессы происходят при определенных условиях состояния окружающей среды.

Наиболее близким аналогом предложенного изобретения является способ нанесения наноалмазного материала на поверхность деталей (RU 2470407 С2, МПК Н01J37/32, 20.12.2012).

Задача изобретения - разработать способ формирования качественного поверхностного слоя за счет увеличения глубины и степени упрочнения поверхности с достижением ее стабильного фазового, микро- и наноструктурного состояния, обеспечивающего оптимальные триботехнические показатели рабочих поверхностей деталей машин и механизмов.

Данный способ нанесения наноалмазного материала комбинированной электромеханической обработкой включает обработку стальных поверхностей деталей и электромеханическую обработку, причем упомянутую обработку осуществляют в нормальных атмосферных условиях, при этом на поверхность трения стальных деталей наносят обмазку, состоящую из коагулированных наноалмазов в виде порошка размером 200…250 нм, смешанных с консистентным графитным смазочным материалом, и проводят электромеханическую обработку с обеспечением поверхностного слоя стали с феррито-сорбито-трооститной структурой и формированием на поверхности стали наноструктурного слоя из графита, спеченного с наноалмазами, с получением общего упрочненного слоя толщиной до 1,2 мм.

Повышение износостойкости поверхностей трения деталей машин достигается применением наноалмазов в качестве упрочняющих (армирующих) поверхностный слой частиц. Синтезированные в сильно неравновесных условиях наноалмазы не имеют четкой кристаллической огранки. Округлая форма наноалмазов наряду с модификацией их поверхности при детонационном синтезе обеспечивает эффективное их применение для повышения механических характеристик материалов и обеспечивает в ряде случаев уникальные триботехнические свойства за счет образования пространственной сетки физических связей на границе раздела структуры материала с наночастицами, имеющими повышенные адсорбционные свойства.

Создание поверхностных слоев с нанесенными наноалмазами способствует повышению плотности слоев, их прочности и обеспечивает наноструктурное состояние, соответствующее повышенной износостойкости в условиях трения.

Микро- и наноструктурное состояние поверхностей трения формируется в процессе электромеханической обработки (ЭМО) при создании поверхностных слоев с внедренными высокотвердыми дисперсными частицами, состоящими из коагулированных наноалмазов. Основное влияние на износостойкость обработанных поверхностей оказывают характер распределения и морфология дисперсной упрочняющей фазы (упрочняющий композиционный эффект, реализующийся в результате распада пересыщенных твердых растворов структуры материала).

Электромеханическая обработка имеет широкие технологические возможности управления микро- и наноструктурным состоянием и триботехническими показателями поверхностей трения деталей машин, а также снижением себестоимости, трудоемкости и энергоемкости в 3…5 раз по сравнению с другими, наиболее распространенными технологическими методами, в частности лазерной и плазменной обработками. При этом эксплуатационные показатели деталей повышаются в 1,5…3 раза. Эффект упрочнения при ЭМО достигается благодаря тому, что реализуются высокие скорости нагрева и охлаждения и достигается высокая степень измельченности аустенитного зерна, которая обусловливает мелкокристаллические структуры закалки поверхностного слоя, обладающего высокими физико-механическими и эксплуатационными свойствами [5-8].

Внедрение наноалмазов в поверхностный слой при электромеханической обработке производится на определенных режимах в коагулированном состоянии (фракции порошка размером 200…250 нм). На поверхность перед обработкой наноалмазы наносятся обмазкой, предварительно размешанные с консистентным графитным смазочным материалом в определенной пропорции (для лучшей токопроводимости). Частично эти коагулянты графитизируются под действием температуры, что приводит к дополнительному насыщению поверхностного слоя углеродом. Большая часть коагулянтов внедряется в формируемый поверхностный слой, армируя его.

Затем на этой же поверхности проводится ЭМО на упрочняющих режимах. В процессе высокотемпературного пластического деформирования под воздействием высоких температур и давлений происходит аустенизация поверхностного слоя стали в зоне контакта. Углерод из обмазки, состоящей из графита и наноалмазов, в твердофазном процессе насыщения диффундирует в поверхностные слои, повышая содержание углерода в аустените.

При образовании многослойной структуры поверхностных объемов стали 45 с ростом содержания углерода и повышенной скорости охлаждения, в структуре стали увеличивается доля перлита с интенсивным снижением толщины ферритной окантовки вокруг перлитных зерен как следствие процесса нормализации стали при интенсивном охлаждении. В вышележащем слое вследствие интенсивного охлаждения структура стали состоит из ферритной оторочки (сетки) и сорбито-троооститных зон (структуры закалки). Следовательно, в процессе упрочнения ЭМО сталь подвергается одновременно нормализации с ускоренным охлаждением и образованием ферритно-перлитной структуры и закалке с образованием ферритно-сорбито-трооститной структуры.

Вследствие высокотемпературного пластического деформирования на поверхности стали образуется слой спеченного графита с внедренными наноалмазами, состоящий, в основном, из спеченной массы графита и наноалмазов. На внешней поверхности этого слоя образуется небольшой слой передеформированного металла, который удаляется при отделочной обработке алмазным выглаживанием.

На поверхности раздела ферритно-сорбито-трооститной структуры стали и слоя спеченного графита с внедренными наноалмазами формируется переходный слой, структура которого состоит из металлической матрицы стали, насыщенной внедренными наноалмазами.

Структура наноалмазного графитного слоя состоит из основы, спеченного графита, наноалмазов различных размерных групп и включений карбидов различной природы, в частности цементита.

Полученный слой обладает высокими триботехническими характеристиками, так как его основа (спеченный графит) является высокоэффективным антифрикционным материалом, армированным внедренными наноалмазами и дисперсными частицами карбидов различной природы, в частности цементита.

Упрочненный нижележащий ферритно-сорбито-трооститный слой имеет мелкозернистую текстурированную износостойкую структуру. Существенным компонентом данной структуры является измельченное зерно феррита, получаемое вследствие перекристаллизации сильно деформированного аустенита при электромеханическом упрочнении. Размер зерна феррита по сравнению с основой материала уменьшается в 15 раз.

Микротвердость поверхностного слоя (при обработке среднеуглеродистых сталей) достигает 1000 HV на поверхности. Глубина общего упрочненного слоя - до 1,2 мм. При этом осуществляется плавный переход твердости упрочненного слоя от поверхности к неупрочненной сердцевине детали, что не приводит к его отслоению при динамических нагрузках.

Комплексные сравнительные испытания образцов проводились на автоматизированной установке, созданной на базе машины трения МИ-1М и предназначенной для проведения триботехнических испытаний цилиндрических образцов из металлических материалов и сплавов, позволяющих определять триботехнические показатели поверхностей в условиях трения скольжения при граничной смазке нормализованным методом с применением автоматизированной системы научных исследований (АСНИ) [9, 10].

Испытания образцов проводились при следующих условиях: скорость скольжения υ=1 м/с; нормальное усилие нагружения N=100±0,5%, Н (соответствует давлениям, рассчитанным по Герцу, порядка 150 МПа); вид первоначального контакта - пластический насыщенный; вид смазки - граничная; вид смазывания - окунанием; ведущий вид изнашивания - усталостное; смазочный материал - масло индустриальное И-20А ГОСТ 20799-88; материал индентора - твердый сплав ВК8; общее время испытаний каждого образца - 8 ч.

По результатам анализа регистрируемых параметров определяли следующие показатели триботехнических свойств:

- время приработки t0, ч, определяемое как время от начала испытания до момента времени выхода кривой изнашивания на участок нормального изнашивания;

приработочный износ h0, мкм, как величина сближения, определяемая в момент времени окончания приработки t0;

- среднее значение коэффициента трения в период нормального изнашивания f;

- f0/f - отношение максимального значения коэффициента трения в период приработки f0 к его среднему значению в период нормального изнашивания f;

- среднее значение интенсивности изнашивания в период нормального изнашивания

,

где h, мкм, - суммарная величина износа образца за время испытаний; L, мкм, - путь трения, пройденный поверхностью образца за время испытаний; L0=3,6·109·t0·υ, мкм, - путь трения, пройденный поверхностью образца за время приработки;

- значение интенсивности изнашивания за общее время испытаний Ih∑=h/L.

Результаты триботехнических испытаний образцов, изготовленных из стали 45, после различных методов обработки представлены в табл.1, а также на рис.1 - результаты испытаний образца, изготовленного из стали 45, после объемной закалки и низкотемпературного отпуска, рис.2 - результаты испытаний образца, изготовленного из стали 45, после электромеханического упрочнения, рис.3 - результаты испытаний образца, изготовленного из стали 45, после ФПУ, рис.4 - результаты испытаний образца, изготовленного из стали 45, после формирования внедренного наноалмазами слоя и последующего электромеханического упрочнения (ИНЭМО).

Таблица 1
Триботехническое свойство Показатель Значение показателя для образца
ТО ЭМО ФПУ ИНЭМО
Прирабатываемость t0, ч 2,78 2,93 1,95 2,03
h0,мкм 11,5 6,0 3,5 2,5
f0/f 1,58 2,94 3,28 2,60
Антифрикционность f 0,33 0,17 0,035 0,098
Износостойкость h, мкм 16,1 7,5 5,6 4,1
Ih·10-10 2,42 0,82 0,96 0,74
Ih∑·10-10 5,55 2,59 1.93 1,42

По результатам триботехнических испытаний установлено, что износостойкость образцов с имплантированным наноалмазами слоем и последующим электромеханическим упрочнением (ИНЭМО) в период нормального изнашивания повысилась по сравнению (в скобках указаны значения для общего времени испытаний):

- с термообработанными образцами (ТО) - в 3,3 (3,9) раза;

- с упрочненными электромеханической обработкой (ЭМО) - в 1,1 (1,8) раза;

- с обработанными финишным плазменным упрочнением (ФПУ) - в 1,3 (1,4) раза.

Технико-экономически выгодно использовать для ответственных пар трения не дорогостоящие высокоуглеродистые и высоколегированные стали, а относительно дешевые среднеуглеродистые, на которых можно получить аналогичную микротвердость и повышенную износостойкость, чего не позволяют добиться в подобной степени другие методы термообработки и поверхностного упрочнения. При технологии ИНЭМО коэффициент упрочнения достигает k=3,5-4. Применение данной технологии возможно на машиностроительных предприятиях в качестве высокоэффективного способа обеспечения и повышения эксплуатационных показателей деталей машин на стадии их изготовления.

Источники информации

1. Патент №2470091.

2. Патент №2465373.

3. Патент №2442843.

4. Киричек А.В. Технология и оборудование статико-импульсной обработки поверхностным пластическим деформированием / Киричек А.В., Соловьев Д.Л., Лизуткин А.Г. - М.: Машиностроение, 2004. - С.51-70.

5. Горленко А.О. Электромеханические методы обработки. Энциклопедия // T.III-3. Технология изготовления деталей машин. / А.О.Горленко [и др.] / Под общ. ред. А.Г.Суслова, М.: Машиностроение, 2000. - С.356-361.

6. Суслов, А.Г. Электромеханическая обработка: справочник технолога-машиностроителя: в 2-х т. / А.Г.Суслов, А.О.Горленко, под ред. A.M.Дальского, А.Г.Суслова, А.Г.Косиловой, Р.К.Мещерякова. - 5-е изд., перераб. и доп. - М.: Машиностроение, 2001. - Т.2. - С.553-562.

7. Горленко А.О. Упрочнение поверхностей трения деталей машин при электромеханической обработке / А.О. Горленко // Вестн. БГТУ. - 2011. - №3. - С.4-8.

8. Горленко А.О. Импульсная электромеханическая обработка / А.О.Горленко, О.А.Горленко // Наукоемкие технологии в машиностроении. - 2011. - №6(06). - С.21-25.

9. Горленко А.О. Нормализация триботехнических испытаний для создания базы данных по одноступенчатому технологическому обеспечению износостойкости / А.О.Горленко, М.И.Прудников // Трение и смазка в машинах и механизмах. - №9. - 2008. - С.7-13.

10. Горленко А.О. Триботехнические испытания поверхностей деталей нормализованным методом / А.О.Горленко, М.И. Прудников // Справочник. Инженерный журнал. - Приложение №10. - 2009. - С.22-24.

Способ нанесения наноалмазного материала комбинированной электромеханической обработкой, включающий обработку стальных поверхностей деталей и электромеханическую обработку, отличающийся тем, что упомянутую обработку осуществляют в нормальных атмосферных условиях путем нанесения на поверхность трения стальных деталей обмазки, состоящей из коагулированных наноалмазов в виде порошка размером 200…250 нм, смешанных с консистентным графитным смазочным материалом, и проводят электромеханическую обработку с обеспечением поверхностного слоя стали с феррито-сорбито-трооститной структурой и формированием на поверхности стали наноструктурного слоя из графита, спеченного с наноалмазами, с получением общего упрочненного слоя толщиной до 1,2 мм.
СПОСОБ НАНЕСЕНИЯ НАНОАЛМАЗНОГО МАТЕРИАЛА КОМБИНИРОВАННОЙ ЭЛЕКТРОМЕХАНИЧЕСКОЙ ОБРАБОТКОЙ
СПОСОБ НАНЕСЕНИЯ НАНОАЛМАЗНОГО МАТЕРИАЛА КОМБИНИРОВАННОЙ ЭЛЕКТРОМЕХАНИЧЕСКОЙ ОБРАБОТКОЙ
СПОСОБ НАНЕСЕНИЯ НАНОАЛМАЗНОГО МАТЕРИАЛА КОМБИНИРОВАННОЙ ЭЛЕКТРОМЕХАНИЧЕСКОЙ ОБРАБОТКОЙ
СПОСОБ НАНЕСЕНИЯ НАНОАЛМАЗНОГО МАТЕРИАЛА КОМБИНИРОВАННОЙ ЭЛЕКТРОМЕХАНИЧЕСКОЙ ОБРАБОТКОЙ
Источник поступления информации: Роспатент

Showing 1-1 of 1 item.
30.10.2019
№219.017.dbc4

Способ внедрения в поверхностный слой углеродистых конструкционных сталей карбидов и оксидов тугоплавких металлов комбинированным пластическим деформированием

Изобретение относится к способам имплантирования материалов на основе карбида вольфрама в поверхность деталей машин и может быть использовано в машиностроительной, авиационной, автомобильной и других отраслях промышленности. Способ включает обработку стальных поверхностей деталей в открытой...
Тип: Изобретение
Номер охранного документа: 0002704345
Дата охранного документа: 28.10.2019
+ добавить свой РИД