×
10.10.2014
216.012.fa59

Результат интеллектуальной деятельности: ГИПЕРЗВУКОВОЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ И СПОСОБ ОРГАНИЗАЦИИ РАБОЧЕГО ПРОЦЕССА

Вид РИД

Изобретение

№ охранного документа
0002529935
Дата охранного документа
10.10.2014
Аннотация: Гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД) содержит корпус, воздухозаборник с центральным телом, внутри которого установлена топливная форсунка в виде газоструйного резонатора с острой передней кромкой, соединенной пилонами с воздухозаборником, камеру сгорания, воспламенитель, сопло, систему управления и твердотопливный картридж для стартового разгона. Способ организации рабочего процесса в ГПВРД заключается в сжигании твердотопливного заряда картриджа, сжатии воздуха в воздухозаборнике, генерировании внутренних ударных волн в проточной части двигателя, подаче в камеру сгорания через топливную форсунку нанодисперсного топлива, содержащего углеродные нанотрубки с капсулированным в них водородом, организации пульсирующего режима горения топливовоздушной смеси в камере сгорания с частотой в диапазоне от 100 до 4000 герц, расширении продуктов горения в сопле и регулировании режима горения. Изобретение направлено на повышение темпа набора скорости, улучшение полноты сгорания топлива и совершенствование массогабаритных характеристик летательного аппарата с ГПВРД. 2 н.п. ф-лы, 1 ил.

Изобретение относится к авиационному двигателестроению, а именно к гиперзвуковым прямоточным воздушно-реактивным двигателям (ГПВРД), и может быть использовано при разработке ГПВРД с разгоняющим твердотопливным картриджем.

Выполненные расчетные и экспериментальные исследования показали, что успешная реализация гиперзвукового полета в атмосфере Земли возможна при комплексном решении таких проблем, как: снижение аэродинамического сопротивления и улучшение массогабаритных характеристик летательного аппарата, повышение полноты сгорания топлива и использование кислорода воздуха в качестве окислителя, а также решении проблем теплозащиты наиболее теплонапряженных элементов двигателя и летательного аппарата. Кроме этого следует иметь в виду, что ГПВРД не имеет стартовой тяги и ему необходим стартовый разгон.

Известен комбинированный ракетно-прямоточный двигатель (патент RU №2015390, МПК F02K 7/18, 1994), содержащий корпус, воздухозаборник, камеру сгорания, сопловой аппарат, топливную систему, воспламенитель, систему управления и установленный в камере сгорания на фиксаторах стартовый двигатель со своим корпусом и соплом.

Недостатком известного комбинированного ракетно-прямоточного двигателя является дополнительный вес корпуса стартового двигателя и его сопла.

Известен также способ формирования рабочего процесса ракетно-прямоточного двигателя и устройство для его осуществления (патент RU №1833790 A1, МПК F02K 7/18, 1993), включающий сжигание твердотопливного заряда, сжатие воздуха в воздухозаборнике, подачу топливе, смешение воздуха с топливом и продуктами неполного сгорания топлива, дожигание топливовоздушной смеси в сталкивающихся сверхзвуковых струях, расширение продуктов горения в сопле и регулирование режима горения. При этом устройство для осуществления способа формирования рабочего процесса комбинированного ракетно-прямоточного двигателя содержит корпус, воздухозаборник, камеру дожигания, выходное сопло, топливную систему с форсункой и ракетный двигатель твердого топлива с камерой сгорания, сообщенной с камерой дожигания газоводами, образованными сверхзвуковыми кососрезанными соплами, связанными с приводами их вращения.

Недостатком известного способа формирования рабочего процесса ракетно-прямоточного двигателя и устройства для его осуществления является сложная организация столкновения сверхзвуковых струй и дожигания продуктов неполного сгорания топлива, а также ненадежная система вращения кососрезанных сопл с резонатором в условиях высоких температур и ударных нагрузок.

Наиболее близким из известных технических решений к предлагаемому гиперзвуковому прямоточному воздушно-реактивному двигателю и способу организации рабочего процесса в нем является принятый за прототип гиперзвуковой прямоточный воздушно-реактивный двигатель и способ организации горения (патент RU №2262000, МПК F02K 7/10, 2005), включающий корпус двигателя, воздухозаборник с центральным телом, топливную форсунку, расположенную перед воздухозаборником и соединенную пилонами с ним, камеру сгорания, воспламенитель и сопло. При этом способ организации горения в гиперзвуковом прямоточном воздушно-реактивном двигателе включает сжатие воздуха в воздухозаборнике, подачу топлива в камеру сгорания перед воздухозаборником в зону, образованную между топливной форсункой, пилонами и воздухозаборником, горение топливовоздушной смеси и последующее расширение продуктов горения в сопле.

Недостатком известного технического решения является протяженная зона подготовки и горения топливовоздушной смеси и низкая тяга двигателя без стартового разгона.

Задачей заявленного изобретения является создание ГПВРД с высокими уровнем тяги и топливной эффективностью в условиях стартового разгона.

Технический результат, получаемый при осуществлении изобретения, заключается в улучшении массогабаритных характеристик летательного аппарата с ГПВРД.

Решение поставленной задачи и технический результат достигаются тем, что в гиперзвуковом прямоточном воздушно-реактивном двигателе, содержащем корпус, воздухозаборник с центральным телом, камеру сгорания, топливную форсунку, расположенную перед воздухозаборником и соединенную пилонами с ним, воспламенитель, сопло и систему управления, в прямоточной части двигателя установлен твердотопливный картридж с воздушными каналами, фиксатором положения и воспламенителем, соединенным с системой управления. Топливная форсунка установлена в центральном теле воздухозаборника и выполнена в виде газоструйного резонатора с острой передней кромкой, вход которого совмещен с носовой частью центрального тела и обращен навстречу набегающему потоку воздуха, внутренняя полость газоструйного резонатора соединена с топливной системой и его задняя и боковая стенки выполнены пористыми с управляемой скважностью.

Решение поставленной задачи и технический результат достигаются тем, что в способе организации рабочего процесса в гиперзвуковом прямоточном воздушно-реактивном двигателе, включающем сжатие воздуха в воздухозаборнике, подачу топлива в камеру сгорания, генерирование внутренних ударных волн в проточной части двигателя, горение топливовоздушной смеси в камере сгорания, расширение продуктов горения в сопле и регулирование режима горения в камере сгорания, сжигают твердотопливный заряд картриджа, подают в камеру сгорания через топливную форсунку нанодисперсное топливо, содержащее углеродные нанотрубки с капсулированным в них водородом двумя потоками: через вход газоструйного резонатора навстречу набегающему потоку воздуха и через его пористые стенки с задержкой по времени на величину 0,1-0,9 Тт, где Тт - время полного сгорания твердотопливного заряда картриджа, и создают пульсирующий режим горения топливовоздушной смеси в камере сгорания с частотой в диапазоне от 100 до 4000 герц.

На фигуре 1 приведена схема заявленного гиперзвукового прямоточного воздушно-реактивного двигателя. Двигатель содержит корпус 1, воздухозаборник 2 с центральным телом 3, камеру сгорания 4, воспламенитель 5, сопло 6, топливную форсунку 7, соединенную пилонами 8 с воздухозаборником 2 и выполненную в виде газоструйного резонатора 9 с острой передней кромкой 10, вход которого совмещен с носовой частью центрального тела 3 и обращен навстречу набегающему потоку воздуха 11. Внутренняя полость 12 газоструйного резонатора 9 соединена с топливной системой двигателя 13. Стенки 14 газоструйного резонатора 9 выполнены пористыми с управляемой скважностью. В проточной части двигателя установлен твердотопливный картридж 15 с воздушными каналами 16, фиксатором положения 17 и воспламенителем 5, соединенным с системой управления 19.

Заявленный способ организации рабочего процесса в гиперзвуковом прямоточном воздушно-реактивном двигателе осуществляют следующим образом. Воспламенитель 5 после команды системы управления 19 поджигает твердотопливный заряд картриджа 15. Двигатель выводят на уровень тяги стартового разгона, набегающий поток воздуха 11 сжимают в воздухозаборнике 2, направляют в зону горения по воздушным каналам 16 и интенсифицирует процесс горения. В зависимости от программы полета и заданного темпа набора скорости в камеру сгорания 4 подают нанодисперсное топливо 20, содержащее углеродные нанотрубки с капсулированным в них водородом двумя потоками: через вход газоструйного резонатора 9 навстречу набегающему потоку 11 воздуха и через его пористые стенки 14 с задержкой по времени на величину 0,1-0,9 от времени полного сгорания твердотопливного заряда картриджа Тт. С помощью газоструйного резонатора 9 формируют пульсирующий режим топливопитания камеры сгорания 4 в частотном диапазоне от 100 до 4000 герц с интенсивным процессом смешения и подготовки к горению топливовоздушной смеси. После полного выгорания твердотопливного заряда картриджа 15 и завершения стартового разгона в проточной части двигателя генерируют систему внутренних ударных волн 18, способствующей переходу на двухстадийный режим горения с пульсирующей детонацией и высокой полнотой сгорания топлива.

Таким образом, преимуществом заявленного гиперзвукового прямоточного воздушно-реактивного двигателя и способа организации рабочего процесса в нем является возможность обеспечить двухстадийный режим горения с пульсирующей детонацией, высокой полнотой сгорания топлива, повышенной топливной эффективностью и улучшить массогабаритные характеристики летательного аппарата с ГПВРД.


ГИПЕРЗВУКОВОЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ И СПОСОБ ОРГАНИЗАЦИИ РАБОЧЕГО ПРОЦЕССА
Источник поступления информации: Роспатент

Showing 211-220 of 266 items.
19.04.2019
№219.017.3239

Способ создания конструкционного керамического материала

Изобретение относится к получению керамических и композиционных материалов, используемых в высокотемпературном газотурбостроении. Для получения конструкционного керамического материала готовят шихту, включающую следующие компоненты, мол. %: SiC - 53-62, BN - 3-7, Аl - 35-40, при этом в нее...
Тип: Изобретение
Номер охранного документа: 0002450998
Дата охранного документа: 20.05.2012
19.04.2019
№219.017.3246

Флюс для плавки и рафинирования магниевых сплавов, содержащих иттрий

Изобретение относится к металлургии цветных сплавов, в частности к флюсам для плавки и рафинирования деформируемых магниевых сплавов, содержащих иттрий. Флюс характеризуется повышенной рафинирующей способностью от металлических примесей, препятствует потере иттрия и имеет следующий состав,...
Тип: Изобретение
Номер охранного документа: 0002451762
Дата охранного документа: 27.05.2012
19.04.2019
№219.017.3361

Электролит никелирования

Изобретение относится к области гальванотехники и может найти применение в авиационной, автомобильной и других отраслях промышленности. Электролит содержит, г/л: никельсульфаминовокислый 325-440, никель-хлористый 4-10, кобальт сульфаминовокислый 12-30, борная кислота 25-40, натрий лаурилсульфат...
Тип: Изобретение
Номер охранного документа: 0002449063
Дата охранного документа: 27.04.2012
19.04.2019
№219.017.3362

Способ нанесения износостойкого покрытия на титановые сплавы

Изобретение относится к нанесению износостойких покрытий и может найти применение в авиастроении и машиностроении. Проводят диффузионную электрохимическую обработку титанового сплава в электролите следующего химического состава, г/л: ортофосфорная кислота - 1100-1200, сегнетова соль или...
Тип: Изобретение
Номер охранного документа: 0002449053
Дата охранного документа: 27.04.2012
19.04.2019
№219.017.3374

Способ нанесения прозрачного электропроводящего покрытия

Изобретение относится к нанесению прозрачных электропроводящих покрытий и может найти применение в авиационной, оптической и других областях техники. Способ включает реактивное магнетронное распыление металлической мишени из сплава индия с оловом и осаждение в рабочей камере покрытия на...
Тип: Изобретение
Номер охранного документа: 0002448197
Дата охранного документа: 20.04.2012
19.04.2019
№219.017.3396

Раствор для уплотнения анодно-окисного покрытия алюминиевых сплавов

Изобретение относится к области гальванотехники и может найти применение в машиностроении, авиастроении, компьютерной технике и автомобилестроении. Раствор содержит, г/л: бензотриазол 0,1-2,0; хроматциклогексиламин 0,1-2,0; натрий адипиновокислый 0,001-0,002; синтанол 0,04-0,05 и воду до 1...
Тип: Изобретение
Номер охранного документа: 0002447201
Дата охранного документа: 10.04.2012
19.04.2019
№219.017.3399

Способ получения защитных покрытий на магниевых сплавах

Изобретение относится к области гальванотехники, в частности к микродуговому оксидированию, и может найти применение в машиностроении, авиастроении, компьютерной технике и автомобилестроении. Способ включает электрохимическую обработку при плотности тока 5-25 А/дм и соотношении амплитуд...
Тип: Изобретение
Номер охранного документа: 0002447202
Дата охранного документа: 10.04.2012
19.04.2019
№219.017.339c

Литейный сплав на основе алюминия

Изобретение относится к цветной металлургии, в частности к литейным сплавам на основе алюминия, применяемым в авиационной технике и других отраслях машиностроения для нагруженных деталей внутреннего набора фюзеляжа, деталей управления, силовых кронштейнов и др. взамен штамповок, работающих...
Тип: Изобретение
Номер охранного документа: 0002447174
Дата охранного документа: 10.04.2012
19.04.2019
№219.017.339e

Сплав на основе алюминия

Предлагаемое изобретение относится к области цветной металлургии и может быть использовано в авиакосмической промышленности и транспортном машиностроении. Сплав содержит следующие компоненты, мас.%: медь 3,50-4,50, магний 1,20-1,60, марганец 0,30-0,60, цирконий 0,01-0,15, серебро 0,01-0,50,...
Тип: Изобретение
Номер охранного документа: 0002447173
Дата охранного документа: 10.04.2012
19.04.2019
№219.017.33d7

Способ адресной доставки остеопластических материалов, содержащих факторы роста и регенерации костной ткани, в область дефекта альвеолярной кости

Изобретение относится к медицине, а именно к стоматологии и челюстно-лицевой хирургии, и может быть использовано для протезирования пациентов при значительной атрофии костной ткани альвеолярного отростка. Для этого в альвеолярной кости в области дефекта делают перфорации кортикальной пластинки...
Тип: Изобретение
Номер охранного документа: 0002469676
Дата охранного документа: 20.12.2012
Showing 201-203 of 203 items.
20.03.2019
№219.016.e423

Устройство для получения твердофазных наноструктурированных материалов

Изобретение относится к нанотехнологиям и может быть использовано при получении углеродных нанотрубок. В парогазогенераторе 4 готовят многофазную смесь исходного вещества и направляют ее под давлением в газодинамический резонатор 9, где смесь детонирует. Продукты детонационного горения через...
Тип: Изобретение
Номер охранного документа: 0002299849
Дата охранного документа: 27.05.2007
20.03.2019
№219.016.e50a

Способы получения нанодисперсного углерода (варианты) и устройство для их реализации

Изобретение относится к нанотехнологиям и может быть использовано при получении твердофазных наноструктурированных материалов, в частности ультрадисперсных алмазов, фуллеренов и углеродных нанотрубок. Готовят смесь с отрицательным кислородным балансом, состоящую из углеродсодержащего вещества и...
Тип: Изобретение
Номер охранного документа: 0002344074
Дата охранного документа: 20.01.2009
10.07.2019
№219.017.ac3e

Гиперзвуковой пульсирующий детонационный двигатель и способ его функционирования

Гиперзвуковой пульсирующий детонационный двигатель содержит корпус, воздухозаборник, полузамкнутую детонационную камеру сгорания, сопловой аппарат, топливную систему и систему управления. Воздухозаборник выполнен кольцевым. Центральным телом является корпус с топливным баком, теплообменником и...
Тип: Изобретение
Номер охранного документа: 0002347097
Дата охранного документа: 20.02.2009
+ добавить свой РИД