×
10.10.2014
216.012.fbda

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ "ВИРТУАЛЬНЫХ" КАНАЛОВ ПРИЕМА СИГНАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники и может использоваться при проектировании и эксплуатации комплексов радиопеленгации или систем радиосвязи портативного, мобильного (бортового) и стационарного базирования. Технический результат - повышение устойчивости функционирования методов оценки напряженности электромагнитного или акустического поля Для этого на каждом элементе антенной решетки записывают интервал на временном интервале [0,Т], производят формирование дискретного спектра напряженности поля с использованием процедуры преобразования Фурье, при этом. для каждой из полученных спектральных компонент находят вектор комплексных амплитуд/вспомогательных источников как приближенное решение матрично-векторного уравнения с использованием процедуры квазирешения. Число вспомогательных источников определяется как число наиболее значимых собственных чисел автокорреляционной матрицы принятых антенной решеткой сигналов, т.е. наибольших и отличающихся от остальных по величине не менее, чем на порядок. Далее определяют значения поля спектральной компоненты в произвольной точке плоскости антенной решетки (формируют «виртуальный» канал приема сигналов) как скалярное произведение найденного вектора комплексных амплитуд вспомогательных источников и соответствующего вектора «виртуального» канала приема сигналов. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области радиотехники и может использоваться при проектировании и эксплуатации комплексов радиопеленгации или систем радиосвязи портативного, мобильного (бортового) и стационарного базирования.

Известен способ оценки напряженности электромагнитного или акустического поля по сигналам элементов антенной решетки, расположенных вблизи искажающего поле рассеивателя [1], заключающийся в том, что на каждом элементе антенной решетки записывают сигнал на временном интервале [0,Т], формируют дискретный спектр напряженности поля, выполняя над записанным сигналом процедуру преобразования Фурье, для каждой спектральной компоненты находят вектор В коэффициентов интерполяционной модели поля, удовлетворяющий матрично-векторному уравнению U(N)=QB, левая часть которого представляет собой вектор U(N) напряженностей поля спектральной компоненты элементов антенной решетки, а правая часть представляет собой произведение матрицы антенной решетки Q, элементы которой зависят от частоты и расположения элементов антенной решетки, и искомого вектора B коэффициентов интерполяционной модели поля, определяют значение поля спектральной компоненты в произвольной точке плоскости антенной решетки как скалярное произведение найденного вектора В коэффициентов интерполяционной модели поля и вектора q, зависящего от частоты и положения этой оцениваемой точки.

Однако описанный выше способ основан на необходимости решения систем линейных алгебраических уравнений (СЛАУ), в состав которых входят плохообусловленные матрицы, из-за чего он теряет устойчивость функционирования при наличии погрешностей в измерении комплексных амплитуд на элементах физически существующей антенной решетки, вызванных действиями шумов или несимметричностью каналов

Изобретение направлено на повышение устойчивости методов оценки напряженности электромагнитного или акустического поля (формирования «виртуальных» каналов приема сигналов) при их функционировании в условиях наличия шумов или несимметричности каналов антенной системы.

Это достигается тем, что на каждом элементе антенной решетки записывают сигнал на временном интервале [0,Т], формируют дискретный спектр напряженности поля, выполняя над записанным временным сигналом процедуру преобразования Фурье, для каждой спектральной компоненты находят вектор В комплексных амплитуд вспомогательных источников поля с помощью квазирешения матрично-векторного уравнения , например, в виде . При этом - вектор напряженностей поля спектральной компоненты элементов антенной решетки, Q - матрица вспомогательных источников, элементы которой зависят от частоты и взаимного расположения элементов антенной решетки и вспомогательных источников, Н H - знак Эрмитового сопряжения. При этом число вспомогательных источников определяется как, например, как число наиболее значимых собственных чисел автокорреляционной матрицы принятых антенной решеткой сигналов, т.е. наибольших и отличающихся от остальных по величине не менее, чем на порядок. Элементы матрицы Q определяются как Qn,m=exp(i·k0·rn,m)/rn,m, где k0 - волновое число свободного пространства, - расстояние от n-го элемента антенной решетки m-го до вспомогательного источника.

Формируют «виртуальный» канал приема сигналов (определяют значение поля спектральной компоненты в произвольной точке плоскости антенной решетки) как скалярное произведение вектора комплексных амплитуд вспомогательных источников и вектора , элементы которого зависят от частоты, положения формируемого «виртуального» канала приема сигналов в пространстве и числа вспомогательных источников. При этом произвольный m-й элемент вектора определяют как gm=exp(i·k0·rm)/rm, где k0 - волновое число свободного пространства, - расстояние от точки, в которой формируется «виртуальный» канал приема сигналов (определяется значение поля спектральной компоненты) до m-го вспомогательного источника.

Значение напряженности электромагнитного или акустического поля в точке плоскости антенной решетки, получаемое в конечном счете, трактуется как полезный сигнал с некоторого «виртуального» антенного элемента, размещенного в данной точке пространства. Таким образом, можно говорить о формировании «виртуальных» каналов приема сигналов, информация с которых может быть использована для повышения отношения сигнал / шум, уточнения координат источников радиоизлучения и т.д.

Отличительной особенностью данного метода является отсутствие необходимости решения системы линейных алгебраических уравнений (СЛАУ) относительно неизвестных комплексных амплитуд вспомогательных источников, в состав которых входят плохообусловленные матрицы. В данном случае вместо решения СЛАУ используется процедура квазирешения. Кроме того, число используемых вспомогательных источников определяется как величина наиболее значимых собственных чисел автокорреляционной матрицы входных сигналов, т.е. наибольших и отличающихся от остальных по величине не менее, чем на порядок.

На чертеже изображена блок-схема предлагаемого устройства для реализации способа. Устройство содержит N элементов антенной решетки, каждый из которых соединен с соответствующим приемником сигнала 1.1÷1.N. Выход каждого приемника сигнала 1.1÷1.N соединен со входом соответствующего блока формирования спектра 2.1÷2.N. Спектральные компоненты 1÷L с выходов блоков формирования спектров 2.1÷2.N поступают на соответствующие входы 1÷N блоков обработки сигнала спектральной компоненты 3.1÷3.L. Каждый блок обработки сигнала спектральной компоненты 3.1÷3.L содержит последовательно соединенные узел нахождения амплитуд вспомогательных источников 4 и узел нахождения оценки напряженности поля в точке плоскости антенной решетки 5.

В состав устройства также входят узел определения числа вспомогательных источников 6, блок формирования матриц вспомогательных источников 7, а также блок формирования векторов «виртуальных» каналов приема сигналов 8. Выход узла определения числа вспомогательных источников 6 соединен со входом блока формирования матриц вспомогательных источников 7. Выходы блока формирования матриц вспомогательных источников 7 соединены, соответственно, со входами узлов нахождения амплитуд вспомогательных источников 4. Выходы блока формирования векторов «виртуальных» каналов приема сигналов 8 соединены, соответственно, со входами узлов нахождения оценки напряженности поля в точках плоскости антенной решетки. Выходы узлов нахождения оценки напряженности поля в точках плоскости антенной решетки 5 являются выходами устройства.

Способ осуществляется следующим образом.

Сигнал с каждого элемента антенной решетки поступает на вход приемника сигнала 1.1÷1.N, где производятся процедуры фильтрации, переноса на видеочастоту, аналого-цифрового преобразования и т.д. Видеосигналы с выходов приемников сигнала 1.1÷1.N поступают на входы соответствующих блоков формирования спектра 2.1÷2.N, где записываются на временном интервале [0, Т]. Затем в блоках формирования спектра 2.1÷2.N формируют дискретный спектр напряженности поля, выполняя над записанным временным сигналом процедуру дискретного преобразования Фурье длиной L. Спектральные компоненты 1÷L с выходов блоков формирования спектра 2.1÷2.N поступают на соответствующие входы 1÷N блоков обработки сигнала спектральной компоненты 3.1÷3.L.

В блоке 6, на основе принятых антенной решеткой сигналов, производится определение числа необходимых вспомогательных источников. При этом значение величины используемых вспомогательных источников определяется как число наиболее значимых собственных чисел автокорреляционной матрицы принятых антенной решеткой сигналов, т.е. наибольших и отличающихся от остальных по величине не менее, чем на порядок. Далее, полученное значение используется для формирования матриц вспомогательных источников Q. Каждый элемент матрицы Q определяется как Qn,m=ехр(i·k0·rn,m)/rn,m, где - расстояние от n-го элемента антенной решетки m-го до вспомогательного источника.

Для каждой спектральной компоненты в узле нахождения амплитуд вспомогательных источников 4 находят вектор данных амплитуд . Вектор находят с помощью процедуры квазирешения матрично-векторного уравнения , в виде . При этом - вектор напряженностей поля спектральной компоненты элементов антенной решетки, значения которого поступают с блоков формирования спектра 2.1÷2.L, Q - матрица вспомогательных источников, элементы которой зависят от частоты и взаимного расположения элементов антенной решетки и вспомогательных источников, H - знак Эрмитового сопряжения.

Значение вектора , определенное в узле нахождения амплитуд вспомогательных источников поля 4 поступает на первый вход узла нахождения оценки напряженности поля в точке плоскости антенной решетки 5. На второй вход узла оценки напряженности поля в точке, лежащей в плоскости антенной решетки 5, поступает значение вектора «виртуального» канала приема сигналов , которое формируется в блоке 8. Произвольный m-й элемент вектора определяют как gm=ехр(i·k0·rm)/rm, где k0 - волновое число свободного пространства, - расстояние от точки, в которой формируется «виртуальный» канал приема сигналов (определяется значение поля спектральной компоненты) до m-го вспомогательного источника. В узле оценки напряженности поля в точке плоскости антенной решетки значение поля спектральной компоненты определяется как скалярное произведение вектора комплексных амплитуд вспомогательных источников и вектора оцениваемой точки: .

Источник информации

1. RU, патент №2405165 C2, кл., G01S 3/00, 27.11.2010.


СПОСОБ ФОРМИРОВАНИЯ
СПОСОБ ФОРМИРОВАНИЯ
СПОСОБ ФОРМИРОВАНИЯ
СПОСОБ ФОРМИРОВАНИЯ
СПОСОБ ФОРМИРОВАНИЯ
СПОСОБ ФОРМИРОВАНИЯ
СПОСОБ ФОРМИРОВАНИЯ
СПОСОБ ФОРМИРОВАНИЯ
Источник поступления информации: Роспатент

Showing 181-190 of 243 items.
20.04.2016
№216.015.36d0

Способ повышения прочности тракта охлаждения теплонапряженных конструкций

Изобретение относится к области теплоэнергетики, а именно к теплообменным аппаратам, и может быть использовано при создании охлаждаемых конструкций с большими удельными тепловыми потоками. Способ повышения прочности тракта охлаждения теплонапряженных конструкций, образованного путем скрепления...
Тип: Изобретение
Номер охранного документа: 0002581508
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36e2

Сегментный ветроэлектрогенератор

Изобретение относится к области ветроэнергетики и может быть использовано для преобразования энергии ветра в электрическую энергию. Сегментный ветроэлектрогенератор содержит роторные ферромагнитные элементы, установленные на лопастях ветроколеса, статор, башню, корпус с поворотным основанием,...
Тип: Изобретение
Номер охранного документа: 0002581682
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36e4

Статор

Изобретение относится к области ветроэнергетики, в частности к статорам ветроэлектрогенератора. Статор содержит основание, крепежные элементы, магнитопроводы и катушки. Магнитопроводы выполнены в виде многолучевой звезды с лучеобразными выступами. Катушки выполнены в виде обмоток и охватывают...
Тип: Изобретение
Номер охранного документа: 0002581254
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36f5

Пропеллерный насос

Изобретение относится к пропеллерным (осевым) насосам. Пропеллерный насос содержит основание с подшипниками, ступицу, горизонтальный вал, лопасти колеса, роторы, имеющие магнитный контакт со статорами, установленными на основании. Роторы соединены с входными валами дополнительных редукторов, на...
Тип: Изобретение
Номер охранного документа: 0002581748
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3706

Ротор сегментного ветроэлектрогенератора

Изобретение относится к области ветроэнергетики, в частности к ветроэлектрогенераторам сегментного типа. Ротор сегментного ветроэлектрогенератора содержит ступицу, лопасти, дугообразные элементы и магнитопроводы. Дугообразные элементы снабжены окнами, в каждой паре из которых размещены...
Тип: Изобретение
Номер охранного документа: 0002581303
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.370c

Кварцевый реактор для исследования температурной зависимости электросопротивления высокорезисторных объектов

Изобретение относится к вакуумно-плазменной обработке и может быть использовано при создании устройств и способов для исследования свойств нанокомпозитов. Кварцевый реактор для исследования температурной зависимости электрического сопротивления высокорезистивных объектов, преимущественно,...
Тип: Изобретение
Номер охранного документа: 0002581628
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3713

Устройство для формирования трубчатых изделий из композиционных материалов

Изобретение относится к области изготовления трубчатых изделий малого диаметра из композиционных материалов. Техническим результатом изобретения является повышение равномерности деформации формуемого материала, повышение производительности и надежности устройства. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002581412
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3742

Способ нанесения покрытия из оксида циркония на поверхность изделия из никелевого сплава

Изобретение относится к области материаловедения, в частности к напылению теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий,...
Тип: Изобретение
Номер охранного документа: 0002581546
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.376d

Лазерный диод

Лазерный диод содержит излучающий элемент с линзой для формирования излучения. Линза включает центральную зону, которая имеет оптическую силу и обеспечивает коллимирование потока излучения. Лучи, прошедшие через центральную зону, отражаются от внешней наклонной грани линзы, которая выводит...
Тип: Изобретение
Номер охранного документа: 0002581445
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3774

Линза для формирования излучения лазерного диода

Линза для формирования излучения лазерного диода включает расположенные по ходу излучения излучающего элемента диода внутреннюю и внешнюю поверхности. Центральная зона внутренней поверхности имеет оптическую силу, обеспечивающую коллимирование потока излучения. Внешняя поверхность линзы имеет...
Тип: Изобретение
Номер охранного документа: 0002581448
Дата охранного документа: 20.04.2016
Showing 181-190 of 291 items.
27.11.2015
№216.013.93d5

Ветроколесо сегментного ветроэлектрогенератора

Изобретение относится к ветроэнергетике, а именно к ветроколесам ветроустановок с горизонтальной осью вращения, преимущественно предназначенным для работы с электрогенераторами сегментного типа. Ветроколесо сегментного ветроэлектрогенератора содержит ступицу, спицы, обод, лопасти с лонжеронами,...
Тип: Изобретение
Номер охранного документа: 0002569464
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.93d8

Статор электрогенератора

Изобретение относится к области ветроэнергетики, в частности к статорам электрогенератора, входящего в состав ветроагрегата. Cтатор электрогенератора содержит магнитопроводы, перемычки, установленные между ними, рабочие и возбуждающие катушки и крепежные элементы. Магнитопроводы выполнены в...
Тип: Изобретение
Номер охранного документа: 0002569467
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.93d9

Вертикальный ветродвигатель

Изобретение относится к области ветроэнергетики, в частности к ветродвигателям с вертикальной осью вращения. Вертикальный ветродвигатель содержит вертикальный вал с радиальными перекладинами и чашечными лопастями. Чашечные лопасти снабжены турбулизаторами. Турбулизаторы выполнены в виде...
Тип: Изобретение
Номер охранного документа: 0002569468
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.93da

Роторный ветродвигатель

Изобретение относится к области ветроэнергетики. Роторный ветродвигатель содержит вращающиеся основания с приемниками энергии, центральную стойку с поворотным основанием. На поворотном основании укреплены вращающиеся основания. Приемники энергии выполнены в виде Λ-образных стоек. Между нижними...
Тип: Изобретение
Номер охранного документа: 0002569469
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.93fa

Ротор ветроэлектрогенератора с вертикальной осью

Изобретение относится к области ветроэнергетики, в частности к ветроэлектрогенераторам сегментного типа. Технический результат заключается в повышении технологичности изготовления ротора. Ротор сегментного ветроэлектрогенератора содержит вал, ступицу, основание, П-образные магнитопроводы. При...
Тип: Изобретение
Номер охранного документа: 0002569501
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.93fb

Генератор индукторный

Изобретение относится к индукторным сегментным генераторам, а более конкретно к генераторам, содержащим радиальные спицеобразные роторные элементы, т.е. таким, в качестве роторных элементов которого выступает спицованное колесо, например генератором велосипедов, мотоциклов, автомобилей и т.д....
Тип: Изобретение
Номер охранного документа: 0002569502
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9429

Способ получения массивов углеродных нанотрубок с управляемой поверхностной плотностью

Изобретение может быть использовано при изготовлении сорбентов и армирующих добавок. Сначала подготавливают ростовую подложку путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука. Во время...
Тип: Изобретение
Номер охранного документа: 0002569548
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.942a

Разнотемпературная конденсационная камера

Изобретение относится к оборудованию для пылеулавливания. Разнотемпературная конденсационная камера с газовым трактом преимущественно прямоугольного сечения содержит нижнее днище, верхнее днище, холодную и горячую боковые стенки с устройствами обеспечения разности температур их наружных...
Тип: Изобретение
Номер охранного документа: 0002569549
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.942b

Способ очистки воздуха в разнотемпературной конденсационной камере

Изобретение относится к процессам пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности, в пищевой промышленности. Способ очистки воздуха заключается в том, что очищаемый поток...
Тип: Изобретение
Номер охранного документа: 0002569550
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.942c

Способ получения отверстий в монокристаллических пластинах кремния

Изобретение относится к полупроводниковой технике, а именно к области создания микроструктурных элементов электронных устройств. Способ получения отверстий в монокристаллических пластинах кремния включает подготовку полупроводниковой пластины путем нанесения на ее поверхность мелкодисперсных...
Тип: Изобретение
Номер охранного документа: 0002569551
Дата охранного документа: 27.11.2015
+ добавить свой РИД